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WAVELETS AND DILATION EQUATIONS: A BRIEF INTRODUCTION* 

GILBERT STRANG? 

Abstract. Wavelets are new families of basis functions that yield the representation f(x) = 
C b,kW(2Jx- k). Their construction begins with the solution $(x) to a dilation equation with coefficients 
ck. Then W comes from @, and the basis comes by translation and dilation of W. It is shown in Part 1 how 
conditions on the ck lead to approximation properties and orthogonality properties of the wavelets. Part 2 
describes the recursive algorithms (also based on the ck) that decompose and reconstruct f: The object of 
wavelets is to localize as far as possible in both time and frequency, with efficient algorithms. 

Key words. wavelet, dilation, orthogonal basis, recursion 

AMS(M0S) subject classification. 4 1 

Wavelets are based on translation (W(x) + W(x + 1)) and above all on dilation 
(W(x)+W(2x)). It is remarkable how long it has taken for "dilation equations" to 
be mentioned beside differential equations and difference equations. True, they are 
hardly in the same league. But ideas about wavelets are coming fast. The mathematics 
is attractive and several important applications seem to fit-I hope this survey will be 
helpful. You should know that its author is neither an expert nor an evangelist. 

The goal is a new way to represent functions-especially functions that are local 
in time and frequency (or space and wave number). Compare with Fourier series. 
Sines and cosines are perfectly local in frequency, but global in x or t. A short pulse 
has slowly decaying coefficients that are hard to measure. To reconstruct the pulse, a 
Fourier series depends heavily on cancellation. The whole of Fourier analysis, relating 
properties of functions to properties of coefficients, is made difficult (some say 
interesting) by the nonlocal support of sin x. 

In achieving local support we lose the greatest property of the basis (einx]. 
With respect to a wavelet basis the differentiation operator is not diagonal. 
Wavelets are not eigenfunctions of dldx, and frequencies are mixed up. The 
uncertainty principle imposes limits on what is possible in x and [ together. The 
commutator (d/dx)(d/d[) - (d/d[)(d/dx) is a multiple of the identity (since 
(d/dx)(xu) -x(du/dx) = u), so we cannot diagonalize both operators. But a good 
"microlocalization" leaves dldx nearly diagonal, and at the same time nearly diagon- 
alizes d/d[ (which is multiplication by x). To connect dilation with multiplication by 
x, differentiate f(cx) with respect to c at c = 1. 

The second important property of (einx] is orthogonality. That can be saved. 
Wavelets can be made orthogonal to their own dilations (as well as their translations). 
Then $ W(x) W(2jx - k)dx = 0 for all integers j and k. The wavelet basis has two 
indices, in which k is translation and j is dilation or compression. It suggests multigrid. 
A wavelet expansion C b,kKk(x) is a multiresolution of f(x), in which bjk carries 
information about f near [= 2j and x = 2-jk. The sum on k is the detail at the scaling 
level h = 2-I. 

Orthogonality is not easy to achieve with local support. Truncated at zero and 
2a, a sine wave $(x) is orthogonal to $(2x) but not to $(4x). The "windowed Fourier 
transform" combines smoothness with local support by bringing eitx gradually to zero, 
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by National Science Foundation grant DMS 87-03313 and by the Army Research Office Center for 
Intelligent Control under grant DAAL 03-86-KO17 1. 
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but it is not fully satisfactory. The price of orthogonality with compact support is 
irregular basis functions. We live with these wavelets by doing all computations 
recursively (this subject is recursion heaven). And it is important to recognize that 
orthogonality and even linear independence(!) are not essential in the representation 
of functions. Wavelets need not be orthogonal.' 

This brief introduction cannot do justice to the applications. Nor can we attempt 
a proper history-it would be mostly in French. The idea of wavelets grew out of 
seismic analysis [5]. Their development has been led by Yves Meyer, whose book [12] 
will describe a new chapter in harmonic analysis (connecting to work of Calderon, 
Grossmann, Morlet, Coifman, Weiss, and many others). The interest in wavelets is 
both pure and applied-like the interest in splines. 

Part 1 of this paper establishes the properties of wavelets-approximation through 
Condition A and orthogonality through Condition 0.Since we never see wavelets as 
functions (only recursively), their properties have to be discovered indirectly. We 
absolutely need these properties in order to have any idea what the algorithms are 
producing. Then Part 2 begins with a piecewise constant example (4 is a box function, 
the wavelet is Haar's). The example reveals a lot with no deep analysis. You could go 
directly to Part 2, about algorithms, and then return to dilation equations. 

1. Dilation equations: construction of 4. The basic dilation equation is a two- 
scale difference equation: 

We look for a solution normalized by J" 4 dx = 1. The first requirement on the 
coefficients ck comes from multiplying by 2 and integrating: 

2 4 d x = C c k  4(2x-k)d(2x-k) yields Cck=2.S S 
Uniqueness of 4 is ensured by C ck= 2. A smooth solution is not ensured. For a 
striking example, set co = 2: 

The delta function 4 =6 satisfies 6 (x)=26 (2x). 

That dilation of 6 is unfamiliar (but somehow very pleasing). For other c's, spline 
functions appear: 

Hat function: 

' Following this paper is a survey by Heil and Walnut [7] that emphasizes "frames." The function is 
oversampled and the representation is redundant (but very valuable). 
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We now outline three constructions of the "scaling function" 4. Those constructions 
display very clearly [3], [12], [15] the mathematics of dilation. Then we turn to 
wavelets, their properties and their purpose. A wavelet W(x) is a second combination 
(involving the same recursion coefficients ck) of the translates 4(2x - k). 

CONSTRUCTION1. Iterate 4j(x) = 2 ~ k & 1 ( 2 ~- k) with the box function as 4 0 ( ~ ) .  
When co= 2 the boxes get taller and thinner, approximating the delta function. 
For co = c, = 1 the box is invariant: c$j = cjo. For $, 1, $ the hat function appears 
as j-+ a,and i ,  $, $, $, i yields the cubic B-spline. An example that will be im- 
portant (an inspiration of Daubechies-we propose the notation D4) has coeffi- 
cients i ( 1  + A ) ,  i ( 3  + A),a(3  - A),and $ ( I  - A ) :  

This scaling function D4 leads to orthogonal wavelets. It is not as smooth as it looks. 
Note that the Weierstrass nowhere differentiable function 2 bn cos (3"x) involves 
dilation by 3. So does de Rham's function, which has ck = +, f, 1, f, adding 
to 3. Resnikoff has found an elegant connection between Weierstrass f~~ lc t ions  and 
wavelets [141. 

CONSTRUCTION2. The second construction takes the Fourier transform of (1): 
n 

The symbol P(5) = 2 ekeikt is the crucial function in this theory. Note that P(0) = 1. 
Now repeat (2) at 512, 514, . . . and recall $(o) = J 4 dx = 1: 

approaches 

For co = 2 we find P = 1 and 6 = 1, the transform of the delta function. For co = el = 1 
the products of the P's are geometric series: 

As N +  cc this approaches the infinite product (1 - eit)/(-it). This is JA eiby dx, the 
transform of the box function. The hat function comes from squaring P(5) which by 
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(3) also squares &[). (Multiplication of P's is i times convolution of c's.) The cubic 
B-spline comes from squaring again. 

CONSTRUCTION3. This construction of 4 works directly with the recursion. 
Suppose 4 is known at the integers x =j. The recursion ( I )  gives at the half-integers. 
Then it gives $I at the quarter-integers, and ultimately at all dyadic points x = k/2'. 
This is fast to program. All good wavelet calculations use recursion. 

The values of 4 at the integers come from an eigenvector. With the four 
Daubechies coefficients, set x = 1 and x = 2 in the dilation equation ( I )  and use the 
fact that 4 =0 unless 0 <x < 3: 

This is $I = L4, with matrix entries L, =CZ,-,. Compare with c,-, for an ordinary 
difference equation. The eigenvalues are 1 and 4. The eigenvector for X = 1 has 
components 4(1) = i ( 1  + A),4(2) = i ( 1  - &), which are the heights on our graph 
of D4.The other eigenvalue X = T1 means that the recursion can be differentiated: 
+'(x) = 2 ck24 ' (2~- k) leads similarly to 4'(1) and 4'(2). In some weak sense, 

= D4has a "dilational derivative." For the hat function, the recursion matrix (see 
below) again has X = 1, i. For the cubic spline the eigenvalues are I , + ,  f , $. 

To repeat for emphasis: From +(l )  and 4(2) the recursion gives everything. 
In these constructions the properties of P([) = + C ckelkt are decisive [3]. The 

precise hypotheses are in flux, and infinitely many ck can be allowed. One basic 
property will bring together the theory of dilation equations, before we go on to 
wavelets. 

1.1. Dilation equations: fundamental theorem. The accuracy of piecewise poly- 
nomial approximation, by splines or finite elements, depends on the answer to this 
question: To what degree p - 1 can the polynomials 1, x, x2, . . . ,xP-I be reproduced 
exactly by the approximating functions? When the polynomials are "in the space," 
the approximation error is of order hP. In our case, the approximating functions are 
4(x) and its translates. Splines are the best at approximation, and finite elements have 
the narrowest support-but both are weeded out when we require orthogonality. 

There is already a theory of approximation by translates [17]. It connects p with 
the properties of 6.  The link is the Poisson summation formula. When 4 solves a 
dilation equation, that throws new questions into the theory-it is extremely satisfying 
that these new questions have the same answers. 

For approximation with accuracy hP, the Fourier transform 6must have zeros 
of order p at all points [= 2an (except at [=0 where 6= 1). Notice how easily that 
converts to a condition on the symbol P. According to (3), the transform 6 is the 
infinite product of P([/2,). At [= 2a the first factor is P(a). At [=4a the second 
factor becomes P(a). At [= 6a the first factor is P(3a), which by periodicity is the 
same as P(a). The zeros of P produce zeros of 6: 

CONDITION = has a zero of order p at [= a.  Equiv- A. The symbol P C ckeJkt 
alently, the coefficients ck satisfy the sum rules that yield P'")(a) = 0: 

( 5 )  C(-l )kkm~k=O, m=0,  1, .. . ,p- 1. 

The box function has P = i ( 1  + eit)and p = 1. The hat function has p = 2 and 
so does D4.The cubic spline has p =4. 

A zero at [= a/2 (instead of a )  would also produce the desired zeros in the 
product 6.  Thus Condition A is not strictly necessary in what follows. Choosing co= 1 
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and c2 = 1 and P = f (1  + e2lE) stretches out the box function-it becomes $ = f on 
the double interval 0 <x 5 2. But P(r/2) = 0 produces instability and linear depend- 
ence-the alternating sum of stretched boxes is C (- l)k$(x- k) = 0. With the added 
requirement of stability [I 71, the condition is exactly right. 

The fundamental theorem states the consequences of Condition A: 

1. 	The polynomials 1, x, . ..,xP-I are linear combinations of the translates $(x - k). 
2. 	Smooth functions can be approximated with error O(hP) by combinations at every 

scale h = 2-J: 

11 f- Cak$(2'x- k) 11 5 C2PP 11 f (P) 11 for suitable ak. 
k 

3. 	The first p moments of the wavelet W(x) (see below) are zero: 

SxmW(x)dx=O form=O, . . . , p -  I. 

4. 	The Fourier coefficients (wavelet coefficients) of a smooth function decay like 
J f(x) W(2'x) dx 5 C2-JP. 

5. 	The recursion matrix LN that determines $ at the integers has the eigenvalues 
1, f ,  ..., ($)"-I. 

1 and 2 come from approximation theory. The combination of 6's at scale j is also a 
combination C bjk W(2'x - k) down to scale j. 3 and 4 are easy once wavelets are 
defined. Mallat [8] gives a sharp result, with properly stated requirements on the 
smoothness and decay of $: The H P  norm of f  is equivalent to the corresponding 
norm of its coefficients b,k. Wavelets lead to unconditional bases, suitable for a wide 
range of function spaces. 

It is 5 that makes $(x) smoother as p increases and also makes the constructions 
successful. The smoothness is weaker than $ E CP-', but it is striking that "dilational 
derivatives" come at the same time as higher degrees of approximation. What remains 
to be studied is orthogonality-which imposes an entirely different condition on 
the ck. 

Remark 1. Suppose the basic recursion has coefficients co, .,CN. Then $ is 
zero outside the interval [0, N]. With continuity it follows that $(O) = 0 and $(N) = 0. 
Those were assumed in (4) when we determined $ = D4 at the integers. For the box 
function with N =  1, $(0) and $(N) cannot both be dropped. Our recursion matrix 
will be (L,), = c2,-, with i, j = 1, . .,N. For the box function L1 = [ l]  has eigenvalue 
X = 1, as expected in 5 above. 

The spectrum of the infinite matrix L (allowing all i, j )  is an attractive problem 
in operator theory. Notice that L is convolution followed by decimation-multiplica-
tion by the matrix ci-' followed by projection onto even-numbered coordinates. By 
contrast with the usual Toeplitz case, eigenfunctions can have compact support! 
Homogeneous difference equations with zero boundary conditions lead to $ = 0, but 
not so for dilation equations. 

Remark 2. The minimum requirement is p = 1. Then P ( r )  = 0, which means 
that 2 C2k = 2 C2k+l. Since C ck = 2, the columns of L add to 1: 

steps of 2 down columns 
LN= steps of I across rows 

C4 C3 here N =4 
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(1,  I, 1, 1) is a left eigenvector with X = I. The right eigenvector yields the values 
$( I ) ,  . . .,$ ( N )at the integers. The recursion determines $ at all dyadic points. Values 
at other points are never used. 

1.2. Wavelets and orthogonality. Finally we define a wavelet. It comes from the 
scaling function $ by taking "differences": 

We write Win place of the usual rl/, to distinguish more clearly from $. Note the 2x 
on the right, and especially (- l)k. Examples show the effect of alternating signs: 

Haar wavelet from box function Wavelet from hat function 

W,(x)=$(2x)-$(2x- I) ~=$(2x) -$$(2x- 1)-$$(2x+ 1) 

W4(x) from $ = D4 

Orthogonal wavelet 


The wavelet from the hat function does not belong here. It is not orthogonal to 
W(x + 1). The point is that the other two do belong. The Haar function is orthogonal 
to its own translations and dilations. Historically it was the original wavelet (but with 
p = 1 and poor approximation). The orthogonal wavelet W4 has p = 2 and second- 
order approximation. 

Without formulas for D4 and W4, how is the orthogonality of their translates 
known? We need a test that applies to the recursion coefficients ck, or to the symbol 
P([)= $ 2 ckelk(. 



620 GILBERT STRANG 

With this condition, the infinite matrix L*L in Part 2 is an orthogonal projection. To 
see now the role of Condition 0 ,  suppose the functions 40(2x - k) are orthogonal. 
Then so are the translates of 4,(x) = C ~ k 4 0 ( 2 ~k):-

=X c,s-,,J 48(2x) dx= 0 for m#0. 

Construction 1 creates C#I by iteration from the box function, which is orthogonal to 
its translates. Therefore (as Daubechies observed) so is 4. 

The wavelet W(x) in (6) is also orthogonal to $(x -m). This is simple but neat, 
not involving Condition 0 .  The sum in (7) changes to 

(8) X (- l )k~1-k~k-2mwhich is identically zero! 

Just replace k by 1 - n + 2m. This identity is HL* = 0 in Part 2. Then (6) makes 
W(x) orthogonal to W(2x -m). The orthogonality of W(x) and W(x -m) comes 
back to Condition 0 .  

The goal in constructing wavelets is to satisfy Conditions A and 0 .  The basic 
family W2, W4, W6, . . . was discovered by Daubechies [I], following Haar's W2. The 
accuracies are p = 1, 2, 3, and there are 2, 4, 6, . nonzero coefficients ck. The 
smoothness also increases with p-but only by about derivative each time. D4 and 
W4 are Holder continuous [3] with exponent .550 . In Galerkin's method for a .  

solving differential equations, it is natural for these wavelets to be the trial functions- 
broader support than splines, nonsymmetric but orthogonal, multigrid built in, all 
computations based on recursion, difficulty to be expected at boundaries. The first 
experiments by Glowinski, Lawton, and Ravachol [4] are particularly interesting for 
Burgers' equation. 

2. Algorithms for wavelet expansions. Now comes a change of direction. Instead 
of discussing the properties of wavelets, we describe algorithms. The main question is 
how to decompose a signal into its wavelet coefficients, and how to reconstruct the 
signal from the coefficients. There is a "tree algorithm" or "pyramid algorithm" that 
makes these steps simple and fast. It does for the discrete wavelet transform what the 
Fast Fourier Transform (FFT) does for the discrete Fourier transform. The algorithm 
is fully recursive. 

The user chooses a specific wavelet. We begin with the simplest choice, based on 
the box function. It satisfies the orthogonality property (Condition 0 ) ,  so all pieces of 
the decomposition are orthogonal. The approximation property (Condition A which 
preserves polynomials) determines how quickly the coefficients decay-for efficiency 
we want to stop the decomposition early. In that respect the box function is poor. 
Efficiency is the reason for working with higher wavelets W4, W6, WE, . ., and 
simplicity is the reason for starting with W2. This is Haar's wavelet [ l  -11. 

The discussion will be discrete-for vectors not functions. We are given n = 2 
values 5 ,  .,f,.They may be equally spaced values of a function f(x) on a unit 
interval. The goal is to split this vector f into its components at different scales, 
indexed by j. At each new level the meshwidth h is cut in half and the number of 
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wavelet coefficients is doubled. The decomposition is 

The "detail" f b) is a combination of 2J wavelets at scale 2-j, and f is a multiple of @ 

the scaling function 4. For a numerical example take J= 2. Then the finest detail f ( I '  

is the sum of two terms, here with coefficients bl = 4 and b12 = 1: 

Notice that the four components are mutually orthogonal. There are 1 + 2 + . . . 
+ 2 J-l wavelet coefficients, and the one from f@makes 2 J. 

How are the coefficients 3, 2, 4, 1 computed from f ?  On thefinest scalefirst. As 
in the FFT [13], [16], the decomposition begins with a "butterfly": 

This is followed by a permutation, in which high frequencies go to the bottom: 

The next step is another butterfly, on low frequencies only: 

The result is the set of wavelet coefficients 3, 2,4, 1. The product of the three matrices 
in (10-12) is the decomposition matrix D. Its inverse is the reconstruction matrix R: 

The coefficients 3, 2, 4, 1 enter the vector b = (b,, bol, bl  l ,  b12). The wavelet 
expansion in (9) is f = Rb. The coefficients are b = R-lf = DJ: This product Df was 
computed recursively, from two butterfly matrices with a permutation between. In 
general there will be J matrices with permutations between. 

The reconstruction is also recursive. It inverts (12) then (1 1) then (10). The global 
matrix R is the product of these local inverse matrices. 

Notice that the operation count is proportional to n. It is best possible (the FFT 
count is n log2n).There are only n - 1 individual 2-by-2 matrix multiplications, since 
high frequency coefficients (here 4 and 1) are settled and not reused. The Walsh 
functions give a different piecewise constant representation, in which the last two 



622 GILBERT STRANG 

basis vectors are (1, -1, 1, -1) and (1, -1, -1, 1). In that case 4 and 1 enter another 
butterfly to produce the Walsh coefficients 4 and 5 .  The Walsh basis is global. The 
wavelet basis is local, but scaled-its support has width O ( T J )  at the finest scale and 
O(1) at the coarsest scale. 

Notice also the normalizing factors in decomposition (and 1's in reconstruc- 
tion). The alternative is to introduce I/& for both. This has the advantage of 
normalizing the wavelets W k= ~ J / ~ W ( ~ ~ X- k) at every scale. The whole basis is 
orthonormal (when 11 WII = 1). In the discrete case R and D become orthogonal 
matrices: 

Dilemmas of this type are familiar from the Fourier transform. 
Based on the Haar example, we now start on Mallat's beautiful tree algorithm 

for wavelets [8], [9]. The simple average from [f $1 is replaced by a discrete filter 
based on 4. The difference [ i  -;I is replaced by a filter based on W. The filters use 
the same recursion coefficients ck that led to 4 and Win the first place. 

Decomposition. The given n-vector f is on the finest scale h = 2-J. The fine-to- 
coarse filter (the "restriction operator" in multigrid language, the low-pass filter in 
signal processing language) is L. It produces a vector with half as many entries: 

In the Haar example with co = C, = 1, the entries of Lf are f(f; +fi) and f (f3+&). 
The recursion continues to coarser scales, and after Jsteps it reaches a single number- 
the coefficient b, in f m  at the coarsest scale h = 1. Here b, = $(A +fi +h+&). 

The dual to L is the coarse-to-fine map L* (the "interpolation operator" in 
multigrid language). Notice the change of index and the disappearance of i: 

In the Haar example L*L f has entries i(f;+fi), f (f;+fi), i ( h  +&), i(f3+&). It is 
the projection off onto the subspace that is piecewise constant at scale 2h. It gives a 
blurred picture, with details lost. 

The decomposition picks out these details, orthogonal to the average. The 
projection onto the wavelet subspace is the high frequency component: 

This repeats at every stage. There is an "average" or "blurred picture" a"-') =La"), 
starting from a(-') =f:The detail lost in that average is the component off  at that 
stage: 

This is a first statement of the decomposition algorithm. We will see how Condition 
0 simplifies the formula. 
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Reconstruction. To produce f from its details f"', run the recursion (16) in 
reverse: 

This starts from the coarsest detail f(O' and the totally blurred picture a''' =f 4 .  It 
returns to f = a(-". 

Apply orthogonality. The most elegant part of the algorithm is still to come. It is 
not necessary to compute the detail vector f"' from (16),and then to compute its 
wavelet coefficients bJk.Those are the numbers we want (4 and 1 in the example at 
level j = 1). These numbers can be found directlyfrom dJ'. 

Review the Haar example first. The low-pass filter gave a") from f = a'2): 

The blurred picture is a") = (5, 5, 1, 1). At the next level the low-pass filter leaves 3, 
the coefficient of (1,  1 ,  1 ,  1). W e  now want the orthogonaljlter-the high-pass jlter 
H. In the Haar example it produces 

Those coefficients 4 and 1 represent the detail f ' I '  = (4,  -4, 1, - l ) ,  which is lost when 
is blurred to a( ') .  At the next level H is applied to a"). That produces 

$(5)- + ( I )  = 2. This is the coefficient boI ,representing the detail (2, 2, -2, -2) lost 
when a") is blurred to a(O'.We now put these pieces together into Mallat's pyramid 
algorithm : 

Decomposition. Initialize a =f: For j = J, .. ., 1 compute 

Reconstruction. Start with a0 and bO, . . ,bJ-'. For j = 1 ,  .. .,J compute 

The full decomposition is represented by a tree of filters: 

The reconstruction goes from the branches of the tree back to the root: 

L* L* L*
a O ,  a l ,  a 2 .  .- aJ=f:  

PI* 7 H *  P H *  

bO b' 

The next step is to identify these filter matrices L and H for examples other than "box 
and Haar." 

Note. The filter matrices L and H have half as many rows as columns. 
By dropping the parentheses around j, we distinguish the vector aJ  with only 2' 
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components from the vector a(*)with the full 2 J =n components. The vector a' 
contains the expansion coefficients of a(') with respect to the translates 4(2'x - k). 
See the example above and the multiresolution below! 

2.1. The filter matrices L and H. The matrix L is known from the first part of 
the paper. Its entries Li, = czi-' are the recursion coefficients for the scaling function. 
Rows 1, 2 and columns -1,0, 1, 2 are displayed with N = 3: 

The beautiful thing is that the high-pass filter (strictly speaking it is band-pass) 
uses the same coefficients. H is associated with the wavelet W just as L is associated 
with the scaling function 4. Equation (6) for Wuses the same ck, but with alternating 
signs and reversed order. The wavelet filter has 

Rows 1, 2 and columns 1, 2, 3, 4 are displayed: 

The indices were chosen to match the Haar example (variants are possible). The 
transposed matrices, without the factor i,represent the dual filters L* and H*.The 
important points now come quickly, and matrix multiplication is the best proof. 

THEOREM1. By their construction thejlters are orthogonal: 

(21) HL*=0. 

This multiplication is the reason behind the construction of H-alternating signs, 
reversed order, index shifted by one. See equation (8). 

We finally come to the reward for Condition 0:2 CkCk+2rn = 260,. The reason 
for that condition is in the reward. Remember that the box function and D4satisfied 
this requirement, but not the hat function or the cubic spline. Condition 0 can be 
stated and understood in transform space, but I believe that the matrix interpretation 
is again the clearest. 

THEOREM2. If Condition 0 holds then 

(22) 1. LL*=I  and HH*=I.  

2. L*L and H*H are mutually orthogonal projections with 

(23) L*L+ H*H=I. 

Remember that L and H map into subspaces half as large as the original. L* and H *  
map back. The identity operators in (22) are on the half-sized subspaces. 

The proof of (22) is by direct matrix multiplication. Condition 0 gives the result. 
Then it follows that L*LL*L = L*L, so L*L is a projection-and similarly for H*H. 
The property HL* =0 in (21) yields H(L*L + H*H) = H. The transpose LH* = 0 
yields L(L*L + H*H) = L. The operator in (23) is the identity on both orthogonal 
components-the ranges of L and H-so it is the identity. We have an orthogonal 
decomposition by "quadrature mirrorfilters" L and H at every step. 

2.2. Multiresolution of LZ.The last paragraphs changed quietly from functions 
to vectors. That was for the sake of algorithms, which use values of C#J and Wat dyadic 
points k/2 J.The Haar example began with f a t  equally spaced points on (0, 11. But 
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the filter matrices really apply to discrete values along the whole line-they are infinite 
matrices. More than that, the decomposition f = +C f " )is just as valuable for functions 
in L2as for vectors in 12. 

This multiresolution yields the details off at all scalings 2-J. On the whole line 
we take j = 0, + 1 ,  +2, . . . . The decomposition develops an idea that was already 
present in approximation theory-to put frequencies together in "octaves." (Besov 
spaces combine frequencies 2' S .$ <2'". It seems that the ear also receives frequen- 
cies on a logarithmic scale.) For functional analysis the starting point in [ I ] ,  [8]  is the 
subspace SJspanned by the translates $(2 jx  - k) . If a function g ( x ) is in S,, then g (2x )  
is in SJ+,.The dilation equation writes d ( x ) as a combination of $ ( 2 x  - k ) ,  which 
assures that So C S , .  At all scales we have 

Now turn to the wavelet subspace W,. It is spanned by the translates W ( 2 j x- k) .  
It is invariant under translation by multiples of 2-I. If g ( x ) is in WJthen g (2x ) is in 
W,,,. The construction W(x)= +C (- l ) k ~ l - k $( 2 x- k )  puts W and its translates into 
S , ,  and makes them orthogonal to So.  In fact, W0 and So  are orthogonal complements 
in S ,  . At every scale WJ@ SJ= S,,, . The spaces SJ give the "partial sums" of the 
differences WJ: 

m 

. . @ W - , @ W O @ . . . @ W , = S J + ,  and @W,=L2. 
-m 

The multiresolution off is a splitting into components f E W,: 
m m 

(24)  f = +C f ( j )  or f=f" +C f " ) ,  f 4 ~ ~ ~ .  
-m 0 

This is a very satisfying decomposition of L2 functions, classical [12]but with new 
subspaces. The coefficients b Jin Mallat's pyramid algorithm corresponded to f E W,, 
and a Jcorresponded to a(')E SJ. 

The analogue of the discrete Fourier transform was in the algorithm. The analogue 
of ordinary Fourier series is (24).The analogue of the Fourier integral formula is the 
wavelet transform reviewed in [7].Representations of different groups give rise to 
different transforms. 

2.3. Applications. Image processing works with F ( x ,  y), so it is natural to look 
for two-dimensional wavelets. The simplest construction uses the products @ (x)@(y), 
@(x)W (  y), W ( x ) @(y), W ( x )  W (  y). Orthogonality is clear. New constructions have 
been invented that are genuinely two-dimensional, but it is useful to start with the 
tensor products of "box and Haar." The given two-dimensional array Fyields a two- 
dimensional array B of wavelet coefficients. We display two steps of the decomposition, 
transforming 2-by-2 subarrays into coefficients a b c d and recursively onwards: 

M' X + +  + - + +  + -
a c d comes from 

Y Z  
with signs + +  + - - - - + 

S 1
comes similarly from :s=-(+p+q+r+a).

U v r a 4 
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The entries p, q, r are averages of the other 2-by-2 arrays in F. The blank entries in B 
come from those arrays using mixed or minus signs. Those signs correspond to 4 W 
and Wq5 and WW, and they give coefficients in B that are settled. The averages (with 
plus signs) go on to a further splitting. In one dimension the differences bJ were settled 
and the averages aJwent on. 

For pattern recognition, a major difficulty with the wavelet transform B is the 
lack of translation invariance. If the pattern is shifted by a fraction of h,  its wavelet 
model is changed. A higher sampling rate is possible but expensive. Mallat [lo] studies 
instead the zero-crossings of the wavelet transform, which locate the signal edges. 
Now the difficulty is to make the reconstruction stable. In edge detection the first 
wavelets were Laplacians of shifted Gaussians [ l l ] ,  introduced by Gabor. The 
orthogonal wavelets of Meyer are Cmwith polynomial decay, the Battle-Lemarii 
wavelets based on splines are Cnwith exponential decay, and the Daubechies wavelets 
are Cn(smaller n) with compact support. 

In closing we recall the original problem-to localize in time and frequency. 
Geophysics needs to represent short high-frequency pulses. Physics needs to divide 
up phase space. The coherent states gp, = eiPxg(x- q) give a "Weyl-Heisenberg" 
frame, with some redundancy-but stillf can be reconstructed from 

Mathematics needs (or wants) an orthogonal decomposition, better than gp, at high 
frequencies and with no redundancy. The answer for now is wavelets. 

Acknowledgments. It is a pleasure to thank Ingrid Daubechies and Howard 
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