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First of all, we need to define what is Stationary Time Series and figure out why we study Stationary Time Series.
Even before that, what is time series? According to the textbook, a time series is a set of obserations xt, each one being
recorded at a specific time t. There are two types of Time Series. One is a discrete time series and the other is continu-
ous time series.  If  the observations are over a time interval that  is  fixed, it’s discrete and if  the observations are
recorded continously over some time interval, it’s continuous.
Now, definition 1.3.1 from the textbook says that a time series model for the observed data 8x1< is a specification of
the joint distributions (or possibly only the means and covariances) of a sequence of random variables 8xt<of which
8xt< is postulated to be a realization.

To state if the time series is stationary or not, we need to define the mean function and the covariance function first.
Definition 1.4.1

Let 8Xt< be a time series with EIXt
2M < ¥. The mean function of 8Xt< is

ΜXHtL = EHXtL

The covariance function of 8Xt< is 
ΓXHr, sL = CovHXr, XsL = E@HXr - ΜXHrLL HXs - ΜXHsLLD
for all integers r and s.

To figure out if the time series is stationary or not, we need to use definition 1.4.2 saying 
8Xt< is (weakly) stationary if 
(i) ΜXHtL = EHXtL.
and 
(ii) ΓXHt + h, tL is independent of t for each h. 



Noise

H* sample time series of a roll of a dice with 6 faces. Rolled 80 times *L
data = RandomVariate@DiscreteUniformDistribution@81, 6<D, 80D;
ListPlot@data, Filling ® AxisD
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H* Dice rolled many more times, the horizontal bands are exactly 1, 2, 3, 4, 5, 6 *L
data = RandomVariate@DiscreteUniformDistribution@81, 6<D, 8000D;
ListPlot@data, Filling ® AxisD
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Now, Calculate the mean and variance of the distribution.

8Mean@dataD, Variance@dataD< �� N

83.51025, 2.88551<

h is the sliding window of the model that determines whether the stationary definition of the time series holds or not.
the code Length[data]-h and 

2   stationary_timeseries_intro.nb



t = 30;
H*timeshift by h *L
h = 1000;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

H* change this time see if the covariance changes *L
t = 190;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

t = 590;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

83.50868, -0.0327035<

83.51446, -0.0307901<

83.51349, -0.0245833<

Let’s use Poisson instead of constant distribution for the dice

data = RandomVariate@PoissonDistribution@10D, 100D;
ListPlot@data, Filling ® AxisD
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H* Increase the number of samples in time series *L
data = RandomVariate@PoissonDistribution@10D, 10^4D;
ListPlot@data, Filling ® AxisD
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We do the same procedure as above. Calculate the mean and the variance of the data and vary t as we give any number
of h to see if the sample of  time series is stationary or not. As we change the time, we can observe whether the
covariance changes to check if the series is stationary.

8Mean@dataD, Variance@dataD< �� N

89.9531, 9.64767<

t = 30;
H*timeshift by h *L
h = 1000;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

H* change this time see if the covariance changes *L
t = 190;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

t = 590;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

89.95909, -0.182421<

89.96391, -0.190257<

89.97206, -0.184724<

 Now let’s use another time series which is obtained frmo Normal distrubution, instead of rolling dice. Mean = 1 and
Var = 3 
We will have one plot that has small sample and another with large sample to see the pattern. 
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data = RandomVariate@NormalDistribution@1, 3D, 100D;
ListPlot@data, Filling ® AxisD
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H* Now choose much large sample for time series *L
data = RandomVariate@NormalDistribution@1, 3D, 10^4D;
ListPlot@data, Filling ® AxisD
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Once again, we repeat the procedure as above, calculate mean and variance and the covariance.

8Mean@dataD, Variance@dataD< �� N

80.994628, 9.1332<
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t = 900;
H*timeshift by h *L
h = 1000;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

H* change this time see if the covariance changes *L
t = 190;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

t = 590;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

80.981389, -0.0439288<

80.977056, 0.00563836<

80.964315, -0.0181857<

All of the samples above had reasonably small changes to their mean and covariance as the time changed which we
can conclude that all of them were (weakly) stationary models.

Random Walk 

To study the random walk, it’s a good idea to cover the textbook definition first. 
Example 1.3.3 Random Walk
The random walk  8St, t = 0, 1, 2, ...<(starting at  zero)  is  obtained  by  cumulatively  summing (or  “integrating”)  iid
random  variables.  Thus  a  random  walk  with  zero  mean  is  obtained  by  defining  S0 = 0  and
St = X1 + X2 + ... + Xt, for t = 1, 2, ... where 8Xt< is iid noise. If  8Xt<  is the binary process of example 1.3.2, then
8St, t = 0, 1, 2, ...} is called a simple symmetric random walk. This walk can be viewed as the location of a
pedestrian who starts at position zero at time zero and at each integer time tosses a fair coin, stepping one unit to the
right each time a head appears, and one unit to the left for each tail. A realization of length 200 of a simple symmetric
random  walk  is  shown  in  Figure  1.7.  Notice  that  the  outcomes  of  the  coin  tosses  can  be  recovered  from
8St, t = 0, 1, 2, ...} by differencing, THus the result of the tth toss can be found from St - St-1 = Xt.

this is the example that covers the random walk.
Example 1.4.3 The Random Walk

If 8St<is the random walk defined in Example 1.3.3 with 8Xt< as in Example 1.4.1 then ESt = 0, EISt
2M = tΣ2 < ¥ for all

t, and for h³0,
ΓtHt + h, tL = CovHSt+h, StL

= CovHSt + Xt+1 + ... + Xt+h, StL

= CovHSt + StL

= tΣ2.
Since ΓsHt + h, tL depends on t, series 8St<is not stationary.

We now start with our own example. The model starts walking with flip a coin and H means go right +1 and T means
go left -1. Take a step each time after the toss. 
Lets start with a 50 tosses.
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We now start with our own example. The model starts walking with flip a coin and H means go right +1 and T means
go left -1. Take a step each time after the toss. 
Lets start with a 50 tosses.

H* start walking but at each step flip a coin, H go right +1, T go left -1, *L
data = RandomChoice@8-1, 1<, 50D;
dataaccum = Accumulate@dataD;
ListPlot@dataD
ListLinePlot@dataaccumD
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This graph gives you the distribustion of the accumlative steps you took from the origin:
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Now that we have some distribution in 50 trials, lets try the large sample, 5000.

stationary_timeseries_intro.nb  7



data = RandomChoice@8-1, 1<, 5000D;
dataaccum = Accumulate@dataD;
ListPlot@dataD
ListLinePlot@dataaccumD
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We can see some trends on the graph above. Now we calculate the mean and covariance with fixed h in different times.

8Mean@dataD, Variance@dataD< �� N

8-0.014, 1.<
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data = dataaccum;
t = 30;
H*timeshift by h *L
h = 150;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

H* change this time see if the covariance changes,
as you can see it does!!! So random walk is NOT stationary *L
t = 90;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

t = 190;

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
8Mean@datatimetD, Covariance@datatimet, datatimetplushD< �� N

8-46.619, 415.854<

8-47.1918, 394.477<

8-48.1304, 358.725<

The result shows that the mean and variance vary as the time changes. Therefore, Random Walk is not a stationary
model.

Auto Correlation

Autocorrelation function is the function we can use to help finding the covariance of the time series. Here is the
definition.
Definition 1.4.3 The autocorrelation function (ACF) of 8Xt< at lag h is

ΡXHhL =
ΓXHhL

ΓXH0L
= CorHXt+h, XtL.

Also, the definition 1.4.4 gives the definition of the sample correlation function

Ρ
`

HhL =
Γ
`

HhL

Γ
`

H0L
, -n < h < n.

The autocorrealtion function has to be constant in order to be independent of t. If it is independent of t, the series is
stationary.

So we assign a function naming “autoCorrelation” as below.

stationary_timeseries_intro.nb  9



H* Auto Correlation ΡXHhL. However the time t >

0 is added for the sake of emphasis and in case the time series is not stationary.
This function is actually called SAMPLE Auto Correlation *L

autoCorrelation@data0_, h0_, t0_D :=

Module@8data = data0, h = h0, t = t0, datatimet, datatimetplush, cov1h, cov10<,

datatimet = data@@t ;; Length@dataD - hDD;

datatimetplush = data@@t + h ;; Length@dataDDD;
cov1h = Covariance@datatimet, datatimetplushD;

h = 0;
datatimet = data@@t ;; Length@dataD - hDD;
datatimetplush = data@@t + h ;; Length@dataDDD;
cov10 = Covariance@datatimet, datatimetplushD;

cov1h � cov10 �� N
D

We use the dice rolling example used above to see the correlation works on identifying the stationariness.

H* Dice rolled many more times, the horizontal bands are exactly 1, 2, 3, 4, 5, 6 *L
data = RandomVariate@DiscreteUniformDistribution@81, 6<D, 8000D;
8Mean@dataD, Variance@dataD< �� N

83.52625, 2.93818<

autoCorrelation@data, 900, 600D

0.01509

h = 1000;
ListPlot@Table@autoCorrelation@data, h, tD, 8t, 1, Ceiling@Length@dataD � 2D<D,

PlotRange ® 880, 4000<, 80, 1<<D

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

Both the value of the autocorrelation and the plot shows that it’s constant. Therefore, the series is stationary.

We use the poisson distribution once more.
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data = RandomVariate@PoissonDistribution@10D, 10^4D;
ListPlot@data, Filling ® AxisD
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h = 1000;
ListPlot@Table@autoCorrelation@data, h, tD, 8t, 1, Ceiling@Length@dataD � 2D<D,

PlotRange ® 880, 4000<, 80, 1<<D
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the autocorrelation is constant again, thus stationary.

Create another random walk
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data = RandomChoice@8-1, 1<, 3000D;
dataaccum = Accumulate@dataD;
ListPlot@dataD
ListLinePlot@dataaccumD
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As you can see its Auto Correlation function is not constant in time t

h = 1000;
ListPlot@Table@autoCorrelation@dataaccum, h, tD,

8t, 1, Ceiling@Length@dataaccumD � 2D<D, PlotRange ® 880, Length@dataaccumD<, 8-1, 1<<D
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Classical Decomposition Model 
Section 1.5 emphasize on the estimation and elimination of trend and seasonal components.
First to study is a classical decomposition model.
Classical Decomposition Model
Xt = mt + st + Yt, t = 1, 2, ..., n,

where EYt = 0, st+d = st, and Új=1
d s j = 0.

The below plots are some of the example models with 1. slowly changing trend, seasonal component (periodic), and
random noise. and the last one is the composition of all of those functions.
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Section 1.5 emphasize on the estimation and elimination of trend and seasonal components.
First to study is a classical decomposition model.
Classical Decomposition Model
Xt = mt + st + Yt, t = 1, 2, ..., n,

where EYt = 0, st+d = st, and Új=1
d s j = 0.

The below plots are some of the example models with 1. slowly changing trend, seasonal component (periodic), and
random noise. and the last one is the composition of all of those functions.

t = .;
m =.;
s =.;
X =.;
Y =.;
H* Trend, slowly changing function *L
m = 0.1 * t^2;
H* Seasonal Component, preodic cyclic *L
s = 7 * Cos@tD;
H* Random Noise *L
Y = HoldForm@4 * RandomReal@8-1, 1<DD;

X@w_D := Hm + s + ReleaseHold@YDL �. 8t ® w<;

Plot@m, 8t, 0, 50<D
Plot@s, 8t, 0, 50<D
Plot@ReleaseHold@YD, 8t, 0, 50<D
Plot@X@tD, 8t, 0, 50<D
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Smoothing 
Sometimes, we need to smooth the time series to get a better sense of the trend because some people might get con-
fused with the noise and the trend. To reduce the chance of error, lets study some of the examples of the smoothing.
Firt of all, we assign a Xseries which is the sequence with difference of 0.3.

H* Grab a signal and set the time sequence different at 0.3.
Look at the data to get an idea. *L
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Xseries = Table@X@tD, 8t, 0, 50, 0.3<D
ListPlot@XseriesD

87.91046, 5.7433, 6.51046, 7.03326, 1.64816, 4.50115, -3.29423, -6.10054, -0.968383,
-3.74727, -3.857, -4.45881, -3.21314, -4.94624, 1.59646, -2.09578, 1.31484, 6.88267,
5.62245, 9.9411, 9.25711, 12.8161, 10.5945, 12.0768, 11.5219, 9.44579, 4.87985, 3.62356,
0.0410051, 1.15545, 0.222748, -1.77104, 4.89443, 7.16179, 3.77486, 10.0885, 6.65814,
15.1217, 14.2563, 15.0318, 22.9859, 25.872, 19.8936, 21.5232, 25.0721, 25.1917, 18.9285,
20.4744, 15.7677, 14.3381, 17.0802, 16.0887, 20.0152, 20.2112, 20.9959, 19.0454,
26.5174, 28.8499, 28.0909, 31.3099, 40.8288, 38.2378, 37.4786, 46.5717, 40.4775,
42.9514, 40.0472, 42.1362, 40.6273, 42.6415, 44.0122, 41.4832, 41.6209, 38.046,
43.0223, 48.4272, 43.4861, 46.4494, 54.9282, 60.9636, 63.0211, 59.9061, 63.9164,
65.8792, 72.3648, 69.6464, 71.2134, 71.6194, 69.6155, 67.6311, 72.3429, 69.5481,
74.0273, 74.6787, 72.9778, 74.4403, 76.8592, 82.39, 86.1208, 85.3421, 91.4059, 98.5367,
96.0306, 105.433, 100.477, 104.673, 110.122, 106.352, 106.068, 107.833, 111.715,
111.572, 110.139, 109.422, 108.924, 115.475, 115.276, 116.176, 119.025, 125.192,
128.538, 135.342, 133.146, 139.748, 143.115, 151.16, 153.721, 148.851, 153.811,
156.999, 150.498, 153.77, 154.682, 152.43, 156.596, 153.471, 156.309, 162.958, 165.399,
165.657, 170.93, 179.661, 182.96, 187.884, 189.681, 196.107, 201.328, 198.998, 207.487,
201.562, 204.125, 209.725, 207.057, 210.56, 206.778, 211.869, 213.163, 218.181,
216.931, 220.439, 229.712, 229.708, 238.448, 241.926, 246.667, 253.963, 258.135<
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Moving Average 

The first method to cover is the moving average. This is the definition from the book.
Smoothing with a finite moving average filter.
Let q be a nonnegative integer and consider the two-sided moving average
Wt = H2 q + 1L-1 Új=-q

q
Xt- j

of the process 8Xt< defined by Xt = mt + Yt, t = 1, ..., n, where EYt = 0.  Then for q + 1 £ t £ n - q,
Wt = H2 q + 1L-1 Új=-q

q
mt- j + H2 q + 1L-1 Új=-q

q
Yt- j » mt,

assuming that mt is approximately linear over the interval @t - q, t + qD and that the average of the error terms over this
interval is close to zero.
The moving average thus provides us with the estimates
m
`

t = H2 q + 1L-1 Új=-q
q

Xt- j, q + 1 £ t £ n - q.

So we perform the moving average below to see if there is any change to the plot.
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MovingAverage@8a, b, c, d, e, f, g<, 3D

:
1

3
Ha + b + cL,

1

3
Hb + c + dL,

1

3
Hc + d + eL,

1

3
Hd + e + fL,

1

3
He + f + gL>

movingaverage = MovingAverage@Xseries, 4D;
ListPlot@movingaverageD
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The plot flows better than the original graph.  

Exponential Moving Average (Smoothing) 

ExponentialMovingAverage@x, ΑD generates a list of results y in which yi+1 = yi + ΑHxi+1 - yiL.

Let study the definition of the exponential smoothing. 

For any fixed Α Î[0,1], the one sided moving average m
`

t, t = 1, ..., n, defined by the recursions

m
`

t = ΑXt + H1 - ΑL m
`

t-1, t = 2, ..., n, and m
`

1 = X1

ExponentialMovingAverage@8a, b, c<, ΑD

8a, a + H-a + bL Α, a + H-a + bL Α + Α H-a + c - H-a + bL ΑL<
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movingaverage = ExponentialMovingAverage@Xseries, .2D;
ListPlot@movingaverageD
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Differencing

If list has length s, Differences@list, nD has length s - n.

We can also eliminate the trend with the method of differencing.
According to the textbook,
Instead of attempting to remove the noise by smoothing we now attempt to eliminate the trend by differencing. 
So this is a different method from smoothing techniques as above. We define the lag-1 difference operator  õ by 
õXt = Xt - Xt-1 = H1 - BL Xt, where B is the backward shift operator,
BXt = Xt-1.

Differences@8a, b, c, d, e<D

8-a + b, -b + c, -c + d, -d + e<

Differences@8a, b, c, d, e<, 2D

8a - 2 b + c, b - 2 c + d, c - 2 d + e<
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power = 5
diff = Differences@Xseries, powerD;
ListPlot@Drop@Xseries, -powerDD

5

50 100 150

50

100

150

200

By applying the the differencing method, the graph is detrended even though it’s not as smooth as the smoothing
techniques.

18   stationary_timeseries_intro.nb


