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Preface iii

Preface

Nowadays, computer-based systems are indispensable for almost all areas of
modern life. As has been frequently stated, they suffer, however, from be-
ing insufficiently correct or reliable. Software development projects fail their
completion deadlines and financial frames. Though computer systems sur-
pass in size all traditional complex systems ever produced, the discrepancy
in quality standards seems to be unbridgeable. It has been argued frequently
that traditional engineering methods and standards should be adapted to
software development needs and so the field of software engineering was cre-
ated. Though some progress is observable in this area, modelling, analysis,
and implementation techniques lack a powerful modelling method connecting
all these areas. Moreover, though graphic-based modelling techniques are of
increasing interest, there are very few that are founded on formal methods.

This book intends to bridge the gap between Petri nets, which fulfil many
desirable requirements, and the systems modelling and implementation pro-
cess. Petri nets are introduced from its basics and their use for modelling and
verification of systems is discussed. Several application domains are selected
to illustrate the method.

The book has been written in the context of the MATCH project. We
wish to thank all participants for their contributions to the concept and de-
sign of the book. It took several meetings and numerous sessions to decide
on its structure and contents. In particular, we gratefully acknowledge the
contribution of portions of text, mutual proof reading, the supplying of use-
ful comments and suggestions, and – last but not least – the perseverance
in maintaining the complex process of communication which led to this re-
sult. To the European Community we are deeply indebted for providing the
financial base to organize all these meetings.

Rainer Mackenthun put a lot of effort into organizing a common bibliog-
raphy. The completion of the book would have been unthinkable without the
hard and careful work of Berndt Farwer who solved the problem of compil-
ing the chapters and sections and who removed many inconsistencies. It is a
pleasure for us to acknowledge these efforts.

We are also grateful for the numerous suggestions and the encouragement
which came from the participants of the summer school in Jaca, Spain, and
students in our universities, who worked with early versions of the text. Our
thanks are also due to Springer-Verlag and their reviewers who provided
useful help and suggestions.

Paris and Hamburg, January 2001 Claude Girault and Rüdiger Valk
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LIP6
4, Place Jussieu, F-75252 Paris Cedex 05, France

d University of Zaragoza
Departamento de Informatica e Ingenieŕıa de Systemas
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Introduction: Purpose of the Book

This book intends to show how Petri nets fill many of the needs of systems
modelling, their verification and implementation, as mentioned in the preface.
It first introduces Petri nets in such a way that only those features necessary
for system engineers are presented and then introduces important fields such
as modelling concepts and verification techniques.

The advantages of Petri nets for the modelling of systems are well-known:

• They provide a graphically and mathematically founded modelling formal-
ism. This is in contrast to many similar techniques, where only one of
these properties is well developed and the other is added in a less system-
atic way. These two sides of the coin are of high importance as the system
development process needs graphical as well as algorithmic tools.

• To date there exists a huge variety of algorithms for the design and analysis
of Petri nets and powerful computer tools have been developed to aid this
process. To give just one example, we would like to mention reachability
analysis as a subfield of model checking.

• Abstraction and hierarchical design is crucial for the effective design of large
scale and complex systems. Petri nets provide mechanisms for abstraction
and refinement that are well integrated into the basic model.

• There is a huge number of commercial or university tools for the design,
simulation, and analysis of Petri-net-based systems. Many of them achieve
industrial standards.

• Petri nets have been used in many different application areas. As a result
there is a high degree of expertise in the modelling field.

• Different variants of Petri net models have been developed that are all
related by the basic net formalism which they build upon. This allows
them to meet the needs in different application domains on the one hand,
but on the other hand gives facilities for communication and the transfer
of methods and tools from one field to another. Currently, besides the
basic model, there are extensions such as timed, stochastic, high-level, and
object-oriented Petri nets, meeting the specific needs for (almost) every
applications area that comes to mind.

After a general introduction the contents of the book are oriented towards
the software and hardware development process. The modelling, validation,
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and execution phases in the software life cycle for which there are very few
scientific results to be found in the literature are covered in some detail here.
On the other hand in fields like verification a considerable depth of research
has been reached. This is reflected in the book by some in-depth studies of
these issues. Despite the fact that the scientific maturity of the covered fields
varies, a holistic approach has been chosen. As a result some parts present
genuine research results while others are restricted to an overview of the field,
mostly referring to the literature.

Following the introduction is Part I of the book, entitled Petri Nets –
Basic Concepts. It introduces essential features such as locality versus con-
currency, graphical versus algebraic representation and, refinement versus
composition. Then in an intuitive manner, arc-constant, place/transition, and
coloured nets are introduced using a running example. Chapters 4 and 5 give
the essentials of formal definitions, in particular the incidence matrices and
some basic properties such as reachability graph, linear invariants, liveness,
and reversibility. The last chapter of Part I presents an outline of the more
advanced topics covered in Parts II to V.

Part II, entitled Modelling, gives an introduction to the construction meth-
ods of systems using Petri nets. This part starts with a chapter giving some
introductory and more complex examples. Here the reader can obtain some
deeper knowledge about the specific potential of Petri nets. The examples
cover elementary nets, place/transition nets, and coloured nets. Subsequently,
design methodologies are presented in a more systematic way. The bottom-
up method starts with building simple nets, that are combined into more
and more complex nets until the desired model is obtained. This approach is
contrasted to the top-down method of decomposing nets into smaller parts.
In practical work both methods have to be used in a mixed form. Different
communication mechanisms between parts are studied as well as intercon-
necting techniques of different parts. A state-oriented style is contrasted to
event-oriented modelling. The systematic approaches are illustrated by three
case studies.

Part III, entitled Verification, consists of an overview of the main ap-
proaches to verification of Petri net models. There are chapters covering the
exploration of the state space and model checking, structural methods – such
as invariants, linear algebraic techniques and reductions – and some advanced
methods using deduction and process algebra. This part is meant to reflect
the current state of the art in verification which, of course, cannot be ex-
haustive in a book like this. The reader will nevertheless acquire a thorough
knowledge of many verification issues and will be guided to the wealth of
further literature.

A part of the book that will be especially interesting for system engineers
with a more practical background is Part IV, entitled Validation and Execu-
tion. This part is concerned not only with the software life cycle but gives
detailed analysis of the practical use of Petri net models for the development
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of large-scale systems. This is manifested in the possibilities of execution of
and code generation from such abstract models. This part also includes an
overview of tools available to support the process of software and system
development.

The final part of the book (Part V) is dedicated to three in-depth studies
of different Application Domains. The coverage takes account of all phases of
the respective development phases for such diverse domains as flexible man-
ufacturing systems, workflow management systems, and telecommunications
systems.

The book has been written in the scope of the project MATCH (Mod-
elling and Analysis of Time Constrained and Hierarchical Systems) which
was a Human Capital and Mobility initiative, sponsored by the European
Union. Among its objectives there was the organisation of two complemen-
tary advanced summer schools and two books, one focusing on performance
modelling and evaluation, and the present one on modelling and verification.

The present book presents the results from the cooperation of five Petri
net research groups from the universities of Eindhoven, Hamburg, Paris 6
and Zaragoza. The main contributing authors are (in alphabetical order):

W. v. d. Aalst (Chapter 25),
P. Barril (Chapter 20),
T. Basten (Chapter 16),
J.-M. Colom (Chapters 5 & 15),
A. Diagne (Chapters 10 & 11),
C. Dutheillet (Chapter 14),
J. Ezpeleta (Chapter 24),
B. Farwer (Chapter 16),
M.-P. Gervais (Chapter 26),
C. Girault (editor),
S. Haddad (13 & 15),
J.-M. Ilie (Chapter 14), F. Kordon (Chapter 21),
R. Mackenthun (Chapters 10 & 11),
D. Moldt (Chapter 19),
D. Pointrenaud (Chapter 14),
M. Silva (5 & 15),
M.-O. Stehr (Chapter 16),
E. Teruel (5 & 15),
R. Valk (editor, Chapters 1, 2, 3, 4 & 8),
I. Vernier-Mounier (14),
M. Voorhoeve (Chapters 10 & 11).

A comprehensive index and bibliographical information can be found at
the end of the book. References for further reading given in the preceding
chapters may be found here. The index gives quick access to the main defi-
nitions and keywords.





Part I

Petri Nets – Basic Concepts





1. Introduction

Due to their numerous features and various applications there are many ways
to introduce Petri nets. In this part, we first focus on the modelling of ac-
tions. In general, actions depend on a limited set of conditions, restrictions,
etc. which could be called the local environment. Petri nets model actions by
the change of their local environment. This principle of locality is the basis
of the superiority of Petri nets in modelling concurrency. It is, however, a
widespread misunderstanding that Petri nets should not be used when the
application systems do not exhibit any concurrent behaviour. There are other
features, such as graphical and textual representation of Petri nets, refine-
ment, and abstraction, that can contribute to a well-structured and reliable
system construction. Many of these features as well as methods and tools for
system analysis will be presented later on in this book.

In Chapter 2, we restrict our attention to a basic set of such principles,
namely locality and concurrency, graphical and algebraic/textual representa-
tion, conflict and confusion, refinement and composition. Refinement will not
only be used for structuring application systems, but also to transform Petri
nets between different degrees of abstraction. The notion of refinement is
strongly related to the concept of net morphisms which are instances of mor-
phisms in general algebraic structures, where quotient is the mathematical
term for abstraction. In a first reading, Section 2.5 Net Morphisms may be
skipped since all definitions with respect to refinement and abstraction are
already dealt with in the preceding Section 2.4 Refinement and Composition.

While the notion of a Petri net is introduced in Chapter 2, its behaviour
is explained in a very elementary way. In Chapter 3, the basic models of
place/transition nets and coloured nets are introduced in a more specific but
still intuitive style. As a starting point, the model of an arc-constant net is
introduced, since its properties nicely connect the former models.

Chapter 4 provides formal definitions of the three previously studied mod-
els, however, in a different order: first place/transition nets, then arc-constant
nets and finally coloured nets as this reflects their relation by increasing com-
plexity. The method of introducing these three models is similar: after the
definition of the net model, the incidence matrices are explained and the
corresponding transition occurrence rules are given. Due to its complexity
more emphasis is given to the subject of the incidence matrix in the case
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of coloured Petri nets. Also different ways of representing their incidence
matrices are compared.

Chapters 2 to 4 are connected by a common example of a simple starting
procedure for a car race. This example illustrates communicating sequential
processes in general.

Some important properties of Petri nets are introduced in Chapter 5 such
as boundedness, liveness, and reversibility. The motivation is that these are
also important properties of real systems. Hence, the question of validat-
ing such properties in large-scale systems arises. The reachability graph for
place/transition nets is introduced which in principle allows for the check-
ing of such properties. Due to the high complexity of the reachability graph
method in general, more structural methods are desirable. Chapter 5 also
gives some first hints on how linear algebra methods can be used for verifi-
cation.

An example of such a verification technique is given for a Petri net mod-
elling a production cell. Almost all methods of this chapter will be treated in
further detail in subsequent chapters, particularly in Part III.

Chapter 6 gives a detailed overview of the remainder of the book. This
chapter is intended to give the more experienced reader the opportunity to
decide on a further reading strategy, while the novice is briefly introduced to
the aspects and problems that are treated in the following parts of the book.

Petri nets were introduced by Carl Adam Petri in his Ph.D. thesis in
1962 [Pet62]. Today, there are thousands of papers and monographs on the
topic. Many of them are referenced in this book and most of them can be
found in the Petri Net Bibliography maintained at http://www.informatik.
uni-hamburg.de/TGI/pnbib/index.html. The notion of place/transition
net was introduced in 1980 (see [JV80]) to distinguish this model from nets
without annotation (in the sense of Definition 2.2.1) and other net mod-
els. High-level Petri nets were introduced in 1981 in the form of predi-
cate/transition nets ([GL81]) and coloured nets ([Jen81]). A series of mono-
graphs on coloured nets was published in the 1990s: [Jen92b], [Jen94], and
[Jen97].



2. Essential Features of Petri Nets∗

In this chapter a basic model is introduced by extracting information from
an intuitive example, given in this section. By doing this some essential fea-
tures of Petri nets will appear, namely the principles of locality, concurrency,
graphical and algebraic representation. For illustration we choose an exam-
ple where several objects are subject to a coordination procedure. Similar
examples can be found in various other fields, e.g. from computer integrated
manufacturing to office automation. In our example, a race among a number
of cars is started. When the starter receives ready signs from all cars, he gives
the starting signal and the cars begin the race. For simplicity, we restrict the
example to one starter and two racing cars (Figure 2.1).

a

b

Fig. 2.1. Starting two racing cars

Suppose that for a computer application (e.g. simulation, race-control)
the following essential conditions and actions have been identified:
∗ Author: R. Valk
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a) List of conditions: p1: car a; preparing for start
p2: car a; waiting for start
p3: car a; running
p4: ready sign of car a
p5: start sign for car a
p6: starter; waiting for ready signs
p7: starter; start sign given
p8: ready sign of car b
p9: start sign for car b
p10: car b; preparing for start
p11: car b; waiting for start
p12: car b; running

b) List of actions: t1: car a; send ready sign
t2: car a; start race
t3: starter; give start sign
t4: car b; send ready sign
t5: car b; start race

2.1 Locality and Concurrency

Identifying and, in particular, separating passive elements (such as condi-
tions) from active elements (such as actions) is a very important step in the
design of systems. This duality is strongly supported by Petri nets. We for-
mulate the first principle: the principle of duality. Whether an object is seen
as active or passive may depend on the context or the point of view of the
system. For instance, a statement of a programming language can be mod-
elled as an active element if its execution is modelled. Alternatively, it may
be seen as passive if it is subject to an operation in a compiler.

I The Principle of Duality for Petri nets

There are two disjoint sets of elements: P-elements (state elements,
places) and T-elements (transition elements, transitions).
Entities of the real world, interpreted as passive elements, are rep-
resented by P-elements (conditions, places, resources, waiting pools,
channels etc.).
Entities of the real world, interpreted as active elements, are repre-
sented by T-elements (events, transitions, actions, executions of state-
ments, transmission of messages etc.).

To build an operational model for our example, we select truth values
TRUE and FALSE to hold at the beginning. The initial state m1 is char-
acterised by the conditions that car a and car b are preparing for start (i.e.
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p1 = p10 = T (TRUE)) and that the starter is waiting for ready signs (i.e.
p6 = T ). Hence, we obtain the following global state vector m1:

m1 = [ p1 = T, p2 = F, p3 = F, p4 = F, p5 = F, p6 = T,
p7 = F, p8 = F, p9 = F, p10 = T, p11 = F, p12 = F ]

Two of the actions, namely t1 and t4, may occur in this initial state. By
action t1 car a gives the ready sign and therefore stops preparing for start
(p1 = F ). Then it is waiting for start (p2 = T ) having given the ready sign
(p4 = T ). The resulting state is denoted by m2 and is given by:

m2 = [p1 = F, p2 = T, p3 = F, p4 = T, p5 = F, p6 = T,
p7 = F, p8 = F, p9 = F, p10 = T, p11 = F, p12 = F ]

The first observation we make is that most conditions are untouched by
any of these actions; hence, only a few conditions are relevant. This property
is called locality of action. In Figure 2.2, for action t1 the affected conditions
are marked by surrounding circles and are connected by arcs with the ac-
tion, which is represented by a rectangle. Restricting actions to those parts
of the global state vector which are in some causal dependency leads to a
considerable simplification, i.e. for the complexity of description as well as
for new conceptional approaches, such as the notion of concurrency. Thus,
we formulate a principle of locality.

m1 = [p1 = T, p2 = F, p3 = F, p4 = F, p5 = F, p6 = T, p7 = F, ... ]

m2 = [p1 = F, p2 = T, p3 = F, p4 = T, p5 = F, p6 = T, p7 =F, ... ]

t1

Fig. 2.2. Locality of action t1

Action t1 may occur if p1 holds TRUE and p2 and p4 hold FALSE. Adding
to the set t1 its set of conditions {p1, p2, p4}, where p1 is called a pre-condition
and p2, p4 are post-conditions of t1, we obtain the locality of t1. The notion
of locality will be used in Section 2.5 of this chapter to characterise net
morphisms.
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II The Principle of Locality for Petri Nets

The behaviour of a transition exclusively depends on its locality, which
is defined as the totality of its input and output objects (pre- and post-
conditions, input and output places, . . . ) together with the element
itself.

The second action that may occur in m2 is t4 transforming m2 into m3

with:

m3 = [p1 = F, p2 = T, p3 = F, p4 = T, p5 = F, p6 = T,
p7 = F, p8 = T, p9 = F, p10 = F, p11 = T, p12 = F ].

The locality of t4 is {t4,p10,p8,p11}. Therefore, t1 and t4 share no condi-
tions in the marking m1 and may occur completely independently. This is
the principle of concurrency : actions with disjoint localities may occur inde-
pendently. In Figure 2.3, the occurrences of t1 and t4 are represented as a
common step leading from marking m1 to marking m3. Note that the notion
of concurrency is different from parallelism. Parallel action may be synchro-
nised by a central clock, whereas concurrent events are not connected by any
causality.

m
1
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1

= T, p
2

= F, p
3

= F, p
4

= F, , p
8

= F, p
9

= F, p
10

= T, p
11

= F, ]

m
3

= [p
1

= F, p
2

= T, p
3

= F, p
4

= T, , p
8

= T, p
9

= F, p
10

= F, p
11

= T, ]

t1 t4

...

...

...

...

Fig. 2.3. Concurrent actions t1 and t4

III The Principle of Concurrency for Petri Nets

Transitions having disjoint locality occur independently (concur-
rently).

2.2 Graphical and Algebraic Representation

In Figure 2.4, actions t1 and t4 are drawn with their pre- and post-conditions.
In this formal form they are called transitions. Conditions are represented by
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circles which are called places. In addition, Figure 2.4 shows all transitions of
the example. Places, transitions, and arcs together form a net. Fusing places
bearing identical names, we obtain the net of Figure 2.5. Some places contain
tokens that mark the initial conditions. They will be explained later on.

p9

p11

p8

p4

p2

p5

p9

p5

p8

p4

p12

p11

p10

p7
p6

t5

t4 

t3

t2t1 
p3

p2

p1

Fig. 2.4. Actions represented by transitions

This leads to a principle of graphical representation.

IV The Principle of Graphical Representation
for Petri Nets

P-elements are represented by rounded graphical symbols (circles,
ellipses,. . . ) (round like the top of the letter P).
T-elements are represented by edged graphical symbols (rectangles,
bars,. . . ) (edged like the top of the letter T).
Arcs connect each T-element with its locality, which is a set of P-
elements.
Additionally, there may be inscriptions such as names, tokens, ex-
pressions, guards.

For many purposes – for instance, listing, analysis, and mathematical
description – an algebraic description of Petri nets is useful. In most cases it
is equivalent to the graphical representation.
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Fig. 2.5. Net N of the example

V The Principle of Algebraic Representation
for Petri Nets

For each graphical representation there is an algebraic representa-
tion containing equivalent information. It contains the set of places,
transitions, and arcs, and additional information such as inscriptions.

The base of all Petri net models is the definition of a net [Pet96].

Definition 2.2.1. A net is a triple N = (P, T, F ) where

• P is a set of places,
• T is a set of transitions, disjoint from P , and
• F is a flow relation F ⊆ (P × T ) ∪ (T × P ) for the set of arcs.

If P and T are finite, the net N is said to be finite.

(Sometimes, instead of P the letter S is used, coming from the notion of
state element (S-element)). For the example net we obtain P = {p1, . . . , p12},
T = {t1, . . . , t5}, F = {(p1, t1), (t1, p2), (t1, p4), . . .}.

The holding of a condition is represented by a token in the corresponding
place. In the net N of Figure 2.5 such tokens show the initial state m1. The
occurrence rule for transitions is illustrated in Figure 2.6 using the example
of transition t3 from Figure 2.5. Transition t3 “may occur” or “is activated” if
all pre-conditions hold (are marked by a token) and no post-condition holds.
With the occurrence of t3 all tokens are removed from the pre-conditions
(input places) and are added to the post-conditions (output places).

In Figure 2.7, all possible occurrences of transitions are shown. Observe
in particular the concurrent occurrence of t1, t4 and t2, t5.



2.3 Concurrency, Conflict, and Confusion 15

t3
p6

p7

p4

p8

p5

p9
p9

p5

p8

p4

p7p6
t3

Fig. 2.6. Transition occurrence rule

To denote the places connected to a transition (and vice versa), the
following standard notation is used. Given an element x ∈ P ∪ T , then
•x := {y ∈ P ∪ T | (y, x) ∈ F} denotes the set of all input elements of
x, and x• := {y ∈ P ∪ T | (x, y) ∈ F} denotes the set of all output el-
ements of x. If x is a place, then •x and x• denote the set of input and
output transitions respectively. The corresponding notion holds for transi-
tions. It is convenient to extend this definition to hold for a set A ⊆ P ∪ T
by •A := {y | ∃x ∈ A . (y, x) ∈ F} and A• := {y | ∃x ∈ A . (x, y) ∈ F}.

To give an example, for A = {t1, p5, p11} in the net of Figure 2.5 we
obtain •A = {p1, t3, t4} and A• = {p2, p4, t2, t5}. The notion of locality of a
transition was used in Section 2.1 to introduce concurrency of two transitions.
Now, it can formally be defined as follows: loc(t) := {t} ∪ •t ∪ t•. Hence, t1
and t2 are concurrent if loc(t1) ∩ loc(t2) = ∅. In a similar way we also define
the locality of a place p ∈ P by loc(p) := {p} ∪ •p ∪ p•.

2.3 Concurrency, Conflict, and Confusion

Contrary, in some sense, to concurrency is the notion of conflict. To illustrate
this, we extend our initial example in such a way that after the start phase
the cars begin to proceed independently (Figure 2.8).

Now consider a marking such as {p3, p7, p12}, where the starting phase
is over for both cars. Then transitions t6, t7 and t8, t9 may occur indepen-
dently. To be more precise, the pairs of transitions (t6, t8), (t7, t8), (t6, t9),
and (t7, t9) may occur concurrently. In a similar way, conditions such as p13

and p15 may hold independently. To introduce the notion of conflict we now
assume that the race road becomes so narrow at some point that only one
car can pass at a time. Assume t6 and t7 to be the entry and exit events of
this narrow section for car a, and t8 and t9 the same for car b. Then neither
(t6, t8), (t7, t8), (t6, t9) nor (t7, t9) can occur concurrently any longer, and
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t1


t1

t4 t4

t1 t4

t3

t2

t2

t5t5 t2 t5

Fig. 2.7. Occurrence sequences of transitions
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Fig. 2.8. Extension of the net from Figure 2.5

moreover p13 and p15 cannot hold simultaneously. The effect of this modi-
fication could be implemented using the extension of the net in Figure 2.9.
Here, a new place conf with one token imposes the condition that after the
occurrence of one of the transitions t6 or t8 the other one is not enabled until
t7 or t9 respectively have occurred. Hence, a marking containing p13 and p15

simultaneously is impossible. This is known as mutual exclusion. The place
conf contains two output transitions and is therefore called a structural con-
flict place. In the marking {p3, p7, p12, conf } also a behavioural conflict occurs
since both transitions t6 and t8 are enabled, but only one of them can occur.

p
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2 p

3t1 t2
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t4 t5

p
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p
1 0

p 1 1
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1 2
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p
8
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1 3 t7

t6 p
1 4

p
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t9t8

p1 6
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Fig. 2.9. Car race with conflict and confusion

A similar situation is shown in Figure 2.10. The conflict place conf can be
seen as a resource shared by the actions t6 and t8, such that these transitions
cannot occur simultaneously. They have a non-disjoint locality and are not
concurrent.
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conf
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Fig. 2.10. Common resource

Concurrent transitions behave independently and should not have any
impact on each other. However, as observed by C. A. Petri, this is not always
true. Transitions t2 and t8 in the net of Figure 2.9 have disjoint localities
(see Section 2.1) and may occur concurrently in the given marking. In this
marking there is no (behavioural) conflict for t8. After the occurrence of t2,
however, there is a transition which conflicts with t8, namely t6. Hence, the
occurrence of a concurrent transition can change the situation of t8 with
respect to behavioural conflicts. Such situations showing the sophisticated
interaction of concurrency and conflicts are called confusions. For a formal
definition of confusion see [Thi87].

2.4 Refinement and Composition

Building hierarchies by abstraction or refinement is an important technique in
system design. Petri nets support such approaches by abstraction techniques
that are inherently compatible with the structure of the model. We start
by defining the border of a set, which will be the interface of a part to be
considered.

Let N = (P, T, F ) be a net, X := P ∪ T , and Y ⊆ X a set of elements.
Then ∂(Y ) := {y ∈ Y | ∃x /∈ Y . x ∈ loc(y)} is the border of the set Y .
Y is called place-bordered or open1 if ∂(Y ) ⊆ P , and transition-bordered or
closed1 if ∂(Y ) ⊆ T . In order to define a well-structured abstraction, place-
and transition-bordered sets may be replaced by a single element. Note that
a set Y can be open and closed at the same time, e.g. Y := P ∪ T . In such
a case the context of the application determines whether Y is to be replaced
by a place or a transition.

1 Open and closed sets define a topology for a net, which formalises the notion of
vicinity of elements with respect to the graphical structure.
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The set Y = {p3, p4, t2, t3, t4} of the net in Figure 2.11 is transition-
bordered and can be abstracted to a transition tY such that the result is
again a net, as shown in Figure 2.12. This operation will now be formalised.

Let N = (P, T, F ) be a net and Y a non-empty transition-bordered set of
elements. Then N [Y ] = (P [Y ], T [Y ], F [Y ]) is said to be a simple abstraction
of N with respect to Y if: P [Y ] = P\Y , T [Y ] = (T\Y ) ∪ {tY } where tY is
a new element, F [Y ] = {(x, y) | x /∈ Y ∧ y /∈ Y ∧ (x, y) ∈ F} ∪ {(x, tY ) |
x /∈ Y ∧ ∃y ∈ Y . (x, y) ∈ F} ∪ {(tY , x) | x /∈ Y ∧ ∃y ∈ Y . (y, x) ∈ F}.
P [Y ] contains all places with the exceptions of those in Y . T [Y ] contains all
transitions with the exceptions of those in Y and a new element tY . F [Y ] is
the union of three sets of arcs, namely (1) those having no end point in Y ,
(2) those leading from outside of Y to tY and (3) those leading from tY to
the outside of Y .

Analogously, if Y is a non-empty place-bordered set, then N [Y ] =
(P [Y ], T [Y ], F [Y ]) is obtained by defining P [Y ] = (P\Y )∪{pY } where pY is
a new element, T [Y ] = T\Y , F [Y ] = {(x, y) | x /∈ Y ∧ y /∈ Y ∧ (x, y) ∈ F} ∪
{(x, pY ) | x /∈ Y ∧∃y ∈ Y . (x, y) ∈ F}∪{(pY , x) | x /∈ Y ∧∃y ∈ Y . (y, x) ∈ F}.

The definition of N [Y ] is ambiguous if Y is place- and transition-bordered
at the same time. Then we write N [Y (p)] if Y is used as a place-bordered set
and N [Y (t)] if it is used as a transition-bordered set.

t5

t4

t1

t1

t2

t3

p
1

p
2

p
3 p

7

p
6

p
4

Fig. 2.11. A transition-bordered set

Definition 2.4.1. a)If N2 = N1[Y ] is a simple abstraction of N1 for some
place- or transition-bordered set Y, then N1 is said to be a simple refine-
ment of N2. If there is a set {Y1, Y2, . . . , Yn} of pairwise disjoint place- or
transition-bordered subsets of P1∪T1 then N2 = (. . . ((N1[Y1])[Y2]) . . . [Yn])
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t5

t1

t1

p1

p2

p7

p6

tY

Fig. 2.12. Abstraction from the net of Figure 2.11

is called an abstraction of N1, and N1 is a refinement of N2 and is denoted
by N2 = N1[Y1, Y2, . . . , Yn].

b)An abstraction N2 = N1[Y1, Y2, . . . , Yn] of N1 is called strict if every Yi is
either a set of places, i.e. Yi ⊆ P1, or a set of transitions, i.e. Yi ⊆ T1.
In the definition of a strict abstraction Yi will be replaced by a place pYi

in the first case and by a transition tYi
in the second. N1 is called a strict

refinement of N2.

Again, by the following convention ambiguity of the notation can be re-
moved: if in a) or b) a set Yi (1 ≤ i ≤ n) is both place- and transition-

bordered, the abstraction is denoted by N2 = N1[Y1, . . . , Y
(d)
i , . . . , Yn] where

d = p or d = t if Yi is considered a place- or transition-bordered set respec-
tively.

Remark 2.4.2. In the literature and sometimes also in this book strict ab-
stractions are called foldings . The notion of folding is related to the defini-
tion of net morphisms. In Section 2.5, the equivalence of strict abstractions
and (epi-)foldings is formally established by a theorem. This is to justify the
interchangeable use of these terms.

It is easy to verify that the abstraction of a net is again a net. Not every
abstraction, however, has a meaningful interpretation. To give an example,
consider the fragment of a net in Figure 2.13a. Intuitively the abstraction in
Figure 2.13d has a corresponding behaviour (“a token is passed through”).
Figure 2.13d is also an abstraction of Figure 2.13b, but now the behaviour is
different. In Figure 2.13d a token can pass, but not so in Figure 2.13b. Note
that the set Y to be abstracted is not necessarily connected as a subgraph.
However, Figure 2.13d can be interpreted as a merge of two places. This
operation is called a fusion of places or place fusion. It will be used in Part II
of this book to create larger nets from smaller ones. This kind of abstraction
will be represented graphically as shown in Figure 2.13c. The dual situation
for a transition-bordered set is shown in Figures 2.13e-h. Thus Figures 2.13f,
g and h describe a fusion of transitions or transition fusion.
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Fig. 2.13. Abstraction and fusion

In Figure 2.14 two nets are given that can be seen as a decomposition of
the extended race-example net of Figure 2.9. By fusion of the places p′3, p

′′
3

and p′12, p
′′
12, the original net from Figure 2.9 is obtained.

To present a larger and more meaningful example of a simple abstrac-
tion, we consider the net N from Figure 2.9 and the transition-bordered set
Y = {t1, t2, t3, t4, t5, p2, p4, p5, p8, p9, p11}. The abstraction N [Y ] describes a
system where the starting phase of the race is modelled by a single atomic
action tY , as depicted in Figure 2.15.

If Y1 and Y2 are disjoint sets then the iterated abstractions (N [Y1])[Y2]
and (N [Y2])[Y1] are of interest. The resulting nets are isomorphic and denoted
by N [Y1, Y2]. With Y as in the preceding example and Y1 = {t6, p13, t7}
and Y2 = {t8, p15, t9}, from the net in Figure 2.9 we obtain the abstraction
N [Y, Y1, Y2] in Figure 2.16b. In Figure 2.16a the sets to be abstracted are
represented by dashed rectangular lines. This abstraction has a behavioural
interpretation. After the starting phase tY of the race, considered as an atomic
event, the next actions of the two cars are given, where they pass the critical
section in mutual exclusion. These subsequent actions are also represented as
indivisible actions.

An example of a strict abstraction is given in Figure 2.19. In fact, all sets to
be abstracted contain either places or transitions. A semantical interpretation
will be given in Chapter 3.
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Fig. 2.14. Composition by fusion
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Fig. 2.15. Abstraction of the starting phase (Figure 2.9)
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Fig. 2.16. Iterated abstraction

2.5 Net Morphisms

As for algebraic representations in general, structure-preserving mappings
known as morphisms play an important role. They are the basis of many
operations on nets, such as abstractions, composition, hierarchy, and foldings.
This concept is also fundamental for the creation of tools. For these reasons
we introduce in this section some basic notions of net morphisms. From an
application point of view however, the notion of abstraction, as given in
Section 2.4, is sufficient. Therefore, at the end of this section a theorem will
formally state the equivalence of these two concepts. The mathematically
disinclined reader may skip this section on a first reading.

Given two nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2), in a first step we
define a net morphism as a mapping ϕ : P1 ∪ T1 → P2 ∪ T2 that preserves
the graphical structure given by the F-relation: ∀x, y ∈ P1 ∪ T1 . (x, y) ∈
F1 ⇒ (ϕ(x), ϕ(y)) ∈ F2∨ϕ(x) = ϕ(y) and is therefore called F-preserving. In
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Figure 2.17, two F-preserving maps from a net N1 to a net N2 are shown by
dashed arrows. However, whereas ϕ describes an abstraction in case b), this
is not true in case a). Therefore this property is not sufficient for a notion of
net morphism.

This problem arises because some place-bordered sets are the image of a
set not having that property (e.g. the set {p’}). The same holds for transition-
bordered sets (e.g. {t’}). In this section place- and transition-bordered sets
will be denoted open and closed respectively (see the definition in Section 2.4).
Using this terminology, the case just described can be excluded if open and
closed sets are required to have respectively open and closed inverse images.
2 By this property it will be impossible for a net arrow (p, t) ∈ F to be
mapped to an arrow (f(p), f(t)) ∈ F ′ where f(p) is not a place or f(t) is not
a transition. In the full definition of a net morphism, the at-relation A has
been introduced to express this as a condition called A-preservation [Pet96].

p’
N2

t’

N1

p t

a)

t’

N 1

p t

b)

N′2

ϕ ϕ

«′ 

Fig. 2.17. Two F-preserving mappings

Definition 2.5.1. Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two nets
and ϕ : X1 → X2 a mapping where Xi = Pi ∪ Ti. Furthermore, define the
at-relation Ai := (Fi ∪ F

−1
i ) ∩ (Pi × Ti), where i ∈ {1, 2} in both cases.

a)ϕ is said to be a net morphism (or a net mapping) if:

2 The reader knowing the mathematical definition of a topology will recognise the
property of a continuous mapping.
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1. ∀x, y ∈ P1 ∪ T1 . (x, y) ∈ F1 ⇒ (ϕ(x), ϕ(y)) ∈ F2 ∨ ϕ(x) = ϕ(y)
(“F-preservation”),

2. ∀x, y ∈ P1 ∪ T1 . (x, y) ∈ A1 ⇒ (ϕ(x), ϕ(y)) ∈ A2 ∨ ϕ(x) = ϕ(y)
(“A-preservation”, “continuity”).

b)A net morphism ϕ is a folding if ϕ(P1) ⊆ P2 and ϕ(T1) ⊆ T2.
c)A net morphism ϕ is an epimorphism if ϕ is surjective and for ev-

ery (x2, y2) ∈ F2 there is an arc (x1, y1) ∈ F1 such that (x2, y2) =
(ϕ(x1), ϕ(y1)). A folding which is an epimorphism is called an epifolding.

d)A net morphism ϕ is a net isomorphism if ϕ is a bijection and ϕ−1 is also
a net morphism.

Recall that the at-relation describes the “proximity” of elements in a net,
and A-preservation is equivalent to the property of continuity with respect
to a topology on the net given by open (place-bordered) sets. The mapping
ϕ of Figure 2.17a) is F-preserving but not A-preserving, since (p, t) ∈ A,
but (ϕ(p), ϕ(t)) = (t′, p′) /∈ A′ and ϕ(p) 6= ϕ(t). We now give a different
but equivalent definition of morphism that avoids the introduction of the
A-relation [DM96]:

A mapping ϕ : X1 → X2 is called a net morphism if the following holds:

1. (x, y) ∈ F1 ∩ (P1 × T1) ⇒ (ϕ(x), ϕ(y)) ∈ F2 ∩ (P2 × T2) ∨ ϕ(x) = ϕ(y)
and

2. (x, y) ∈ F1 ∩ (T1 × P1)⇒ (ϕ(x), ϕ(y)) ∈ F2 ∩ (T2 × P2) ∨ ϕ(x) = ϕ(y).

The following lemma gives a characterisation of continuous mappings by
locally-defined properties that will first be defined. They have been studied
in [DM96] under the name vicinity-respecting properties.

Definition 2.5.2. Let ϕ be a mapping as in Definition 2.5.1. Then ϕ is said
to be

a) locally closed iff p ∈ P1 and ϕ(p) = t′ ∈ T2 implies ϕ(loc(p)) = {t′} and
b) locally open iff t ∈ T1 and ϕ(t) = p′ ∈ P2 implies ϕ(loc(t)) = {p′}.

The following lemma will be used in the proof of the main theorem of this
section.

Lemma 2.5.3. If ϕ is A-preserving then ϕ is both locally closed and locally
open. The converse implication holds if, in addition, ϕ is assumed to be F-
preserving.

Proof. To prove that ϕ is locally closed, assume p ∈ P1 and ϕ(p) = t′ ∈ T2.
If t ∈ loc(p), we have to show that ϕ(t) = t′. In fact, if t ∈ •p and (t, p) ∈ F ,
then (p, t) ∈ F−1, and (p, t) ∈ A1. If t ∈ p• and (p, t) ∈ F , then also
(p, t) ∈ A1. Hence, by the property of A-preservation, (ϕ(p), ϕ(t)) ∈ A2 or
ϕ(p) = ϕ(t). But (ϕ(p), ϕ(t)) ∈ A2 cannot hold since ϕ(p) ∈ T2, and so
ϕ(p) = ϕ(t) is proved. In a similar way, ϕ is proved to be locally open.
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To prove the second part of the statement, assume that (x, y) ∈ A1 and
(ϕ(x), ϕ(y)) /∈ A2. We have to show that ϕ(x) = ϕ(y).

There are three cases: a) ϕ(x) /∈ P2, b) ϕ(y) /∈ T2, and c) (ϕ(x), ϕ(y)) /∈
F2 ∪ F

−1
2 . By (x, y) ∈ A1 we have x ∈ P1, y ∈ T1, and y ∈ loc(x). Since ϕ is

locally closed, case a) implies ϕ(x) = ϕ(y). Since ϕ is locally open, case b)
also implies ϕ(x) = ϕ(y). Thus case c) remains. By the assumption that ϕ is
F-preserving, y ∈ loc(x) implies (ϕ(x), ϕ(y)) ∈ F2 ∪F

−1
2 and so case c) leads

to a contradiction.

To illustrate the lemma, consider again the example from Figure 2.17a. In
this case ϕ is neither locally closed nor locally open, and is not A-preserving,
whereas in part b) of this figure all properties of the lemma hold. Figure 2.18
gives an example where ϕ is locally open and closed, but neither F-preserving
nor A-preserving.

ϕϕ

Fig. 2.18. A mapping that is not F-preserving

We are now ready to formulate the main theorem of this section, namely
the characterisation of refinements by morphisms. Such a morphism has to be
surjective in a strong sense, i.e. all elements x ∈ X2 and all arcs (x, y) ∈ F2

in N2 have to be images under ϕ. Such a morphism has been introduced as
an epimorphism in definition 2.5.1.

Theorem 2.5.4. Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two finite
nets.

a)N2 is an abstraction of N1 if and only if there is an epimorphism from N1

to N2.
b)N2 is a strict abstraction of N1 if and only if there is an epifolding from
N1 to N2.

Proof. To simplify the proof of the theorem, we also consider the trivial case
of an abstraction N1[Y ] where Y is a singleton set, i.e. a set Y = {x}, x ∈
P1 ∪T1. Here, in the construction of an abstraction, x ∈ Y is simply replaced
by xY . This allows us to consider any abstraction as N1[Y1, . . . , Yk] where
Y = {Y1, . . . , Yk} is a finite partition of P1 ∪ T1 (i.e. a finite covering by
disjoint sets).
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To prove a), let ϕ be an epimorphism from N1 to N2. Then we define
Y = {Y1, . . . , Yk} := {ϕ−1(x) | x ∈ P2 ∪ T2}.

Since ϕ is a mapping and P1 ∪ T1 is finite, Y is a finite partition. By the
assumption that ϕ is F- and A-preserving it follows from Lemma 2.5.3 that
Yi = ϕ−1(x) is open or closed. It remains to be shown that N1[Y1, . . . , Yk] is
“isomorphic” to N2, i.e. there is a net isomorphism ψ from N1[Y1, . . . , Yk] to
N2. The mapping defined by ψ(xYi

) := ϕ(y) for some y ∈ Yi is well-defined
and bijective. Furthermore it is a morphism. In fact, if (xYi

, xYj
) is an F-edge

in N1[Y1, . . . , Yk], then by construction of N1[Y1, . . . , Yk] there are elements
x′ ∈ Yi and y′ ∈ Yj such that (x′, y′) ∈ F1; hence, since Yi 6= Yj we also
have that ϕ(x′) 6= ϕ(y′) and (ϕ(x′), ϕ(y′)) = (ψ(xYi

), ψ(xYj
)) ∈ F2. By this

ψ is F-preserving. Furthermore, {xYi
} is open⇔ Yi is open⇔ ψ(xYi

) is open
and {xYi

} is closed ⇔ Yi is closed ⇔ ψ(xYi
) is closed. By this, ψ is also

A-preserving.
Conversely, if (x2, y2) ∈ F2 then, since ϕ is an epimorphism, there are

elements (x′, y′) ∈ F1 such that (ϕ(x′), ϕ(y′)) = (x2, y2). If Yi = ϕ−1(x2) and
Yj = ϕ−1(y2) then x′ ∈ Yi, y

′ ∈ Yj , xYi
= ψ−1(x2) and xYj

= ψ−1(y2) and
there is an F -edge (xYi

, xYj
) in N1[Y1, . . . , Yk]. Thus, we also have that ψ−1

is a morphism and ψ an isomorphism.
To finish the proof of a), assume that N2 is an abstraction N1[Y1, . . . , Yk]

of N1 (where {Y1, . . . , Yk} is a partition of P1 ∪ T1). Then it is easy to verify
that the map ϕ1, defined by ϕ1(x1) = xY :⇔ x1 ∈ Y , is an epimorphism.
Recall, that by the definition of an abstraction each of the sets Yi is non-
empty.

To prove part b), it is sufficient to observe that every open or closed set
Yi is a subset of places or a subset of transitions, and that the same holds for
each ϕ−1(x) with x ∈ P2 ∪ T2.

The condition that the nets are finite can be dropped if abstractions
are defined with respect to arbitrary partitions. To illustrate the theorem,
consider the abstraction in Figure 2.16b of the net from Figure 2.16a. Then
the epimorphism ϕ is given by p1 7→ p1, p2 7→ tY , p3 7→ p3, . . . , p12 7→ p12,
p13 7→ tY 1, . . . , p15 7→ tY 2,. . . , t1 7→ tY , t2 7→ tY ,. . . , t6 7→ tY 1, t7 7→ tY 1,
t8 7→ tY 2, t9 7→ tY 2. The mapping ϕ of Figure 2.17b is another such example.

Net morphisms are of particular interest when different net classes are
considered. In the next chapter, coloured nets will be shown to be foldings
of place/transition nets. Figure 2.19 shows a strict abstraction, which can be
interpreted by Theorem 2.5.4b as an epifolding. A semantical interpretation
will be given in Section 3.2.
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Fig. 2.19. Strict abstraction and epifolding



3. Intuitive Models∗

This chapter introduces the most frequently used models of Petri nets, namely
place/transition nets and coloured Petri nets, in an intuitive manner. While
place/transition nets are a slight generalisation of the nets introduced in
Chapter 2, coloured Petri nets allow much more compact models of systems.
For bibliographic references see Chapter 1.

3.1 Arc-Constant Nets

a
b

place p1
(car a )

place p10

(car b )

place p1&10

Fig. 3.1. From tokens distinguished by places to individual tokens

In the nets of Chapter 2 a token on a place indicated that the condition
associated with that place was satisfied. Such tokens can also be seen as
objects in a pool or resources in a storage facility. Two tokens, however,
are not distinguishable from each other. The tokens representing car a and
car b in the net of Figure 2.5 are distinguished by their places p1 and p10.
A different but more compact and natural way is to represent them in one
place, say p1&10, but by individual tokens a and b (see Figure 3.1).

Distinguishable tokens are said to be coloured. Usually coloured tokens are
divided into different types which are called colours. Hence, colours can be
thought of as data types. Since each place may contain objects of a specific
colour, for each place p a colour domain or colour set cd(p) is defined. In
∗ Author: R. Valk
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our case cd(p1&10) = {a, b}. Other examples of colour domains are the set of
integers or boolean values.

For a transition t with respect to an input place it must be indicated
which of the individual tokens should be removed. In the net of Figure 3.2
this is done by inscriptions on the corresponding arc. For instance, transition
t1 can occur if there is an object a in the place p1&10. When this is the case,
on the occurrence of t1 the token a is removed and added to the place p2&11

and an (indistinguishable) token is added to p4. We suppose that the places
p1&10, p2&11, and p3&12 have the colour domain cars = {a, b} denoting car a
and car b. The starter is modelled by the token s, hence places p6 and p7 have
the colour domain starter = {s}. As shown in Figure 3.2 colour domains are
represented by lower case italics near the place symbols.

a

b

a

b

a

b

a

b

s s

a b

p
1 & 1 0

p
2 & 1 1 p

3 & 1 2

s

p6
p7

t1

t4

t2

t5

t3

p
4

p
8

p
5

p
9

cars cars cars

starter

starter

colour sets:
  cars = {a,b}
  starter = {s}

constants:
  a,b,s

Fig. 3.2. Arc-constant CPN N1

The places p4, p8, p5, and p9 are supposed to hold an indistinguishable
token and therefore have the colour domain token = {•}, which is assumed
to hold by default. Also, by default, arcs without any inscription (such as
(t1, p4)) are assumed to bear the constant “•”. This example of a coloured
net can be understood as a folding of the net N in Figure 2.5. To underline
this aspect, names such as p1&10 are chosen since this place plays the role
of the former places p1 and p10. The reader should note that the (ordinary)
net N of Figure 2.5 and the (coloured) net N1 contain the same information
and have a very similar behaviour. Since N1 contains objects from a colour
domain, it is called a coloured Petri net (CPN). To distinguish this model
from general CPNs, we call it an arc-constant coloured Petri net (ac-CPN),
since the inscriptions on the arcs are constants (and not variables).

For the next step in our introduction, we assume that the modeller of the
example system also wants to represent the messages “ready sign of car a”
(rsa), “ready sign of car b” (rsb), “start sign for car a” (ssa), and “start sign
for car b” (ssb) explicitly by tokens with identifiers as given. The correspond-
ing net N2 is shown in Figure 3.3. As a new feature of this net, transition
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cars cars cars
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ready s tar t

colour sets:
  cars = {a,b}
  starter = {s}
  ready = {rsa,rsb}
  start = {ssa,ssb}
constants:
  a,b,s,rsa,rsb,ssa,ssb

Fig. 3.3. Arc-constant CPN N2

t3 has to remove both signals rsa and rsb from place p4. Thus the new ex-
pression rsa + rsb denotes the set {rsa, rsb}. By such an inscription, t3 is
enabled if both rsa and rsb are in p4 and on the occurrence of this transition
both tokens are removed. In the general case, bags (multisets) will be used
instead of sets where multiple copies of elements are allowed. A formal defi-
nition of bags will be given in Section 4.2. In the present section an intuitive
understanding is sufficient.

a+b

2’b

b

b

a+b b

b

a  b b c

a b c

a bc

b c

2’b

Fig. 3.4. Occurrence rule for ac-CPN

The transition-occurrence rule for arc-constant coloured nets is illustrated
in Figure 3.4: all input places contain at least as many individual tokens as
specified by the corresponding arcs. Thus the transition is enabled. In the
successor marking they are removed and tokens are added to the output
places, as indicated by the arc inscriptions.

The initial marking of N2 (Figure 3.3) can be formalised as a vector
({a, b}, ∅, ∅, ∅, ∅, {s}, ∅) where entry i gives the bag of coloured tokens in place
pi. The entire occurrence sequence, i.e. the initial marking and all successor
markings with respect to the transition sequence t4, t1, t3, t2, t5, is given in
the following vectors.
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token_modes

colour sets:
  token_modes 
  = {a,b,c,d}
 constants:
   a,b,c,d



Fig. 3.5. Ring bus as ac-CPN




{a, b}
∅
∅
∅
∅
{s}
∅




t4−→




{a}
{b}
∅
{rsb}
∅
{s}
∅




t1−→




∅
{a, b}
∅

{rsa, rsb}
∅
{s}
∅




t3−→




∅
{a, b}
∅
∅

{ssa, ssb}
∅
{s}




t2−→




∅
{b}
{a}
∅
{ssb}
∅
{s}




t5−→




∅
∅
{a, b}
∅
∅
∅
{s}




Figure 3.5 contains a different example of an arc-constant net. It shows a
net where a token circulates through four functional units. This is however not
organised by an elementary cycle, but by a bus structure where the central
place represents the bus.

3.2 Place/Transition Nets

Now before introducing general CPNs we give an example in Figure3.6 of a
so-called place/transition net (P/T net) N3. It can be seen as an abstrac-
tion obtained from N2 by removing the individuality of tokens. In fact, the
individual tokens a and b are replaced by two anonymous tokens “•”.
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As a consequence there is no need to distinguish transitions t1 and t4.
Instead of the expression rsa+rsb for the set {rsa, rsb} we obtain the number
2 indicating that two tokens have to be removed. In general, arc inscriptions
in P/T nets are natural numbers denoting the number of tokens to be moved,
as shown in Figure 3.7.

2
2

t3

t2t1

p
7

p
6

p
3

p
2

p
1

p
4

p
5

Fig. 3.6. Place/transition net N3
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p 6 p 7

p 4

p 8

p 5

p 9

2 4
3

1

2

t3

p 6 p 7

p 4

p 8

p 5

p 9

Fig. 3.7. Occurrence rule for P/T nets I

It is convenient to define markings as vectors of integers, assuming a
total ordering of the places. Thus the initial marking of N3 in Figure 3.6
is the vector m0 = (2, 0, 0, 0, 0, 1, 0). Alternatively, a marking may be given
as a mapping m0 : P → IN, i.e. in our example m0(p1) = 2, m0(p6) = 1
and m0(pi) = 0 in all other cases. Sometimes it is also convenient to write a
marking as a sequence of place names having exponents that give the number
of tokens in that place. The place is omitted if this number is zero, i.e. m0

= p2
1p6 or m0 =< p2

1p6 > (further variants of this notation are m0 = p2
1 + p6

and m0 = < p2
1 + p6 >).
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Fig. 3.8. Occurrence rule for P/T nets II

Figure 3.7 illustrates the occurrence rule for P/T nets. Transition t3 is
enabled since the number of tokens in any of its input places is greater than
or equal to the number on the arc connecting this input place with t3. When
t3 occurs, the number of tokens in the input place is reduced by this value.
For instance, m(p6) = 6 becomes m1(p6) = 6 − 2 = 4 in the successor
marking m1. The number of tokens in the output places is increased by the
corresponding value (e.g. m1(p7) = m(p7) + 4 = 1 + 4 = 5). The occurrence
rule extends easily to cases where places are both input and output places
of a transition, as shown for p4 in Figure 3.8. In this case the token number
in the successor marking is computed by both operations of decreasing and
increasing, i.e. m1(p4) = m(p4)− 3 + 2 = 4− 3 + 2 = 3. The occurrence rule
for P/T nets will be formally defined in the next chapter.

Using the vector notation, a transition sequence with markings is given
below. Such a sequence will be called the occurrence sequence of the P/T net
N3.




2
0
0
0
0
1
0




t1−→




1
1
0
1
0
1
0




t1−→




0
2
0
2
0
1
0




t3−→




0
2
0
0
2
0
1




t2−→




0
1
1
0
1
0
1




t2−→




0
0
2
0
0
0
1




3.3 Coloured Nets

Let us return to coloured Petri nets. Now consider net N4 in Figure 3.9
compared with net N2 in Figure 3.3. The most significant difference of these
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nets is that transitions t1, t4 and t2, t5 of N2 are folded together and renamed
in N4 as t1 and t2 respectively. To preserve the original behaviour, transitions
t1 and t2 are considered to occur in two “occurrence modes” mode1 and
mode2. Depending on the mode, different elements in the arc inscriptions
have to be selected. To this end arc expressions are replaced by arc vectors of
such expressions, as shown in Figure 3.9. Each entry of an arc vector uniquely
corresponds to an occurrence mode of the transition.
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rsb

[   ]a
b [   ]a

b [  ]a
b [  ]a

b

[   ]ssa
ssb

rsa+rsb

s

ssa+ssb

s

colour sets:
   cars     = {a,b}
   starter  = {s}
   ready   = {rsa, rsb}     "ready signs"
   start     = {ssa, ssb}        "start signs"
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a bp
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Fig. 3.9. CPN N4 with transition modes
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t3
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constants: rsa,rsb,ssa,ssb

Fig. 3.10. CPN N5 with transition guards
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The occurrence rule is changed as follows:

1. Select an occurrence mode of the transition.
2. Temporarily replace arc vectors by the component corresponding to this

mode.
3. Apply to this transition the occurrence rule of arc-constant CPN.

Usually in the literature the association of values with different occurrence
modes is represented by expressions containing variables. For each transition
a finite set of variables is defined which is strictly local to this transition.
These variables have types or colour domains which usually are the colours
of the places connected to the transition. In Figure 3.10 the set of variables
of transition t1 is {x, y}. The types of x and y are dom(x) = cars and dom(y)
= ready, respectively.
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b c

select a binding, such that
the guard holds,
e.g.:      x = a,
             y = b,
             z = b

a) b)

c)
d)

Fig. 3.11. Occurrence rule for CPN

An assignment of values to variables is called a binding. Clearly, not all
possible bindings can be allowed for a correctly behaving net. The appropriate
restriction is defined by a predicate at the transition which is called a guard .
The occurrence rule for CPNs is explained in Figure 3.11, where all places p
are assumed to have the colour set cd(p) = objects = {a, b, c}. The colour (or
domain) of all variables in this examplke is also objects. Now the occurrence
rule is:

1. Select a binding such that the guard holds, i.e. associate with each variable
a value of its colour, as shown in b) of Figure 3.11 for the binding β1 =
[x = a, y = b, z = b].

2. Temporarily replace variables by the associated constants, as shown in c).
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3. Apply to this transition the ac-CPN occurrence rule from Figure 3.4, as
shown in d).

The occurrence of a transition should be understood as a single step from
a) to d). If in b) a binding such as β2 = [x = a, y = b, z = c] is selected, then
the transition is not activated in this binding (or mode) since the guard is
not satisfied. For a binding such as β3 = [x = b, y = b, z = b] the guard holds,
but there are insufficient tokens in the input places, namely there are not two
copies of b in p1. The selection of a binding is local to a transition. Hence,
the variable z in N5 can be replaced by x without changing the behaviour of
the net.

Applying the occurrence rule to the CPN N5, we obtain the same be-
haviour as for N4. In particular, the two possible bindings of t1 correspond
to the two occurrence modes mode1 and mode2 of t1 in N4. The representa-
tion by variables becomes essential if there is a large number of occurrence
modes. To give an example, the places and the transition of the net in Fig-
ure 3.12 have the colour set integer. Hence, there is an infinity of occurrence
modes for the transition. (The expression x+1 in this net denotes an arith-
metic operation). The successor marking has the integers 4 and 3 in p1 and
p2 respectively.

x

x+1
x

3integer

p1
integer

p2

Fig. 3.12. CPN with colour domain integer

An occurrence sequence for the coloured net of Figure 3.10 can be repre-
sented as follows. The entries of the vectors are sets of colour elements instead
of integers. The transitions are given together with the binding used, in partic-
ular: βa = [x = a, y = rsa], βb = [x = b, y = rsb] and β̂a = [x = a, y = ssa],

β̂b = [x = b, y = ssb]. For transition t3 no binding is necessary since all arcs
have constants as inscriptions. β is the “empty binding”.




{a, b}
∅
∅
∅
∅
{s}
∅




(t1,βb)
−→




{a}
{b}
∅
{rsb}
∅
{s}
∅




(t1,βa)
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∅
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∅
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∅
{s}
∅




(t3,β)
−→
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∅
{a, b}
∅
∅

{ssa, ssb}
∅
{s}




(t2,β̂a)
−→




∅
{b}
{a}
∅
{ssb}
∅
{s}




(t2,β̂b)
−→




∅
∅
{a, b}
∅
∅
∅
{s}




Note that the introduced semantics of coloured nets preserve all principles
from Chapter 2:

i) The principle of duality for Petri nets: places are clearly distinguished
from transitions.

II) The principle of locality for Petri nets: the behaviour of a transition
depends only on its locality (which should be understood here as all
places, arcs, and guards connected with this transition).

III) The Principle of Concurrency for Petri Nets: transitions with disjoint
localities behave concurrently.

IV) The principle of graphical representation for Petri nets: obvious.
V) The principle of algebraic representation for Petri nets: see the next

chapter.

3.4 Foldings

The techniques of abstraction, refinement, and composition apply to coloured
nets as well. The example of Figure2.15 could be modified for coloured nets
in the style of N5 in Figure 3.10.

As shown by the intuitive introduction of different models, particular net
morphisms, namely foldings, are useful to relate higher-level nets to lower-
level nets. In this section the informal notion will be related to the formal
introduction of a folding in Definition 2.5.1. In this definition a folding was
defined as a net morphism ϕ that maps places to places and transitions to
transitions, i.e. ϕ(P1) ⊆ P2 and ϕ(T1) ⊆ T2. Furthermore, the F- and the
A-relations are preserved: (x, y) ∈ F1 ⇒ (ϕ(x), ϕ(y)) ∈ F2 and (x, y) ∈
A1 ⇒ (ϕ(x), ϕ(y)) ∈ A2. In contrast with to general net morphisms, arcs
are preserved and not hidden by abstraction. By part b) of Theorem 2.5.4,
(epi-)foldings are represented by strict abstractions.

To give an example, the arc-constant net N2 of Figure 3.3 can be seen
as a folding of its first version, the net N in Figure 2.5. By Theorem 2.5.4
foldings can be represented as strict abstractions as shown in Figure 3.13. In
part a) of this figure the net from Figure 2.5 is given in a different layout
and with some open sets marked by dashed lines. Since there are no F-arcs
remaining within these sets, the abstraction is strict and the corresponding
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Fig. 3.13. Folding of a marked net to a coloured net
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morphism is an epifolding. The abstraction of this net is given in part b)
together with some inscriptions. This net is the corresponding arc-constant
CPN from Figure 3.3. The closed sets in this picture give a folding to the net
in part c), which is the coloured net from Figure 3.10. The observation made
with this example leads to a general principle:

I) An arc-constant CPN is a folding of a net with respect to open sets
that contain no transitions.

II) A CPN is the folding of an arc-constant net with respect to closed sets
that contain no places.

Clearly, part a) and part c) of Figure 3.13 are also connected by a folding,
namely the folding shown in Figure 2.19. The reader should note, however,
that the notions of folding and strict abstraction refer only to the net under-
lying a particular model and not to the inscriptions related to the particular
net models.
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In this chapter a formal definition of place/transition nets and coloured Petri
nets is given. Although the former are special cases of the latter, for didactic
reasons we start with place/transition nets.

4.1 Formal Definition of Place/Transition Nets

Place/transition nets are nets in the sense of Definition 2.2.1 together with
a definition of arc weights.

Definition 4.1.1. A place/transition net (P/T net) is defined by a tuple
N = 〈P, T,Pre,Post〉, where

• P is a finite set (the set of places of N ),
• T is a finite set (the set of transitions of N ), disjoint from P , and

• Pre,Post ∈ IN|P |×|T | are matrices (the backward and forward incidence
matrices of N ). C = Post−Pre is called the incidence matrix of N .

There is an arc with weight n > 0 from a place p ∈ P to some transition
t ∈ T iff Pre[p, t] = n with n > 0 and there is an arc with weight n > 0
from a transition t ∈ T to some place p ∈ P iff Post[p, t] = n > 0. Hence,
F := {(p, t) ∈ P × T | Pre[p, t] > 0} ∪ {(t, p) ∈ T × P | Post[p, t] > 0} is the
set of arcs of N .

This leads to the following alternative but equivalent definition of
place/transition nets, which is closer to the graphical representation.

Definition 4.1.2. A place/transition net (P/T net) is defined by a tuple
N = 〈P, T, F,W 〉, where

• 〈P, T, F 〉 is a net (Definition 2.2.1) with finite sets P and T , and
• W : F → IN\{0} is a function (weight function).

Example 4.1.3. For the P/T net N3 of Figure 3.6 we have:
P = {p1, . . . , p7}, T = {t1 . . . , t3}, F = {(p1, t1), (t1, p2), . . . , (p4, t3), . . .},
W (p1, t1) = 1,W (t1, p2) = 1, . . . ,W (p4, t3) = 2, . . .,
∗ Author: R. Valk
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Pre[p1, t1] = 1,Post[p2, t1] = 1, . . . ,Pre[p4, t3] = 2, . . .
The complete matrices Pre,Post, and C are given in Table 4.1. Empty
entries are assumed to be zero.

Pre t1 t2 t3 Post t1 t2 t3 C t1 t2 t3
p1 1 p1 p1 −1
p2 1 p2 1 p2 1 −1
p3 p3 1 p3 1
p4 2 p4 1 p4 1 −2
p5 1 p5 2 p5 −1 2
p6 1 p6 p6 −1
p7 p7 1 p7 1

Table 4.1. The incidence matrices of the P/T net N3

Definition 4.1.4. A marking of a P/T net N = 〈P, T,Pre,Post〉 is a vec-

tor m ∈ IN|P |. N together with a marking m0 (initial marking) is called
a P/T net system S = 〈N ,m0〉 or S = 〈P, T,Pre,Post,m0〉. A transi-
tion t ∈ T is enabled in a marking m if m ≥ Pre[•, t]. In this case the

successor marking relation is defined by m t
−→m′ ⇔ m ≥ Pre[•, t] ∧m′ =

m + Post[•, t]−Pre[•, t] = m + C[•, t]. Pre[•, t] denotes the t-column vec-
tor Pre[•, t] = (Pre[p1, t], . . . ,Pre[p|P |, t]) of the |P | × |T | matrix Pre. The
same holds for Post[•, t] with respect to Post.1

For the net N3 from Figure 3.6 and Example 4.1.3 the initial mark-
ing is m0 = (2, 0, 0, 0, 0, 1, 0). Since Pre[•, t1] = (1, 0, 0, 0, 0, 0, 0), transition
t1 is enabled in m0 and the successor marking is m′ = m0 + C[•, t1] =
(2, 0, 0, 0, 0, 1, 0) + (−1, 1, 0, 1, 0, 0, 0) = (1, 1, 0, 1, 0, 1, 0).

Definition 4.1.5. The successor marking relation of Definition 4.1.4 is ex-
tended to hold for sequences of transitions (i.e. elements from the set T ∗ of
word over the alphabet T ) by

• m w
−→m′ if w is the empty word λ and m = m′ and

• m wt
−→m′ if ∃m′′ .m w

−→m′′ ∧m′′ t
−→ for w ∈ T ∗ and t ∈ T .

For a net system S = 〈N ,m0〉 the set RS(S) = RS(N ,m0) := {m | ∃w ∈
T ∗ .m0

w
−→m} is the reachability set. It can be denoted by RS(m0) if N is

obvious from the context. FS(S) := {w ∈ T ∗ | ∃m .m0
w
−→m} is the set of

occurrence transition sequences (or firing sequence set) of S.

As mentioned in Chapter 3, it is sometimes convenient to define the set
Occ(S) of occurrence sequences to be the set of all sequences of the form
1 Note that sometimes the notations Pre[P, t] and Post[P, t] are used instead of

Pre[•, t] and Post[•, t] respectively. The intended meaning is the same in both
cases.
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m0, t0,m1, t1,m2, t2, . . . , tn−1,mn (n ≥ 1)

such that mi
ti−→mi+1 for i ∈ {0, . . . , n − 1}. An example can be found in

section 3.2.

4.2 Formal Definition of Arc-Constant Nets

For a coloured net we have to specify the colours and, for all places and
transitions, particular colour sets (colour domains). Since arc inscriptions
may contain different elements or, as in the case of P/T nets, multiple copies
of an element, bags (multisets) are used.

A bag (or multiset) ’bg’, over a non-empty set A, is a function bg : A→ IN,
sometimes denoted as a formal sum

∑
a∈A bg(a)

′a. Bag(A) denotes the set of
all bags over A. Extending set operations to Bag(A) we define the sum (+)
and difference (−) as follows:

If bg, bg1 and bg2 are bags over A, then:

• bg1 + bg2 :=
∑

a∈A(bg1(a) + bg2(a))
′a

• bg1 ≤ bg2 :⇔ ∀a ∈ A . bg1(a) ≤ bg2(a)
• bg1 − bg2 :=

∑
a∈A(bg1(a)− bg2(a))′a if bg2 ≤ bg1 and

• |bg| :=
∑

a∈A bg(a) is the size of bg and ∅ denotes the empty bag (with
|bg| = 0).

An example of a bag over A = {a, b, c, d} is bg1 = {a, a, b, b, b, d}b (where
the index distinguishes set brackets from bag brackets) or, equivalently, bg1 =
2′a + 3′b + d. With bg2 = a + 2′b we obtain bg1 + bg2 = 3′a + 5′b + d and
bg1 − bg2 = 1′a+ 1′b+ 1′d = a+ b+ d.

Definition 4.2.1. An arc-constant coloured Petri net (ac−CPN) is defined
by a tuple N = 〈P, T,Pre,Post, C, cd〉, where

• P is a finite set (the set of places of N ),
• T is a finite set (the set of transitions of N ), disjoint from P ,
• C is the set of colour classes,
• cd: P → C is the colour domain mapping, and
• Pre,Post ∈ B|P |×|T | are matrices (the backward and forward inci-

dence matrices of N ) such that Pre[p, t] ∈ Bag(cd(p)) and Post[p, t] ∈
Bag(cd (p)) for each (p, t) ∈ P ×T . C = Post−Pre is called the incidence
matrix.

Note that in this definition B can be taken as the set Bag(A), where A is
the union of all colour sets from C. The difference operator in C = Post−Pre
is a formal one here, i.e. the difference is not computed as a value.

Example 4.2.2. The matrices Pre and Post of the arc-constant CPN N2 of
Figure 3.3 are given in Table 4.2. To improve clarity, the colour domains
of the places are also contained in these matrices. Bags are represented by
formal expressions, e.g. 2′a+b denotes the bag containing a twice and b once.
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Pre t1 t2 t3 t4 t5
p1 : cars a b
p2 : cars a b
p3 : cars
p4 : ready rsa+

rsb
p5 : start ssa ssb
p6 : starter s
p7 : starter

Post t1 t2 t3 t4 t5
p1 : cars
p2 : cars a b
p3 : cars a b
p4 : ready rsa rsb
p5 : start ssa+

ssb
p6 : starter
p7 : starter s

colour sets:
cars = {a, b}, starter = {s}
ready = {rsa, rsb} “ready signs”
start = {ssa, ssb} “start signals”

constants:
a, b, s, rsa, rsb, ssa, ssb

Table 4.2. The incidence matrices of the ac− CPN N2 from Figure 3.3

Definition 4.2.3. A marking of an ac−CPN N = 〈P, T,Pre,Post, C, cd〉
is a vector m such that m[p] ∈ Bag(cd(p)) for each p ∈ P . N together with a
marking m0 (initial marking) is called an ac−CPN system and is denoted
by S = 〈N ,m0〉 or S = 〈P, T,Pre,Post, C, cd ,m0〉. A transition t ∈ T is

enabled in a marking m if m ≥ Pre[•, t] (denoted by m t
−→). In this case the

successor marking relation is defined by m t
−→m′ ⇔ m ≥ Pre[•, t] ∧m′ =

m + Post[•, t] − Pre[•, t] = m + C[•, t]. (The bag operations +, − and the
bag relation ≤ are extended to vectors).

Definition 4.2.4. The successor marking relation of Definition 4.2.3 is ex-
tended to hold for sequences of transitions by

• m w
−→m′ if w is the empty word λ and m = m′ and

• m wt
−→m′ if ∃m′′ .m w

−→m′′ ∧m′′ t
−→m′ for w ∈ T ∗ and t ∈ T .

For a net system S = 〈N ,m0〉 the set RS(S) = RS(N ,m0) := {m | ∃w ∈
T ∗ .m0

w
−→m} is the reachability set. It can be denoted by RS(m0), if N is

obvious from the context. FS(S) := {w ∈ T ∗ | ∃m .m0
w
−→m} is the set of

occurrence transition sequences (or firing sequence set) of S.

For the net N2 from Figure 3.3 and Example 4.2.2 the initial marking is
m0 = (a + b, ∅, ∅, ∅, ∅, s, ∅). Since Pre[•, t1] = (a, ∅, ∅, ∅, ∅, ∅, ∅), transition t1
is enabled in m0 and the successor marking is

m′ = m0 + C[•, t1]

= m0 + Post[•, t1]−Pre[•, t1]

= (a+ b, ∅, ∅, ∅, ∅, s, ∅) + (∅, a, ∅, rsa, ∅, ∅, ∅)− (a, ∅, ∅, ∅, ∅, ∅, ∅)

= (b, a, ∅, rsa, ∅, s, ∅).
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4.3 Formal Definition of Coloured Nets

In a coloured Petri net the incidence matrices cannot be defined over B =
Bag(A) as for arc-constant CPNs. For a transition the different modes or
bindings of a transition t have to be represented. These are called colours , and
are denoted by cd(t). Therefore the colour domain mapping cd is extended
from P to P ∪ T . In the entries of the incidence matrices for each transition
colour, a multiset has to be specified. This is formalised by a mapping from
cd(t) into the bags of colour sets over cd(p) for each (p, t) ∈ P × T .

Definition 4.3.1. A coloured Petri net (CPN) is defined by a tuple
N = 〈P, T,Pre,Post, C, cd〉, where

• P is a finite set (the set of places of N ),
• T is a finite set (the set of transitions of N ), disjoint from P ,
• C is the set of colour classes,
• cd: P ∪ T → C is the colour domain mapping, and
• Pre,Post ∈ B|P |×|T | are matrices (the backward and forward incidence

matrices of N ) such that Pre[p, t] : cd(t) → Bag(cd(p)) and Post[p, t] :
cd(t)→ Bag(cd(p)) are mappings for each pair (p, t) ∈ P × T .

B can be taken as the set of mappings of the form f : cd(t) → Bag(cd(p)).
Again, C = Post−Pre is called the incidence matrix.

As introduced in Chapter 3 and specified in Definition 4.3.1, the mapping

Pre[p, t] : cd(t)→ Bag(cd (p))

defines for each transition colour (or occurrence mode) β ∈ cd(t) of t a bag
Pre[p, t](β) ∈ Bag(cd(p)) denoting the token bag to be removed from p when
t occurs in colour β. In a similar way, Post[p, t](β) specifies the bag to be

t1 t2 t3
Pre mode1

mode2

mode1
mode2

mode1

p1 : cars a
b

p2 : cars a
b

p3 : cars
p4 : ready rsa+rsb

p5 : start ssa
ssb

p6 : starter s
p7 : starter

t1 t2 t3
Post mode1

mode2

mode1
mode2

mode1

p1 : cars
p2 : cars a

b
p3 : cars a

b
p4 : ready rsa

rsb

p5 : start ssa+ssb

p6 : starter
p7 : starter s

colour sets:
cars = {a, b}, starter = {s}
ready = {rsa, rsb} “ready signs”
start = {ssa, ssb} “start signals”

Table 4.3. The incidence matrices of N4 and N5 in vector form
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added to p when t occurs in colour β. Hence, the overall effect of the action
performed on the occurrence of a transition t is given by a tuple corresponding
to the arcs connected with t. To be more precise, let t be a transition having
q = | •t| input places. Then for a transition colour β ∈ cd(t), the effect of an
occurrence of t with respect to these input places •t = {p1, . . . , pq} is given
by the q-tuple of bags:

(bg1, .., bgq) = (Pre[p1, t], . . . ,Pre[pq, t]) ∈ Bag(cd(p1))× . . .× Bag(cd(pq)).

The same holds with respect to t• and Post.
The colours (i.e. modes) of a transition t can be seen as particular subsets

of tuples cd(t) ⊆ Bag(cd(p1)) × . . . × Bag(cd(p|P |)), i.e. vectors having an
entry for each place. However, as discussed before this can be an arbitrary
set as well. In applications and for analytical tools effective representations
of this set are necessary. In the following section we will discuss four classical
ways to denote the mappings Pre[p, t] and Post[p, t], namely:

a)by vectors,
b)by projections,
c) by functions, and
d)by terms with functions and variables.

a) Representation of the incidence matrix entries by vectors:
Assuming a predefined ordering β1 < β2 < β3 < . . . of cd(t) = {β1, β2, β3 . . .},
the mapping Pre[p, t] is represented by the vector:

(Pre[p, t](β1),Pre[p, t](β2),Pre[p, t](β3) . . .)

If the set cd(t) is finite, a finite vector is obtained. To give an example, Table
4.3 shows such a representation for the CPN N4 of Figure 3.9. The transition
colours β1 and β2 are denoted by mode1 and mode2 respectively, near the
transition names.

b) Representation of the incidence matrix entries by projections:
This representation is directly based on the transition colour set

cd(t) ⊆ Bag(cd(p1))× . . .× Bag(cd(pq))

assuming an ordering on a subset of places (q ≤ |P |). Then the appropriate
bag for each arc with respect to a transition colour is obtained by a projection
function pri : (bg1, . . . , bgq) 7→ bgi, returning the i-th component of the tuple.
An example is given in Figure 4.1. Here the inscriptions on the arcs of the
CPN N6, as well as the entries of the incidence matrices, are projections on
the transition colour sets, which are given in the lower part of the figure. To
give some examples, with β1 = (a, rsa) for the arcs (p1, t1) and (t1, p4) we
obtain Pre[p1, t1](β1) = pr 1(β1) = a and Post[t1, p4](β1) = pr2(β1) = rsa
respectively. Note that some tuples are excluded by the the definition of the
subset cd(t) ⊆ Bag(cd(p1)) × . . .× Bag(cd(pq)). In the limit this subset can
contain a single element as for cd(t3) in the present example.
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pr1 pr1 pr1 pr1

pr2

pr2

pr1

pr3

pr1

start 

p
5

ready  
p4

cars

a bp
1

cars
p2

cars
p3

starter
sp6

t2t1

pr2

t3
starter

p7

t1 : t2 : t3 :
Pre cd(t1) cd(t2) cd(t3)
p1 : cars pr1

p2 : cars pr1

p3 : cars
p4 : ready pr2

p5 : start pr2

p6 : starter pr1

p7 : starter

t1 : t2 : t3 :
Post cd(t1) cd(t2) cd(t3)
p1 : cars
p2 : cars pr1

p3 : cars pr1

p4 : ready pr2

p5 : start pr3

p6 : starter
p7 : starter pr1

colour sets:
place colours :

cars = {a, b}, starter = {s}, ready = {rsa, rsb}, start = {ssa, ssb}
transition colours :

cd (t1) = {(a, rsa), (b, rsb)}
cd (t2) = {(a, ssa), (b, ssb)}
cd (t3) = {(s, rsa + rsb, ssa + ssb)}

Fig. 4.1. CPN N6 with incidence matrix, both in projection form

c) Representation of the incidence matrix entries by functions:
In the place of projections other kinds of functions with range Bag(cd(pi)) can
be used. This is of particular importance when there is a “most important”
token class among the objects to be moved by an occurring transition and the
other tokens functionally depend on it. The colour set car in our example is
an example of such a “main token class” with respect to transitions t1 and t2.
By a function sign with sign(a) = rsa and sign(b) = rsb, the corresponding
start sign is associated with the token. The same is done by the function
signal with signal(a) = ssa and signal(b) = ssb, which specifies the start
signal to be received by the corresponding car. As shown in Figure 4.2, for
instance, transition t1 now has cars as its transition colour set (instead of
a subset of cars × ready as in Figure 4.1) and the functions pr1 and pr2 of
Figure 4.1 are replaced by the functions id (for the identity mapping) and
sign respectively.

d) Representation of the incidence matrix entries by terms:
Probably the most general form to represent the incidence matrix entries is



48 4. Basic Definitions

id1 id1 id1 id1

signal

rsign

id2

ssignal

id2

start 

p
5

ready  
p4

cars

a bp
1

cars
p2

cars
p3

starter
sp6

t2t1

sign

t3 starter
p7

t1 : t2 : t3 :
Pre cars cars starter
p1 : cars id1

p2 : cars id1

p3 : cars
p4 : ready rsign
p5 : start signal
p6 : starter id2

p7 : starter

t1 : t2 : t3 :
Post cars cars starter
p1 : cars
p2 : cars id1

p3 : cars id1

p4 : ready sign
p5 : start ssignal
p6 : starter
p7 : starter id2

colour sets
place colours :

cars = {a, b}, starter = {s}, ready = {rsa, rsb}, start = {ssa, ssb}
transition colours :

cd(t1) = cd(t2) = cars, cd(t3) = starter
functions :

id1 : a 7→ a, b 7→ b id2 : s 7→ s
sign : a 7→ rsa, b 7→ rsb signal : a 7→ ssa, b 7→ ssb,
rsign : s 7→ rsa + rsb, ssignal : s 7→ ssa + ssb

Fig. 4.2. CPN N7 with incidence matrix, both in function form

by bags of terms from a Σ-algebra including function symbols and variables.
This is used in “algebraic Petri nets” to define generic inscriptions. Here we
consider interpreted terms, i.e. expressions over variables and interpreted
functions. In the example given in Figure 4.3 however the terms consist
of single variables such as x or y. A different example would be sign(x)
on the arc (t1, p4), where the function sign is defined as in Figure 4.2.
A more general example of a term bag would be 3′sign(x) + 2′signal(y)
which is, however, not included in the example. See Figure 8.12 for a term
containing a case-operation. The approach is attractive since, in contrast
to the function form, guards are expressed as formulas over these terms. In
most cases, as for the formulas within the transition box of N5 in Figure
4.3, these formulas are quantifier-free. This technique allows us to specify
the transition colour set within the net and thereby reduces the need to
study additional specifications. The occurrence rule of such nets is, as
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y

x x z z

y

rsa+rsb

s

ssa+ssb

s

start 

p
5ready  

p
4

cars

a bp
1

cars
p

2

cars

p
3

starter
sp

6
starter
p7

(z=a ∧ y=ssa) ∨
(z=b ∧ y=ssb)

t2

(x=a ∧ y=rsa) ∨
(x=b ∧ y=rsb)

t1

t3

t1 : t2 : t3 :

Pre (x=a∧y=rsa)∨
(x=b∧y=rsb)

(z=a∧y=ssa)∨
(z=b∧y=ssb)

cd(t3)

p1 : cars x
p2 : cars z
p3 : cars
p4 : ready rsa + rsb
p5 : start y
p6 : starter s
p7 : starter

t1 : t2 : t3 :

Post (x=a∧y=rsa)∨
(x=b∧y=rsb)

(z=a∧y=ssa)∨
(z=b∧y=ssb)

cd(t3)

p1 : cars
p2 : cars x
p3 : cars z
p4 : ready y
p5 : start ssa + ssb
p6 : starter
p7 : starter s

colour sets:
place colours :

cars = {a, b}, starter = {s}, ready = {rsa, rsb}, start = {ssa, ssb}
transition colours :

cd(t1) = {(x, y) | (x = a ∧ y = rsa) ∨ (x = b ∧ y = rsb)}
cd(t2) = {(x, y) | (x = a ∧ y = ssa) ∨ (x = b ∧ y = ssb)}
cd(t3) = {(s, rsa + rsb, ssa + ssb)}

variables: x, y, z, s
constants: rsa, rsb, ssa, ssb

Fig. 4.3. CPN N5 with incidence matrix, both in term form
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already introduced by Figure 3.11, as follows: (1) Choose a binding β for the
variables. (2) Check that the guard evaluates to true for β. (3) Temporarily
replace the variables by the chosen values and evaluate the term. (4) Apply
the transition occurrence rule of ac-CPNs.

Note that the four examples discussed contain complete information for
the CPN in graphical as well as in algebraic form. By “graphical form” we
mean the Petri net graph with inscriptions and a specification of the colour
sets and functions. The “algebraic form” is given by the incidence matrices
together with inscriptions and a specification of the colour sets and func-
tions. This illustrates the principle stated in Chapter 2, namely that Petri
nets always have a graphical and an algebraic representation and that these
representations are equivalent.

In applications, however, the four forms a), b), c), and d) are not used in
their pure representations. When a CPN is designed for human readers, often
the “term and variable” form of case d) is used, since this form is similar to
concurrent programs with variables and guards. On the other hand, when the
incidence matrices are constructed, frequently the function-form is preferred,
since it is more suitable for analysis, e.g. for the calculation of invariants.
The following formal definitions of occurrence rule, reachability set, etc. are
uniquely based on the abstract definition (Definition 4.3.1) and do not depend
on the different representations of the incidence matrix entries.

Definition 4.3.2. A marking of a CPN N = 〈P, T,Pre,Post, C, cd〉 is a
vector m such that m[p] ∈ Bag(cd(p)) for each p ∈ P . N together with a
marking m0 (initial marking) is called a CPN system and is denoted by
S = 〈N ,m0〉 or S = 〈P, T,Pre,Post, C, cd ,m0〉.

A transition t ∈ T is enabled for binding β in a marking m iff m ≥

Pre[•, t](β) (denoted by: m t,β
−→). In this case the successor marking relation

is defined by m t,β
−→m′ :⇔ m ≥ Pre[•, t](β) ∧ m′ = m + Post[•, t](β) −

Pre[•, t](β) = m + C[•, t](β).
The bag operations +, − and the bag relation ≤ are extended to vectors

as before.
If the particular binding is not important, the notation m t

−→m′ :⇔

∃β .m t,β
−→m′ is used.

Definition 4.3.3. The successor marking relation of Definition 4.3.2 is ex-
tended to hold for sequences of transitions by

• m w
−→m′ if w is the empty word λ and m = m′ and

• m wt
−→m′ if ∃m′′ .m w

−→m′′ ∧m′′ t
−→m′ for w ∈ T ∗ and t ∈ T .

For a net system S = 〈N ,m0〉 the set RS(S) = RS(N ,m0) := {m | ∃w ∈
T ∗ .m0

w
−→m} is the reachability set. It can be denoted by RS(m0) if N is

obvious from the context. FS(S) := {w ∈ T ∗ | ∃m .m0
w
−→m} is the set of

occurrence transition sequences (or firing sequence set) of S. As in the case
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of P/T nets it is sometimes convenient to define the set Occ(S) of occurrence
sequences to be the set of all sequences of the form

m0, t0,m1, t1,m2, t2, . . . , tn−1,mn (n ≥ 1)

such that mi
ti−→mi+1 for i ∈ {0, . . . , n− 1}. If in an occurrence sequence the

individual bindings are of importance, the notion is extended to

m0, (t0, β0),m1, (t1, β1),m2, (t2, β2), . . . , (tn−1, βn−1),mn (n ≥ 1)

such that mi
ti,βi
−→mi+1 for i ∈ {0, . . . , n− 1}.

Pre t :
{(x,y,z)∈

{a,b,c}3|y=z}

p1 : {a, b, c} x + y
p2 : {a, b, c} 2′z
p3 : {a, b, c}
p4 : {a, b, c}

Post t :
{(x,y,z)∈

{a,b,c}3|y=z}

p1 : {a, b, c}
p2 : {a, b, c}
p3 : {a, b, c} y
p4 : {a, b, c} z

Table 4.4. The incidence matrices of the CPN from Figure 3.11 in term form

An example of an occurrence sequence for the current CPN has been
given in section 3.3. The definition of the successor marking is illustrated by
the example from Figure 3.11. To begin with, recall that for this example the
colour domains of all places are assumed to be cd(p) = {a, b, c} and the colour
domain of the transition t is assumed to be cd(t) = {(x, y, z) ∈ {a, b, c}3 |
y = z}. The corresponding incidence matrices are given in Table 4.4 (in term
form).

For the binding β = [x = a, y = b, z = b] ∈ cd(t) and the marking
m = (a+ b, 2′b+ c, c, a) from Figure 3.11 we calculate the successor marking
m′ as follows. For a term τ and a binding β we denote by τ [β] the value
returned after the evaluation of τ with β.

m′ = m−




Pre[p1, t](β)
Pre[p2, t](β)
Pre[p3, t](β)
Pre[p4, t](β)


+




Post[p1, t](β)
Post[p2, t](β)
Post[p3, t](β)
Post[p4, t](β)




=




a + b
2′b + c

c
a


−




(x + y)[x = a, y = b, z = b]
(2′z)[x = a, y = b, z = b]

∅
∅


+




∅
∅

(y)[x = a, y = b, z = b]
(z)[x = a, y = b, z = b]




=




a + b
2′b + c

c
a


−




a + b
2′b
∅
∅


+



∅
∅
b
b


 =




∅
c

b + c
a + b








5. Properties∗

The construction of Petri net models from informal requirement specifications
is not a trivial task, and requires a great deal of modelling experience, as well
as knowledge of the techniques aiding in model construction. As a result, a
Petri net model may differ considerably from its original specification. This is
especially true when large Petri net models of complex systems are involved.

Therefore, a critical issue in the use of formal methods (in our case Petri
nets) for problem solving is the construction of a good model, in particular
a model that is correct with respect to some kind of logical specification.
The existence of a correspondence between an original specification and its
Petri net representation provides feedback to the designers who can, in many
instances, clarify their perception of the system.

Different concepts of correctness exist. Basically, a system is said to be
correct when two models, namely the specification and the implementation,
are equivalent [BGV91], [PRS92], or when the system exhibits a set of desir-
able properties, either expressed as formulas of a logic [CES86], [MP89], or
selected from a given kit (e.g. boundedness, liveness). See the following text-
books or surveys on basic Petri net theory and applications ([Pet81], [Bra83],
[Sil85], [Rei85a], [ABC+95], [Mur89]). These desirable properties, when inter-
preted in the context of the modelled system, allow the system designer to
identify the presence or absence of the application-domain-specific functional
properties of the system under design.

Broadly speaking, analysis methods for Petri net models can be classified
as enumeration- or net-driven. The first step in enumeration techniques is
the computation of the reachability graph (totally or partially). If the sys-
tem is bounded, this can be used as the computational model for a proof
system, which verifies formulas from a given (temporal) logic, or for decision
procedures and tools for automatic verification [CES86], [MP89].

It is also possible to deal with unbounded systems by using the coverability
graph [Fin93], but this particular construction does not allow the deciding of
important properties such as liveness and reachability [Pet81].

The basic idea in net-driven approaches is to obtain useful information
about the behaviour, reasoning from the structure of the net and the initial
marking. Crucial advantages of this approach are the deep understanding
∗ Authors: J.M. Colom, M. Silva, and E. Teruel
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of the system behaviour that is gained, and the efficiency of the resulting
algorithms. Two different approaches are [Mur89], [DHP+93]: (1) Net trans-
formations (typically reductions), preserving the properties to be analysed
[Ber86]. It is expected that the transformed system is easier to analyse. (2)
Structure theory results, based on graph theory and/or linear algebra. Typi-
cally, results for general Petri net systems are obtained, some of which become
increasingly powerful when restricted to particular subclasses (see [TS94] for
a recent survey).

In this chapter we introduce a basic kit of properties of Petri nets. These
can be considered to be good properties which a Petri net modelling a sys-
tem should satisfy. AWe then illustrate the analysis method based on the
reachability graph and the structural analysis method based on the linear
invariants. This kind of structural analysis is based on linear algebra.

5.1 Basic Properties

Only a few qualitative properties will be considered in this chapter. They are
general in the sense that they are meaningful for any concurrent system, not
only for those modelled with Petri nets. Nevertheless their statements, using
Petri net concepts and objects, make them especially easy to understand in
many cases. The properties to be considered are:

1)boundedness, characterising finiteness of the state space.
2) liveness, related to potential fireability in all reachable markings. Deadlock-

freeness is a weaker condition in which global infinite activity (i.e. fireabil-
ity) of the net system model is guaranteed, but some parts of it may not
work at all.

3)reversibility, characterising recoverability of the initial marking from any
reachable marking.

4)mutual exclusion, dealing with the impossibility of simultaneous submark-
ings (p-mutex) or firing concurrency (t-mutex).

Consider the net in Figure 5.1.a. Firing t2 leads to m = p3 + p4. Subse-
quently firing t4, m1 = p1 + p3 is reached. Repeating k times the sequence
t2t4 the marking mk = p1 + k p3 is reached. Since the marking of p3 can be
arbitrarily large, place p3 is said to be unbounded. In practice, the capacity
of the physical element represented by p3 will be finite, so an overflow can
appear, which is a pathological situation.

The maximum number of tokens a place may contain is its (marking)
bound. A place is bounded if its bound is finite. A net system is bounded
if each place is bounded. System boundedness (i.e. all places bounded) is a
generally required behavioural property.

For any initial marking we can define on the net structure of Figure 5.2a
the following token conservation laws:
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Fig. 5.1. On qualitative pathological behaviours: (a) an unbounded, deadlockable
(non-live), non-reversible net system; (b) a live net system that by increasing the
initial marking (e.g. m0[p5] = 1) can reach a deadlock state!
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Fig. 5.2. Bounded, live, and reversible system and its reachability graph

m[p1] + m[p2] + m[p3] = m0[p1] + m0[p2] + m0[p3] = k1(m0)

m[p1] + m[p4] + m[p5] = m0[p1] + m0[p4] + m0[p5] = k2(m0)

m[p6] = m0[p6] = k3(m0)

where m0 is the initial marking and m any reachable marking. Therefore:

m[p1] ≤ min(k1(m0), k2(m0))



56 5. Properties

m[pi] ≤ k1(m0); i = 2, 3

m[pj ] ≤ k2(m0); j = 4, 5

m[p6] = k3(m0)

The above inequalities mean that for any m0 the net system is bounded.
This property, stronger than boundedness, is called structural boundedness
because it holds independently of the initial marking (only finiteness of m0

is assumed).
Let us consider now a different scenario where we fire t1 from the marking

in Figure 5.1a. After that, no transition can be fired: a total deadlock situa-
tion has been reached. A net system is said to be deadlock-free if from any
reachable marking at least one transition can always occur. A stronger con-
dition than deadlock-freeness is liveness. A transition t is potentially fireable
at a given marking m if there exists a transition firing sequence σ leading to
a marking m′ in which t is enabled (i.e. m σ

−→m′ ≥ Pre[P, t]). A transition
is live if it is potentially fireable in all reachable markings. In other words,
a transition is live if it never loses the possibility of firing (i.e. of performing
some activity). A net system is live if all transitions are live.

p1

t1

a) b)

p2 p3

p4 p5

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

t2

t3 t4

t5

t2

t3 t4

t5 t6

t7 t8

t1

Fig. 5.3. On home states: (a) The initial marking is not a home state, but all
successor markings are home states; (b) Net system that presents two livelocks, so
there are no home states.

For any initial marking we can define on the net structure in Figure 5.1a,
non-liveness holds (in fact, a total deadlock can always be reached). Non-
liveness for arbitrary initial markings reflects a pathology of the net structure:
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structural non-liveness. A net is structurally live if there exists at least one
live initial marking.

A paradoxical behaviour of concurrent systems is the following: At first
glance it may be accepted as intuitive that increasing the initial marking
(e.g. increasing the number of resources) of a net system helps to make it
live. The net system in Figure 5.1b shows that increasing the number of
resources can lead to deadlock situations: Adding a token to p5, t2 can be
fired and a deadlock is reached! In other words, in general, liveness is not
monotonic with respect to the initial marking. Note however that liveness
can be marking-monotonic on certain net subclasses.

A marking is a home state if it is reachable from any other reachable
marking. The initial marking of the net system in Figure 5.3a is not a home
state: after the firing of transition t3 or t4 it is not possible to reach this initial
marking. Nevertheless, each of the markings reachable from the initial one is
a home state. For some subclasses of net systems the existence of home states
is guaranteed [Vog89, TS96], but in general the existence of home states does
not hold. The net system in Figure 5.3.b [BV84] is live and bounded but
there are no home states. In fact, in the reachability graph there exist two
different terminal strongly connected components, each one containing all
transitions (thus live). Therefore, the markings of one of these components
are unreachable from the markings belonging to the other component. Each
one of these terminal strongly connected components is called a livelock. The
set of home states of a net system is called the home space. The existence of
a home space for a net system is a desirable property because it is strongly
related to properties such as ergodicity, of crucial importance in the context
of performance evaluation or system simulation.

In the particular case that the initial marking is a home state, the net
system is reversible, so it is always possible to return to the initial marking.

Liveness, boundedness, and reversibility are just three different “good”
(often required) behavioural properties that may be interesting to study in a
net system. Figure 5.4 shows that they are independent of each other, giving
examples of the eight cases we may have.

The last basic property we introduce in this section is mutual exclusion.
This property captures constraints such as the impossibility of a simultaneous
access by two robots to a single store. Two places (transitions) are in mutual
exclusion if they can never be simultaneously marked (fired). For instance,
in the net system in Figure 5.2 we can write: m[p1] + m[p2] + m[p3] = 1, so
p1, p2, and p3 are in mutual exclusion.

Table 5.1 summarises the definitions of the different properties we have
introduced in this section.
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7)  B L R

0)  B L R 1)  B L R

2)  B L R 3)  B L R

4)  B L R 5)  B L R

6)  B L R

Fig. 5.4. Boundedness (B), liveness (L), and reversibility (R) are independent
properties.

5.2 An Introduction to the Analysis

Conventionally, analysis techniques for Petri nets are classified as: (1) Enu-
meration; (2) Transformation; and (3) Structural analysis. Simulation meth-
ods have also been applied to study systems modelled with P/T nets. They
proceed by playing the token game (firing enabled transitions) on the net
system model under certain strategies. In general, simulation methods do
not allow us to prove properties, but they may be of great help for under-
standing the modelled system or for fixing the problems manifested during
the simulation. Simulation methods are extremely useful when time is asso-
ciated with the net evolution (timed systems), or when we wish to know the
response of a system described with a net in an environment which is also
defined by simulation (see Part IV of this book). In this section we do not
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(1) Bound of place p in 〈N ,m0〉
b(p) = sup{m[p]|m ∈ RS(N ,m0)}

(2) p is bounded in 〈N ,m0〉 iff b(p) < ∞
(3) 〈N ,m0〉 is bounded if all places are bounded
(4) 〈N ,m0〉 is deadlock-free iff ∀m ∈ RS(N ,m0). ∃t ∈ T such

that t is fireable at m

(5) t is live in 〈N ,m0〉 iff ∀m ∈ RS(N ,m0). ∃σ such that m σt
−→m′

(6) 〈N ,m0〉 is live if all transitions are live
(7) m ∈ RS(N ,m0) is a home state iff ∀m′ ∈ RS(N ,m0). ∃σ such that

m′ σ
−→m

(8) 〈N ,m0〉 is reversible iff ∀m ∈ RS(N ,m0). ∃σ such that m σ
−→m0

(9) Mutual exclusion in 〈N ,m0〉:
pi and pj are in marking mutual exclusion iff ∃/ m ∈ RS(N ,m0) such
that (m[pi] > 0) and (m[pj ] > 0)
ti and tj are in firing mutual exclusion iff ∃/ m ∈ RS(N ,m0) such that
m ≥ Pre[P, ti] + Pre[P, tj ]

(10) Structural properties (abstractions of behavioural properties):
N is structurally bounded iff ∀m0 (finite) 〈N ,m0〉 is bounded
N is structurally live iff ∃m0 (finite) making 〈N ,m0〉 a live system

Table 5.1. Summarising some basic logical properties

consider simulation methods and we will only overview the three previously
mentioned analysis techniques on P/T nets without interpretation.

Enumeration methods are based on the construction of a reachability graph
(RG) which represents each net marking and the single transition firings
between them. If the net system is bounded, the reachability graph is finite
and the different qualitative properties can be verified easily. If the net system
is unbounded, the RG is infinite and its construction is not possible. In this
case, finite graphs known as coverability graphs can be constructed (see for
example [Pet81], [Rei85a], [Fin93]). In spite of its power, enumeration is often
difficult to apply, even in small nets, due to its computational complexity (it
is strongly combinatorial).

Analysis by transformation proceeds by transforming a net system S =
〈N ,m0〉 into a net system S ′ = 〈N ′,m0

′〉 preserving the set of properties Π
to be verified (i.e. S ′ satisfies the properties Π iff S satisfies them). The goal
is to verify the properties Π in S ′ more easily than in S. The state space of
S ′ may be bigger than that of S, but S ′ may belong to a subclass for which
state enumeration can be avoided.

Reduction methods are a special class of transformation methods in which
a sequence of net systems preserving the properties to be studied is con-
structed. The construction is done in such a way that the net system
〈Ni+1,m0i+1〉 is “smaller” (i.e. markings that have fewer tokens) than the
previous in the sequence, 〈Ni,m0i〉.

The applicability of reduction methods is limited by the existence of ir-
reducible net systems. Practically speaking, the reductions obtained are nor-
mally considerable, and can allow the desired properties to be verified di-
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rectly. Because of the existence of irreducible systems, this method must be
complemented by others.

Finally, structural analysis techniques investigate the relationships be-
tween the behaviour of a net system and its structure (hence their name),
while the initial marking acts, basically, as a parameter. In this last class of
analysis techniques, we can distinguish two subgroups:

1)Linear algebra/Linear programming based techniques, which are based on
the net state equation. In certain analyses they permit a fast diagnosis
without the necessity of enumeration.

2)Graph based techniques, in which the net is seen as a bipartite graph and
some ad hoc reasonings are applied. These methods are especially effective
in analysing restricted subclasses of ordinary nets.

The three groups of analysis techniques outlined above are by no means
exclusive, but complementary, e.g. the conclusions obtained from a structural
analysis of a given net model may simplify or accelerate a further enumera-
tion analysis of this net model; or the application of reduction methods to a
given net model, preserving the properties to be verified, may be the only way
to obtain a manageable reachability graph to verify the properties. Normally
the designer can use them according to the needs of the ongoing analysis
process. Obviously, although we have distinguished between reduction and
structural analysis methods, it must be pointed out that most popular re-
duction techniques act basically on the net-structure level and thus can also
be considered as structural techniques.

5.2.1 Verification Based on the Reachability Graph

Given a net system S = 〈N ,m0〉, its reachability graph is a directed graph
RG(S) = (V,E), where V = RS(S) and E = {〈m, t,m′〉|m,m′ ∈ RS(S) and

m t
−→m′} are the sets of nodes and edges, respectively.
If the net system S = 〈N ,m0〉 is bounded, the RG(S) is finite and it

can be constructed, for example, by Algorithm 5.1. It finishes when all the
possible firings from the reachable markings have been explored. The tagging
scheme in step 2.1 ensures that no marking is visited more than once. Each
marking visited is tagged (step 2.1), and step 2.2.3 ensures that the only
markings added to V are those that have not previously been added. When
a marking is visited, only those edges representing the firing of an enabled
transition are added to the set E in step 2.2.4.

The construction of the reachability graph is a very hard problem from a
computational point of view. This is because the size of the state space may
grow more than exponentially with respect to the size of the Petri net model
(measured, for example, by the number of places). In [Val92a] the reader can
find a discussion of the size of the reachability graph obtained from a Petri
net, the rôle of concurrency in the state space explosion problem, and some
methods to obtain reduced representations of the state space.
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Let us consider, for example, the net system in Figure 5.2 without the
place p6, and its reachability graph obtained by applying the Algorithm 5.1.
The net system has five markings, thus it is bounded. It is also easy to con-
clude that all the places are 1-bounded. A closer look allows us to state that
p1, p2, and p3 (p1, p4, and p5) are in mutual exclusion. Moreover, consider-
ing RS and the net structure (the pre-function), firing concurrency between
transitions b and c can be decided. Observe at this point that introducing p6

into our net system does not change the graph structure of the reachability
graph, but transitions b and c are now in firing mutual exclusion. This ex-
ample shows that the RG obtained is a sequentialised observation of the net
system behaviour, and therefore it is not possible to use it to determine if
two transitions can be fired concurrently from the same marking or if they
are in a conflict. To avoid this problem, other reachability graphs capturing
the true concurrency can be constructed. The basic idea is to increase the
number of edges of the conventional RG to represent the concurrent firing of
transitions from each marking.

For unbounded net systems S, RS(S) is not a finite set and therefore the
construction of RG(S) never ends. Karp and Miller [KM69] showed how to
detect unboundedness of a net system by means of the following condition
(incorporated in step 2.2.2 of algorithm 5.1 as a break condition): the system
S = 〈N ,m0〉 is unbounded iff there exists m′ reachable from m ∈ RS(S),
m σ
−→m′, such that m≤/ m′ (the repetition of σ allows a conclusion of un-

boundedness because the occurrence of σ strictly increases the content of
tokens of the starting marking m).

Algorithm 5.1 (Computation of the Reachability Graph)

Input - The net system S = 〈N ,m0〉
Output - The directed graph RG(S) = (V, E) for bounded net systems

1. Initialise RG(S) = ({m0}, ∅); m0 is untagged;
2. while there are untagged nodes in V do

2.1 Select an untagged node m ∈ V and tag it
2.2 for each enabled transition, t, at m do

2.2.1 Compute m′ such that m t
−→m′;

2.2.2 if there exists m′′ ∈ V such that m′′ σ
−→m′ and m′′≤/ m′

then the algorithm fails and exits;
(the unboundedness condition of S has been detected)

2.2.3 if there is no m′′ ∈ V such that m′′ = m′

then V := V ∪ {m′}; (m′ is an untagged node)
2.2.4 E := E ∪ {〈m, t,m′〉}

3. The algorithm succeeds and RG(S) is the reachability graph

Coverability graphs allow us to obtain finite representations of the RG
of unbounded net systems [KM69, Pet81, Rei85a, Fin93]. Roughly speaking,
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in a coverability graph the set of nodes is a finite set of marking vectors
(called the coverability set) that covers all the markings of the reachability
set. There is an edge, representing the firing of a transition t, between two
nodes m and m′ if and only if t is fireable from m and a marking covered by
m′ is reached. The loss of information in the computation of a coverability
graph means that many important properties (e.g. marking reachability or
deadlock-freeness) cannot be decided using it.

In order to analyse a given property in a bounded net system, the reach-
ability graph is used as the basis for the corresponding decision procedure.
It allows us to decide whether the net system satisfies a given property. All
procedures are, in general, of exponential complexity in the size of the net
(measured, for example, by the number of places) but they are of polynomial
complexity in the size of the reachability graph (measured, for example, by
the number of nodes and edges). The focus of the remainder of this section
is on two general decision procedures.

In what follows we will define a marking predicate to be a propositional
formula whose atoms are inequalities of the form:

∑
p∈A kpm[p] ≤ k, where

kp and k are rational constants and A is a subset of places. Let us consider
a net system S = 〈N ,m0〉.

The first group of properties are the so-called marking invariance proper-
ties. A given marking predicateΠ must be satisfied for all reachable markings
(hence the name marking invariance property): ∀m ∈ RS(〈N ,m0〉), m sat-
isfies Π . Examples of this are:

1)k-boundedness of place p: ∀m ∈ RS(S) .m[p] ≤ k.
2)Marking mutual exclusion between p and p′: ∀m ∈ RS(S) . ((m[p] = 0) ∨

(m[p′] = 0)).
3)deadlock-freeness: ∀m ∈ RS(S) . ∃t ∈ T .m ≥ Pre[P, t].

Algorithm 5.2 (Decision procedure for marking invariances)

Input - The reachability graph RG(N ,m0). The property Π.
Output - TRUE if the property is verified.

1. Initialise all elements of RS(S) as untagged.
2. while there is an untagged node m ∈ RS(S) do

2.1 Select an untagged node m ∈ RS(S) and tag it
2.2 if m does not satisfy Π

then return FALSE (the property is not verified).
3. Return TRUE

Marking invariance properties can be decided through Algorithm 5.2,
which is linear in the size of RG(S): each node is visited no more than once.
If the algorithm succeeds, then all reachable markings from m0 satisfy Π .
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If the algorithm fails at step 2.2, there is a path in the RG(S) from m0,
containing at least one marking that does not satisfy Π .

Example 5.2.1 (Analysis of marking invariance properties). Let us consider
the net system in Figure 5.2 for which RS(S) = {p1 + p6, p2 + p4 + p6,
p3 + p4 + p6, p2 + p5 + p6, p3 + p5 + p6}. The execution of Algorithm 5.2
to verify the mutual exclusion property between places p5 and p6 (∀m ∈
RS(S) . (m[p5] = 0)∨ (m[p6] = 0)) starts by initialising all elements of RS(S)
as untagged (step 1). Then the markings are visited one by one (e.g. in the
previous order) until p2 + p5 + p6 is visited, where the predicate Π is false;
hence the algorithm stops and returns FALSE.

The second group of properties are the so-called liveness invariance prop-
erties. For each reachable marking m of a net system there exists at least one
reachable marking from it satisfying the property Π : ∀m ∈ RS(S) . ∃m′ ∈
RS(N ,m) . (m′ satisfies Π). Examples of this are:

1)Liveness of t: ∀m ∈ RS(S) . ∃m′ ∈ RS(N ,m) .m′ ≥ Pre[P, t].
2)mH is home state: ∀m ∈ RS(S) . ∃m′ ∈ RS(N ,m) .m′ = mH .
3)Reversibility: ∀m ∈ RS(S) . ∃m′ ∈ RS(N ,m) .m′ = m0.

Algorithm 5.3 (Decision procedure for liveness invariances)

Input - The reachability graph RG(N ,m0). The property Π.
Output - TRUE if the property is verified.

1. Decompose RG(N ,m0) into its strongly connected components C1, . . . , Cr

2. Obtain the graph RGc(S) = (Vc, Ec) by shrinking C1, . . . , Cr to a single
node, i.e. Vc = {C1, . . . , Cr}. 〈Ci, t, Cj〉 ∈ Ec iff there exists 〈m, t,m′〉 ∈ E,
such that m is in the SCC Ci, m′ is in the SCC Cj , and i 6= j.

3. Compute the set F of terminal strongly connected components from RGc(S)
4. while there is a Ci ∈ F do

4.1 if Ci does not contain a m′ satisfying Π
then return FALSE

4.2 Remove Ci from F
5. Return TRUE

These properties cannot be verified by an exclusive linear inspection of
the reachability set (as in algorithm 5.2). The verification requires finding a
reachable marking satisfying Π from each of the markings in RS(S). In order
to verify the property we will classify the markings of RS(S) into subsets
of mutually reachable markings through the concept of strongly connected
components of a directed graph. Therefore, the property will be easily verified
by checking that each terminal strongly connected component contains at
least one marking satisfying Π . We now recall some basic concepts.
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A path in a reachability graph RG(S) is any sequence
m1 . . .mimi+1 . . .mk of nodes of RG(S) = (V,E) where all successive
nodes mi and mi+1 in the path satisfy 〈mi, t,mi+1〉 ∈ E for some t. The
reachability graph RG(S) is strongly connected (SC) iff there is a path from
each node in V to any other node in V . A strongly connected component
(SCC) of a reachability graph is a maximal strongly connected subgraph.
A strongly connected component of a graph will be called terminal if no
node in the component has an edge leaving the component. The strongly
connected components of a digraph (V,E) can be found in order (|V |+ |E|)
steps (e.g. [Meh84]).

When computing the SCCs C1, . . . , Cr of a reachability graph RG(S) =
(V,E), a new graph RGc(S) = (Vc, Ec) is induced by shrinking the strongly
connected components to a single node, i.e. Vc = {C1, . . . , Cr}. For each edge
〈m, t,m′〉 ∈ E such that m is in a SCC Ci, and m′ is in a different SCC Cj ,
there is an induced edge 〈Ci, t, Cj〉 ∈ Ec. The graph RGc(S) is an acyclic
digraph. Therefore the terminal SCCs of RG(S) can be computed with linear
complexity in the size of RGc(S). This fact will be exploited in Algorithm
5.3 for liveness invariance checking.

Algorithm 5.3 allows us to decide liveness invariance properties. The algo-
rithm is of linear complexity in the size of RG(S). If the algorithm succeeds,
all terminal SCCs contain at least one marking satisfying the property Π ,
and therefore for all reachable markings there exists at least one successor
marking satisfying the property Π . If the algorithm fails, there exists at least
one terminal SCC that does not contain markings satisfying the property Π ,
and therefore the reachable markings belonging to this SCC (at least) do not
satisfy the liveness invariance property.

Remark 5.2.2. It is possible to design more specific (efficient) decision proce-
dures for the analysis of a property if we know, a priori, some characteristics
of the property to be verified or we know some other properties of the net
system to be analysed. In the first case we can consider as an example the
reversibility property. It is easy to see that if a net system is reversible then
all terminal SCCs must contain the initial marking, i.e. the reachability graph
must be strongly connected. In the second case we may know, for example,
that the net system is reversible; then liveness of a transition t can be decided
by checking the existence of an edge in the reachability graph labelled t (since
the reachability graph is SC and therefore it is always possible to reach the
marking from which t can be fired).

Example 5.2.3 (Analysis of liveness invariance properties). Let us consider
the net system in Figure 5.3b for which the reachability graph is depicted in
Figure 5.5. The execution of Algorithm 5.3 to verify the liveness property of
this net system (∀m ∈ RS(S) . ∀t ∈ T . [∃mt ∈ RS(〈N ,m〉) .mt ≥ Pre[P, t]])
requires the computation of the strongly connected components of the RG(S)
(step 1). In this case, there are three SCCs depicted in Figure 5.5 and named
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Fig. 5.5. Reachability graph of the net system in Figure 5.3b

C1, C2, and C3. The SCCs C2 and C3 are the terminal ones. Step 4 of the
algorithm will verify that each of these two SCCs contains for each transition t
a marking mt satisfying mt ≥ Pre[P, t] (equivalently, contains edges labelled
with all the transitions of the net). The reader can observe by inspection of
the figure that all the transitions appear in some edge of C2 and C3, therefore
the result of the algorithm will be TRUE.

The execution of Algorithm 5.3 to verify that the marking mH = p2 +
p3 + p6 + p7 + p9 + p14 is a home state (∀m ∈ RS(S) . ∃m′ ∈ RS(N ,m) .
such that m′ = mH) gives the result FALSE, because the terminal SCC C2

contains the marking mH , but the terminal SCC C3 does not. Therefore,
step 3.1 returns FALSE.

From a practical point of view, it is commonly accepted today that sys-
tems are too complex to be verified by hand. As a result, analysis is increas-
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Fig. 5.6. Parts of STORE 1 are sent to STORE 2 and STORE 3 according to the
strategy defined by the subnet generated by {B, C, E, F}: (a) the net system; (b)
the reachability graph.
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ingly becoming synonymous with computer-aided verification 1. Computer-
aided verification means using a computer, for increased speed and reliability,
to perform the analysis steps. For instance, the following example considers
the analysis of a property in the group of so-called synchronic properties
[SC88], demonstrating that an analysis by hand can be very difficult.

Example 5.2.4. Figure 5.6 shows a very simple net system: Parts are sent
from STORE 1 to STORE 2 and STORE 3. The subnet generated by places
{B,C,E, F} imposes some restrictions on the way parts are distributed to
the destination stores (i.e. the distribution is partially scheduled). The reach-
ability graph is, even though it has been structured to clarify the presenta-
tion, difficult to understand and manage. The reader can try to check via
the reachability graph (!) that the imposed distribution strategy is: parts are
sent in a 1:1 relation to the destination stores, but sometimes allowing up to
four consecutive deliveries to a given store (i.e. locally adjusting the possible
demand, but maintaining a fair overall distribution).

Summarising, analysis techniques based on the reachability graph are only
theoretically possible for bounded systems. They are very simple from a con-
ceptual point of view. The problem that makes this approach not practical in
many cases is its computational complexity: the state-space explosion prob-
lem.

On the other hand, it must be pointed out that the reachabil-
ity/coverability graphs are computed for a given initial marking. This means
that a parametric analysis of a net system (needed in earlier phases of the
system design) where the initial marking of some places (e.g. representing
the number of resources in the system) is a parameter, is not possible since
for each value of the parameter a (possibly completely different) new reach-
ability graph must be computed. Moreover, the reachability graph presents
some difficulties in order for the analysis of properties where the distinction
between conflict and concurrency plays a fundamental role (recall the net
in Figure 5.2, in which the reachability graph is the same with place p6 and
without it). This is because the reachability graph gives a sequentialised view
of the behaviour of the net system.

Although these analysis techniques have the drawbacks mentioned above,
for bounded net systems they are the more general techniques and, in some
cases, provide the only way to verify a given property.

1 The International Conference on Computer-Aided Verification is the main forum
for new results in this area. The proceedings to date have been published as
Lecture Notes in Computer Science (LNCS) 407 (1989), 531 (1990), 575 (1991),
663 (1992), 697 (1993), 818 (1994), 939 (1995), 1102 (1996), 1254 (1997), 1427
(1998), 1633 (1999).
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5.2.2 Verification Based on Linear Invariants

A p-flow (t-flow) is a vector y : P → Q such that y ·C = 0 (x : T → Q such
that C ·x = 0), where C is the incidence matrix of the net. The set of p-flows
(t-flows) is a vector space, orthogonal to the space of the rows (columns) of C.
Therefore, the flows can be generated from a basis of the space. Natural (i.e.
non-negative integer) p-flows (t-flows) are called p-semiflows (t-semiflows):
vectors y : P → IN such that y · C = 0 (x : T → IN such that C · x = 0).
The following terminology is used with semiflows [MR80]: The support of a
p-semiflow (t-semiflow), y is (x): ||y|| = {p ∈ P |y[p] > 0} (||x|| = {t ∈
T |x[t] > 0}). A p-(or t-)semiflow is canonical iff the g.c.d. of its non-null
elements is equal to one. A net is conservative (consistent) iff there exists a
p-semiflow (t-semiflow) such that ||y|| = P (||x|| = T ).

The set of canonical p-semiflows (t-semiflows) of a given net can be infi-
nite, since the sum of any two p-semiflows (t-semiflows) is also a p-semiflow
(t-semiflow). Consider now the case of p-semiflows. A generator set of p-
semiflows, Ψ = {y1, y2, . . . ,yq}, is made up of the least number of them
which will generate any p-semiflow, y : P → IN, as follows: y =

∑
yj∈Ψ kj ·yj ,

kj ∈ Q and yj ∈ Ψ . The p-semiflows of Ψ are said to be minimal. The fol-
lowing result characterises the generator set of each of the sets of semiflows
(p-semiflows and t-semiflows) of a net.

Proposition 5.2.5. A p-(t-)semiflow is minimal iff it is canonical and its
support does not strictly contain the support of any other p-(t-)semiflow.
Moreover, the set of minimal p-(t-)semiflows of a net is finite and unique.

From the above result, the number of minimal p-(t-)semiflows is less than
or equal to the number of incomparable vectors of dimension k (k = |P |

or k = |T |): Number of minimal p-(t-)semiflows ≤

(
k
dk/2e

)
, where

(
?
?

)

denotes binomial coefficient and d?e denotes rounding up to an integer. In
practice the number of minimal p-(t-)semiflows is much smaller than the
previously stated upper bound.

Algorithm 5.4 presents a simple way to compute the set of minimal p-
semiflows Ψ from the incidence matrix of the net. Each row of matrix Ψ
memorises the coefficients of the positive linear combination of rows of ma-
trix C which generated the row of A with the same index. In step 3 of the
algorithm, the rows of A are null and therefore each row Ψ [i] is a p-semiflow:
Ψ [i] ·C = 0. The same algorithm can be used to compute the set of minimal
t-semiflows if the input of the algorithm is the transpose of the incidence
matrix.

The computation of minimal p-semiflows (y) and minimal t-semiflows
(x) has been extensively studied. An exponential number of minimal p-(t-
)semiflows with respect to the number of places (transitions) may appear,
and therefore the time complexity of this computation cannot be polynomial.
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Algorithm 5.4 (Computation of the minimal p-semiflows)

Input - The incidence matrix C. A fixed but arbitrary order in P is supposed.
Output - The p-semiflow matrix Ψ , where each row is a minimal p-semiflow.

1. A = C; Ψ = In; { In is an identity matrix of dimension n }
2. for i = 1 to m do { m = |T | }

2.1 Add to the matrix [Ψ |A] all rows which are natural linear combinations
of pairs of rows of [Ψ |A] and which annul the i-th column of A

2.2 Eliminate from [Ψ |A] the rows in which the i-th column of A is non-null.
3. Transform the rows of Ψ into canonical p-semiflows and remove all

non-minimal p-semiflows from Ψ using the characterisation of proposition 5.2.5.
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In [CS90a] a study is done merging traditional techniques in convex geometry
with those developed within Petri nets.

P- and T- semiflows are dual structural objects (left or right annullers
of the incidence matrix of the net) from which it is possible to obtain linear
invariant laws on the reachable states or cyclic occurrence sequences respec-
tively. These invariant laws arise from the structure of the net, and the initial
marking plays the role of a parameter specifying a particular behaviour for
the net. The following two classes of linear invariants can be obtained:

1)From p-semiflows: (token conservation law)

y ∈ INn ∧ y ·C = 0 =⇒ ∀m0 . ∀m ∈ RS(N ,m0) . [y ·m = y ·m0].

This marking invariant specifies that for all markings reachable from the
initial one, the weighted sum of tokens at m, y ·m, remains constant and
equal to y ·m0.

2)From t-semiflows: (cyclic behaviour law)

x ∈ INm∧C·x = 0 =⇒ ∃m0 . ∃occurrence sequence σ . [m0
σ
−→m0∧σ = x],

where σ is the Parikh mapping of the occurrence sequence σ.

Classical reasoning for proving logical properties uses these linear invari-
ants on the behaviour of a net system [Lau87, MR80]. The key idea is: Let S
be a net system and Ψ a matrix where each row is a p-semiflow: Ψ [i] ·C = 0.
If m is reachable from m0, then Ψ ·m = Ψ ·m0. Therefore the set of nat-
ural solutions m of this equation defines a linearisation of the reachability
set RS(S) denoted LRSΨ (S). This set can be used to analyse properties. It
usually leads only to semidecision algorithms because, in general, RS(S) ⊂
LRSΨ (S).

Example 5.2.6 (Analysis based on linear invariants). The local controller at-
tached to the production cell depicted in Figure 5.8a can be described by the
given Petri net model. The places wait raw, load, op1, wait dep., and deposit
represent the possible states of MACH 1; the place R is marked when the
robot is available; the places empty and object contain as many tokens as
empty slots or parts are available in the temporary buffer, etc. In this model
actions are associated with places, e.g. MACH 2 performs its operations
while place op2 is marked, and transitions represent atomic instantaneous
changes of state. External inputs (from plant sensors) condition these possi-
ble changes of state, e.g. a load operation is initiated (transition t1 is fired)
when MACH 1 is waiting for a raw part (wait raw marked), the robot is
available (R marked), and a raw part is detected by the sensor Π1 (Π1 is
true). The model reflects the synchronisation constraints imposed by the use
of the temporary buffer: a deposit operation cannot be initiated unless an
empty slot is available (represented by an arc from the empty place to the
t4 transition); and a withdrawal operation cannot be initiated unless a part
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Fig. 5.8. a) A production cell with two machines, one robot, and a store. b) Net
system specifying its behaviour.

is available in the buffer(represented by an arc from the object place to the
t9 transition). The arcs from the t5 transition to the object place and from
the t10 transition to the empty place represent the updating of the number of
parts in the buffer after a deposit operation, and the number of empty slots
after a withdrawing operation respectively. If the synchronisation constraints
previously described were deleted from the model, the physical system could
reach a deadlock situation, e.g. MACH 2 withdraws a part when there are
none available but MACH 1 cannot deposit any because the robot is busy.

The marking linear invariants induced by the minimal p-semiflows of the
net system in Figure 5.8 are the following:

m[wait raw]+m[load]+m[op1]+m[wait dep.]+m[deposit]=1 (5.1)

m[op2]+m[wait free]+m[unload]+m[wait with.]+m[withdrawal]=1 (5.2)

m[empty]+m[deposit]+m[object]+m[withdrawal]=7 (5.3)

m[R]+m[load]+m[unload]+m[deposit]+m[withdrawal]=1 (5.4)

Because markings are non-negative integers (i.e. ∀p ∈ P .m[p] ≥ 0), the
following can be easily deduced from the previous equalities:

1. Bounds: ∀pi ∈ P\{empty, object} . (m[pi] ≤ 1 ∧ m[empty] ≤ 7 ∧
m[object] ≤ 7).
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2. The places in each of the following sets are in marking mutual exclusion:
a){wait raw, load, op1, wait dep., deposit}
b){op2, wait free, unload, wait with., withdrawal}
c) {R, load, unload, deposit, withdrawal}

Finally, from a conceptual point of view, the consideration of p-semiflows
provides decomposed views of the structure of the net model. In Figure 5.7 the
decomposition induced by the minimal p-semiflows of the system in Figure 5.8
is graphically presented. The decomposed view of a net system is even useful
to derive an implementation. For example, the net system in Figure 5.8 can
be implemented using two sequential processes (for Machine1 and Machine2)
and three semaphores (object, empty and R), where R is a mutual-exclusion
semaphore.

Remark 5.2.7. Other structural objects similar to P- or T- semiflows have
been defined [MR80] leading to other types of linear invariants. A first type
to consider are vectors y ∈ INn such that y · C≤/ 0. Such a vector y leads
to the following marking law: ∀m0 . ∀m ∈ RS(N ,m0) . (y ·m ≤ y ·m0). A
second type are vectors x ∈ INm such that C · x≥\ 0. In this case, a vector x
of this kind leads to: ∃m0 . ∃σ ∈ L(N ,m0) .m0

σ
−→m ≥ m0 ∧ σ = x. These

linear invariants (expressed as inequalities) can be used for analysis purposes
in the same way as that presented previously for linear invariants obtained
from semiflows.



6. Overview of the Book

This chapter is intended to give a more detailed overview of the book than
the introduction in Chapter . Having read Chapters 1 to 5 the reader should
have acquired some intuitive understanding of Petri nets as well as some
familiarity with basic formal definitions and properties. At this point the
reader should be in a position to understand most of the presentations in the
remainder of the book. Although, for the novice it may be beneficial to read
the book from beginning to end, more experienced readers should have no
problem skipping chapters that are not of foremost importance for them.

In the preceding chapters Petri nets have been introduced using the exam-
ple of modelling the starting phase of a car race together with some further
nets for illustrating basic properties. A production cell with two machines
was modelled towards the end of the preceding chapter. Although illustrative
for introductory purposes, these examples teach the reader few principles for
modelling real cases. Part II of the book is thus devoted to a thorough treat-
ment of skills and methods for modelling systems by Petri nets from more or
less formal specifications. To begin with, some more complex examples are
given in Chapter 8. They range from simple P/T nets (task execution) to
resource management by P/T nets (the banker’s problem) to a coloured net
model (alternating bit protocol).

Today, the modelling of information systems can be viewed as an art. It
very much depends on the personal skills and styles of the people involved
in building the models. This situation is however not satisfactory from a
systematic or commercial point of view. Modelling of real-world cases to a
large extent involves abstraction from those features classified as less impor-
tant, in a consistent way. Here a formal model such as Petri nets can help a
great deal: when thinking in terms of places and transitions the modeller is
smoothly lead to create an operational model which is formal and intuitive
at the same time. Such a phase is followed by the addition of details and
technicalities.

An important contribution of the Petri net modelling technique is the clear
concept of refinement and abstraction. It was introduced in Chapter 2 from a
formal and conceptual point of view. Chapter 9 discusses its practical use in
modelling, while Chapter 10 presents three more methodical approaches for
the modelling of systems. The first is state-oriented, starting from specifica-
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tions of properties of reachable states. The second is event-oriented, combin-
ing modules of a system in a bottom-up approach by synchronising events.
The third approach introduces object-oriented methods for Petri nets, e.g.
by considering nets as token objects or by introducing the class concept to
coloured Petri nets. These methods are illustrated in Chapter 11 by applying
them to a common case study on mutual exclusion.

Modern computer-based systems still do not achieve the quality stan-
dards that are necessary to meet requirements with respect to security or
reliability. Deficiencies of software applications can even decrease commercial
profitability to the point of total failures of projects. A system cannot be
verified if the desired properties are unknown or ambiguous. Furthermore, a
formal specification of the system itself is desirable.

Since the modelling of systems using Petri nets supports both aspects
there have been vast research activities in the development of methods for
the verification of systems. This is reflected by the extensive treatment of
this topic in Part III. Chapter 13 gives a thorough introduction to the as-
pects dealt with in this part. It discusses the nature of verifying properties,
the classes of nets that are considered (restrictions, extensions, abbrevia-
tions, and parametrisations). Furthermore the verification process itself and
the methods are classified (graph theory, linear algebra, state-based, binary
decision diagrams, on-the-fly verification, partial-order methods).

The analysis of the state space, also known as model checking, is perhaps
the most frequently used approach in industrial verification. This is because
of its conceptual simplicity. It can be applied to all kinds of formal modelling
techniques bearing a notion of global state. The method is limited, however
by its huge complexity in general. The so-called state-space explosion problem
applies, in particular, to systems with significant inherent concurrency. There
are many approaches to overcome or reduce these limitations. The Petri net
model allows some special techniques since the structural information given
by a net can be exploited. State-space analysis means the verification of some
formal properties by inspection of the state space, i.e. the reachability graph
of the Petri net. For this reason, Chapter 14 begins with the introduction
of a formal specification language based on temporal logic. As illustrated
by a mutual exclusion example, it allows the specification of so-called safety
properties as well as liveness properties in a very compact way. Some general
methods for the verification of temporal formulae are discussed as well as
more specific topics, such as fairness assumptions, on-the-fly methods, and
partial-order approaches. The latter are efficient techniques to reduce the
time and space complexity of state-based methods via the concepts of so-
called stubborn and sleep sets. Finally, symbolic and parametrised approaches
are presented that reduce the size of the reachability graph representation
by grouping states into classes. They apply in particular to so-called well-
formed nets, a net class that introduces a structure which allows more efficient
analysis techniques. For instance, a symbolic construction of the reachability
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graph permits the exploitation of the intrinsic symmetries of the model. The
theory is discussed in detail and implementation issues are presented at the
end of this chapter.

The state-space explosion problem is also tackled in Chapter 15, but here
the state space is neither constructed nor inspected. All information on the
net behaviour is deduced from its structure, e.g. from the structure of the
graphical or algebraic representation. The techniques are in part derived from
deep results from graph theory, linear algebra, and convex geometry. The
results are quite impressive since the exponential complexity of state-space
analysis is reduced to a complexity which is polynomial or less in many cases.
The price to be paid for this improvement is that the Petri net has to satisfy
some structural properties which are not granted for all applications. Typ-
ical restrictions aim at limiting the interplay between synchronisations and
conflict. Hence the designer must find a compromise between the modelling
power and the availability of powerful analysis tools.

A set of reduction rules is given that allows the elimination of places and
transitions while important properties such as boundedness and liveness are
preserved. With these reductions the state space is also reduced even before
it is constructed. For these rules the notion of implicit places is introduced,
which is also important in a different context (see the first example of Chapter
8). Linear algebra is used to deduce conditions for structural properties. These
properties hold independently of the chosen initial marking. The notions of
siphons and traps lead to structurally defined subclasses such as equal conflict
and free-choice Petri nets, which are easier to analyse. At the end of Chapter
15 extensions of the definitions of invariants and reductions are discussed for
the case of coloured nets.

Chapter 16 presents connections to important fields in the formal methods
area: logic, algebraic specification, assertional reasoning, and process algebra.
These connections are important as Petri net users cannot stay isolated from
these areas where continual research is done and important developments take
place. Algebraic specifications allow for a domain-independent definition of
systems, which is not only important for improving correctness and reliability
but is the basis for very high-level systems development. Algebraic Petri nets
provide algebraically specified systems with a semantics of change and all
the advantages of ordinary Petri nets. They can be treated as a subcase of
the broader theory of rewrite specifications. Furthermore, this theory is the
basis of a continually growing number of important tools that will most likely
gain importance for systems designers in the near future. The chapter gives
an introduction into the field, connecting it with Petri net terminology. Also
some non-trivial distributed algorithms are verified within this framework.

Section 2 of Chapter 16 relates Petri nets to a standard technique in veri-
fication, namely verification by assertions and temporal logic. Invariants and
leads-to-operators are used in a unity-like logical-rule system to verify prop-
erties of concurrent systems. Unlike many other contributions these notions
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are used for the verification of high-level nets in the form of coloured Petri
nets. Proof rules of safety and liveness assertions are given, and illustrated
using a simple coloured net. Also the important topic of compositionality is
addressed, i.e. the problem of composing proofs while composing net compo-
nents.

To argue about computations, the standard temporal logic is extended
to a so-called logic of enablement in the next section. Reductions of complex
nets to much simpler test nets are studied to apply preservation and reflection
results. This result is a logical counterpart to the syntactical net reductions in
Chapter 15. Linear logic is a quite surprising application of logic to systems
design. Deductions in linear logic are very similar (in some cases isomorphic)
to the occurrence sequences of Petri nets and therefore allow for a translation
of results between the two fields. Linear logic is formulated for coloured nets
for the first time and even for object nets. Through these results the power
and the flexibility of the approach is demonstrated. In the last section of
Chapter 16 an example is given of the combined application of two formal
methods, namely Petri nets and process algebra for design and verification
purposes. The key aspect is that system design is integrated with system
verification. The integrated method is illustrated by the development of a
simple production unit.

The aspects of validation and execution are treated in Part IV. By vali-
dation we mean the matching of the modelled system with the expectations
of the user, client, or customer. Obviously, the frontiers to verification are
not sharp. While the former deals with precisely stated properties, the lat-
ter has its focus on less formal steps of executing, simulating, animating,
inspecting, testing, debugging, observing, or checking the system. This list
could easily be extended and it is impossible to give a complete presentation
of the topic in this framework. Here we concentrate on the major areas of
Petri net validation, namely prototyping, net execution, and code genera-
tion. Because of their well-defined semantics, expressiveness, and graphical
representation, Petri-net-based models are suitable for supporting different
steps in the software life-cycle process as discussed in software engineering.
Some of these aspects are presented, including prototyping and animation.
The success of the Petri net modelling technique depends to a large extent
on the availability of suitable tools. In this respect some important progress
can be observed, and to date there is a large number of products that meet
strict industrial criteria. They incorporate many of the aspects discussed in
this part. However, as the field is changing very fast, concrete tools are not
discussed here in detail.

Observation plays an important part in the phases of requirement analysis
and design. A chapter on net execution is concerned with these aspects. The
generation of code can also derive benefits from a Petri net model of a sys-
tem. The model can provide important information on implementation with
respect to specific computer architectures, such as centralised, distributed, or
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hybrid settings. Petri net partitioning algorithms rely on structural proper-
ties such as place invariants and place refinements. The results are illustrated
by an implemented high-level formalism for code generation: H-COSTAM.

There are few modelling concepts that possess such a multitude of ex-
tensively elaborated application domains as do Petri nets. Therefore it is
essential to include at least some of them in this book. Three such domains
have been selected for a detailed presentation in Part V, namely flexible man-
ufacturing systems, workflow management systems, and telecommunications
systems. (For a collection of other application domains see Section 23.2.4.)
From a conceptual view the first two of these domains seem to be very similar.
In both cases sequences of task executions are modelled under the restriction
of limited resources. However, on a closer look, they turn out to be rather
different. Of these two, the study of flexible manufacturing systems has a
longer tradition and has been developed within the discipline of mechanical
engineering. Flexible manufacturing systems (Chapter 24) are characterised
by flexible, concurrently operating, and mainly automated elements, such
as a production controller, a machine, an automated guided vehicle, and a
conveyor. Petri nets allow for the modelling of resource sharing, conflicts, mu-
tual exclusion, concurrency, and non-determinism, which characterise critical
elements of such manufacturing processes.

The second domain, workflow management (Chapter 25), is much
younger. It arose from the study of information systems and is usually con-
stituted as a generic software tool which allows for the definition, execution,
registration, and control of commercial and administrative processes. Petri
nets are a good candidate to become the foundation of a unified, vendor-
independent workflow theory providing algorithms for verification and anal-
ysis. They can also be used by users without any engineering or programming
background.

Telecommunications systems on the other hand have become a dominant
factor of modern societies. They consist of a transport and a processing sub-
system. The complexity of these systems easily exceeds all kinds of artificial
and planned systems. The processing system includes software for the control
and management of the transport network and the communication software
(protocols). Protocol engineering has emerged as a specialisation of software
engineering inheriting the problems of the more general domain, but having
specific requirements in particular with respect to correctness and perfor-
mance. Many analysis techniques for Petri nets have been successfully ap-
plied here and specific new algorithms have been developed. An introduction
to the implications of building telecommunications systems with Petri nets
is given in Chapter 26.
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Modelling





7. Introduction

The Art of Modelling

The systems engineer often uses models to investigate properties of his sys-
tem. In the context of this book, the models will be Petri nets, and the
chapters to come are filled with various interesting properties to investigate
(analyse, verify, validate) in this context. However, the models have to be
built first, which is the topic of this part. In fact, the construction of formal
models (such as Petri nets) is valuable in itself, as it enforces a full under-
standing of the aspects treated.

There exist two schools in Petri net modelling. The direct approach (c.f.
[Jen92b], [Jen94]) views Petri nets as a user-friendly graphical modelling tech-
nique. It advocates models that are easy to grasp and close to the problem
domain. The indirect approach (c.f. [BG96]) views Petri nets as a powerful
but low-level formalism. Models are constructed in another formalism and
translated to Petri nets for analysis.

We think that both approaches are valid. The chapters in this section
can be studied as a guideline for directly creating Petri net models or as a
guideline for translating models in other formalisms into Petri nets.

Modelling is an art; there is no standard recipe for it. Different expert
modellers will build different models for the same problem. Each model will
have its merits; it is hard to choose the “best” one. On the other hand some
models will be rejected by all experts. A mistake commonly made is making
the model too detailed. Much effort is expended in doing so, and the model
turns out to be too complex to analyse.

The example in Figure 7.1 illustrates this principle. The figure shows a
part of a coloured net with a place of numeric colour. Two transitions have
this place as input: one with a condition x < 10, and the other with x > 5.
The analysis tools have to be quite powerful to determine that the conditions
allow consumption of every possible token. This problem becomes even more
apparent for more complex colour sets. The modeller should seriously consider
whether the colour extension is needed or a place-transition net model would
not suffice.

Modelling is thus, first and foremost, choosing what aspects to model and
what to leave out. A novice has the tendency, understandably, to avoid such
choices. As seen above, this can be a serious mistake. One must learn and
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Fig. 7.1. Coloured net model

dare to choose and making a wrong choice is far less costly than not making
any choice at all.

The aspects that benefit the most from Petri net models are related to
the decomposition of a system into largely independent subsystems. These
subsystems may differ, e.g. a computer system consisting of a CPU and in-
put and output devices, or they may be the same, such as the nodes in a
data communication network. They should cooperate, exchanging informa-
tion from time to time. If such aspects are of little importance to a project,
it is questionable whether Petri nets should be used at all.

Modelling Approaches

In the chapters to come, expert Petri net model builders show the tricks
of their trade. In the earlier chapters, models are given without explaining
how they were constructed. The reader can appreciate the end product and
develop a sense of quality. The models are kept simple to aid the reader’s
understanding.

In the later chapters, methods for constructing models are given. There
exist several substantially different methods, which may nevertheless lead to
quite similar end results. All methods have a way of stating properties of
the models to be constructed and verifying whether the constructed models
satisfy them. The properties involved may deal with either states or events.

A typical state-oriented statement is: “There are ten cars in this parking
lot.” This fact is static and lasts for a certain period of time. Events, e.g. the
arrival or departure of cars, may alter the truth of this statement. An event-
oriented statement is: “I parked my car in the wrong place this morning”.
Parking one’s car is an action, with a short duration. There may be a state
witness of the event, i.e. my car with a parking ticket.

One may construct models by looking at the state and analysing how it
changes. Another approach is looking at the events: how, when, and in what
order they occur. Finally, one can look at both at the same time. All three
approaches are represented in the following chapters.
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Overview of Part II

In Chapter 8, we introduce a few example models. In Chapter 9, the basic
ideas underlying modular modelling strategies are developed. The idea behind
these strategies is to model a few aspects at the time and combine these
smaller models into a large one covering all aspects. In Chapter 10, three
such modelling strategies are unfolded, one that is initially based on states,
one that is based on events, and an object-oriented approach that combines
both aspects. Finally, in Chapter 11 the three strategies are applied to a
common case study. It has to be noted that, although the approaches differ,
the final results are very similar.





8. Modelling and Analysis Techniques by
Example∗

In the published literature, and even more in unpublished sources such as
lecture notes, there is a treasury of fine examples of using Petri nets for system
design. Many such examples are given in this book to illustrate particular
definitions, results, or methods. However, some very typical and interesting
examples are not included, sometimes due to their size. This chapter is meant
to partially bridge the gap and to give a deeper insight into the modelling
potential of Petri nets. The examples are not chosen randomly but rather to
cover different areas of applications using different Petri net model classes.
In particular, nets, refinement, and abstraction of nets will be used for an
example on task execution in a system of functional units. A well-known
resource allocation problem will be modelled by place/transition nets, and
state-space representation and place-invariants will be used to illustrate the
problem. The alternating-bit protocol will be modelled by a coloured net.
Different layers will again be connected by the concept of net refinement.

8.1 Nets, Refinement, and Abstraction

Example 1: Task Execution.

This example models a task execution sequence by a number of machines:
an object in a production line has to be processed, first by some machine
M1 and then by machines M2 or M3. The process is then repeated, which is
very natural in the context of manufacturing systems. Besides the machines,
operators for the machines are a second type of limited resource: operator O1

can be operating M1 or M2, but not both at the same time. The same holds
for O2 with respect to M1 and M3.

In a first step, a designer can conceive the design of the system ignoring
the existence of resources and can concentrate on the operation sequences of
the parts to be processed. From the perspective of manufacturing systems,
this means that the designer concentrates on the feasibility of the operation
sequences according to the routing possibilities that the layout of the plant
imposes. The resulting net is given in Figure 8.1 with p1 initially the only
∗ Author: R. Valk
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Fig. 8.1. Machine example without constraints

place containing a token. This net is a monomarked state machine, where
each circuit corresponds to a t-invariant. T-invariants describe sets of transi-
tions which reproduce the initial marking when occurring in a suitable order.
Therefore the operation sequences are correct. There are four elementary
t-invariants (also known as t-semiflows, cf. page 68):

a) t1t2t5t6t9
(process working only with operator 1)

b)t1t2t7t8t9
(process with operator 1 working first, and operator 2 afterwards)

c) t3t4t7t8t9
(process working only with operator 2)

d)t3t4t5t6t9
(process with operator 2 working first, and operator 1 afterwards)

This reflects the operation sequences allowed by the specification. Next,
the designer can incorporate the constraints imposed by the resources which
are to be understood in a broad sense. This is to verify the feasibility of the
operation sequences with a predefined number of resources (the availability
of the machines M1, M2, M3 and the operators O1, O2 in this case). The
resulting net is presented in Figure 8.2.

Before the execution all machines and operators are idle. Therefore the
initial state corresponds to the given initial marking m0 with m0[p1] =
m0[p3] = m0[p5] = m0[p7] = m0[p8] = m0[p11] = 1 corresponding to the
local conditions:
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Fig. 8.2. Machine example with constraints

p1: task A before a new execution,
p3: M1 available,
p5: O1 available,
p7: O2 available,
p8: M2 available, and
p11: M3 available.

On the occurrence of transition t1, the beginning of a task is represented by
machine M1 with O1 operating it. If O2 is chosen to work instead, transition
t3 has to occur first. The processing of the task on M1 by O1 or O2 ends with
the occurrence of transitions t2 and t4 respectively. The execution of tasks
on M2 and M3 can be described in a similar way. The example is taken from
[Pet81], [Rei83] and [JV87].

The following effects can be observed:

a)The occurrence of transitions (actions) may be in conflict (e.g. t5 and t7).
The procedure of a decision for resolving the conflict may not be visible
since themodel is omitting from this detail.

b)The occurrence of transitions may be causally dependent upon other tran-
sitions, e.g. t2 not before t1, t5 not before t3 (in the same cycle of operation).
Note that t2 cannot occur without a preceding occurrence of t1, whereas
t5 can occur without a preceding occurrence of t3.

c) Limited resources are modelled in a fairly direct way (e.g. O1 cannot op-
erate M1 and M2 at the same time) or in a less direct way (e.g. O1 and O2

cannot operate M1 at the same time).
d)There are resources that do not restrict the behaviour of the net (e.g. p8:

M2 available). This may be an indication that the net is an extract from
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a more complex net where the resource may be critical (e.g. an extension
also modelling the possibility that M2 may not be available).

e) Transitions (actions) may occur independently (“concurrently”), e.g. with
2 tokens in p1 (interpreted as two tasks to be processed), after some time
one of them may reach p6 while the other one is still in p1. Then t1 and t5
may occur concurrently.

f) There are linear invariant equations1 (place-invariants, p-semiflows) hold-
ing in all reachable markings m. Consider the following examples:
1. m[p2] + m[p5] + m[p9] = 1

Either O1 is idle or operating one of the machines M1 or M2, but only
one of these cases can occur at the same time.

2. m[p2] + m[p3] + m[p4] = 1
Either M1 is idle or operated by O1 or by O2, but only one of these cases
can occur at the same time.

3. m[p1] + m[p2] + m[p4] + m[p6] + m[p9] + m[p10] + m[p12] = c
Exactly c tasks are in the production line, where c = 1 in Figure 8.2 and
c = 2 in the modification of case e).

The t-invariants of this net system remain the same as in the first de-
sign. An interesting analysis with respect to the resources is that all added
places representing these resources are implicit (redundant) in the net sys-
tem of Figure 8.2. The linear invariant equations that define the implicitness
property2 of these places are:

g)
1. m[p3] = m[p1] + m[p6] + m[p9] + m[p10] + m[p12]
2. m[p5] = m[p1] + m[p6] + m[p12] + m[p4] + m[p10]
3. m[p7] = m[p1] + m[p6] + m[p12] + m[p2] + m[p9]
4. m[p8] = m[p1] + m[p2] + m[p4] + m[p6] + m[p10] + m[p12]
5. m[p11] = m[p1] + m[p2] + m[p4] + m[p6] + m[p9] + m[p12]

This redundancy of the resource places indicates that there are sufficient
resources in the sense that they do not constrain the operation sequences
of the preliminary design of Figure 8.1. To give an example for this state-
ment, consider the initial marking m0 of the net system of Figure 8.2, where
m0[p1] = 1. Then by the first equation of g), m0[p3] = 1 and both transitions
t1 and t3 are activated.

When introducing more than one part into the system, i.e. m0[p1] > 1, the
previous implicitness property is no longer true. In fact, the different parts
now compete in order to obtain the resources of the system. Nevertheless, we
can remove these competition relations (all of them or only some of them)
from the net system if we increase the number of resources, i.e. if we increase
the number of tokens at the initial marking in the places representing the

1 See also page 70
2 See also section 15.1.2 for a discussion of implicit places.
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Fig. 8.3. Conflict resolution by regulation circuit

resources. The way in which we must increase the number of resources is
governed by the above equations defining the implicitness property of the
resource places (e.g. m0[p3] = k in the case considered above).

From a modelling point of view, the net system presented in Figure 8.2
is a good abstraction of the physical system considered. Nevertheless, for
a designer of manufacturing systems, an important refinement introduces
fairness constraints in order to reduce the indeterminism appearing at the
conflicts. Schedulers should be introduced to impose a deterministic ratio
between the occurrences of the transitions in the conflict.

For example, by the introduction of two places pa and pb a regulation
circuit can be achieved as shown in the net system of Figure 8.3. A number
of r > 0 tokens in pa introduces a so-called finite synchronisation distance of
size r. This means that one of the transitions t1 and t3 cannot occur more
than r times without an interleaving occurrence of the other. In case of r = 1
strict alternation of the occurrences is obtained.

This example allows the application of the concept of abstraction for Petri
nets in a meaningful way. If the action of a machine is considered as an in-
divisible step, then the two different transitions for its start and termination
are combined, including the place connecting them. Figure 8.4 shows the
result of such an abstraction of the net from Figure 8.2: the closed (cf. Sec-
tion 2.4) sets {t1, p2, t2}, {t3, p4, t4}, {t5, p9, t6}, and {t7, p10, t8} are replaced
by transitions t1, t3, t5 and t7 respectively. The behaviour of this abstrac-
tion corresponds to the behaviour of the refined version, e.g. the occurrence
sequence t1t2t5namet6 of the net from Figure 8.2 corresponds to t1t5 in the
abstraction of Figure 8.4. Here the use of resources Mi and Oj is an indi-
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Fig. 8.4. First abstraction of the machine example

In the definition of steps, “simultaneous” concurrent transitions connected
by such a common side condition are excluded. Therefore, even when there
are two tokens (tasks) in the place p1, transitions t1 and t3 cannot occur in
the same step because of the common side condition p3.

Further abstractions of this net are shown in Figure 8.5. The net in Figure
8.5a) abstracts from the two modes of operation of machine M1. Now the
transitions are named Mi, since their occurrence represents an entire action
of machine Mi on a task. The abstraction includes places p3, p8, and p11 (Mi

available), so these places are no longer visible. In Figure 8.5b) the places p5

(O1 available) and p7 (O2 available) are in addition merged by abstraction
to a new place pa.

The sub-net obtained by omitting this place restricts the view of the
system to the machines without representing the operators (Figure 8.5c)).
All the nets in a), b), or c) of this figure can be abstracted to the net in d),
where the set of actions of all machines is modelled by a single transition t .

In these examples, the abstractions have a meaningful dynamic behaviour
that is related to the behaviour of the original refined net. (At least a convinc-
ing interpretation for such a behaviour can be given.) However, the reader
should be warned that this cannot be guaranteed in all cases. If for instance,
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as shown in Figure 8.5e), the three places p5 (O1 available), p7 (O2 available)
and p6 (from Figure 8.5a)) are abstracted to one place px, then the initial
marking is not predefined in a unique way. All conceivable solutions (0, 1 or
2 tokens) result in strange behaviour. In fact, the first case with no token in
px does not work at all. If there are one or two tokens, M2 may occur be-
fore M1 which should not be allowed. Therefore, abstraction and refinement
should be understood as well-defined operations on the net structure, whereas
behaviour is preserved by this operation consistently only in particular cases.

8.2 Place/Transition Nets and Resource Management

Example 2: The Banker’s Problem

The “Banker’s Problem” was given by E.W. Dijkstra [Dij68] as an example
of a resource sharing problem:

A banker has n clients, and a fixed capital g . Each client requires a pre-
determined amount, say fi for the ith client, for his project. He does not
need all the money at the beginning, but periodically he requests a unit of
capital from the bank until his requirement is fulfilled. Some time later he
returns his full loan to the bank. The banker may satisfy a given request if
he has the money available, but he may choose not to do so. In that case
the client has to wait until his request is satisfied. The banker’s problem is
to develop a strategy for distributing the money which will eventually satisfy
all the clients’ requirements. The banker has to avoid situations in which he
has insufficient money but there are clients’ requests still outstanding. These
situations are called deadlocks.

An instance ι = (n,f ,g) of the problem is characterised by a positive
integer n, an n-tuple f = (f1, . . . , fn) and a number g . All amounts are positive
integers. Given a particular problem instance, a state is an n-tuple r =
(r1, . . . , rn) representing the amount required but not yet received by each
client. Initially, r = f . A state is safe if it does not necessarily lead to a
deadlock.

The place/transition net in Figure 8.6 represents the Banker’s Problem
as described above. The place BANK , holding the banker’s cash, initially
contains g units (tokens) of money. CREDIT i and CLAIM i stand for the
loan and the remaining claim of client i respectively. Through the transition
GRANT i this client obtains one unit (token) of money as often as GRANT i

fires. RETURN i returns all the money back to the banker. RETURN i cannot
fire unless the banker has fulfilled the maximal claim fi of the client. By the
same transition this claim is restored in CLAIM i.

In this example we will study two instances of the problem, namely ι1 =
(2, (8, 6), 10), as given in Figure 8.7, and ι2 = (3, (8, 3, 9), 10), as given in
Figure 8.9. These instances show how Petri net representations of a well-
known problem can give a good intuitive understanding and allow for the
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application of formal techniques such as linear invariants and reachability
graph analysis.

Let us start with the instance ι1 = (2, (8, 6), 10) from Figure 8.7a. Each
state of the problem is representable by a marking, which is a vector of di-
mension 5 (since there are 5 places). By the following three linear invariant
equations (one for the bank and two for the two clients) only two compo-
nents can be chosen independently from the five components of a reachable
marking.

• m[BANK ] + m[CREDIT 1] + m[CREDIT 2] = 10
(The capital is with the bank or as a credit with the clients. The total
amount is always 10 units.)

• m[CLAIM 1] + m[CREDIT 1] = 8
(The sum of the current claim and credit of client 1 is always 8 units.)

• m[CLAIM 2] + m[CREDIT 2] = 6
(The sum of the current claim and credit of client 2 is always 6 units.)

Hence, any reachable marking is completely specified by two com-
ponents, say (CLAIM 1,CLAIM 2). Then the other three components
BANK ,CREDIT 1, and CREDIT 2 can be computed from the three
place-invariants. This allows us to represent the reachability set of the
place/transition net from Figure 8.7 in the two-dimensional plane, as shown in
Figure 8.8. In this figure the initial marking m0 = (10, 0, 8, 0, 6) (assuming the
following ordering of the places: (BANK , CREDIT 1 , CLAIM 1 , CREDIT 2 ,
CLAIM 2 )) is reduced to the pair (m0(CLAIM1),m0(CLAIM2)) = (8, 6).
It corresponds to the upper right node in the graph of Figure 8.8. All
paths starting at this node correspond to occurrence sequences. Arcs
to the left, right, down, and up represent the occurrence of transitions
GRANT 1,RETURN 1,GRANT 2, and RETURN 2 respectively. It is clear
that these occurrence sequences cause no problems when one client is com-
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pletely served before the second one. On the other hand, interleaved serving
can lead to one of the three deadlocks (1,3), (2,2) and (3,1).

It was shown by Dijkstra that there are further critical states to be
avoided, namely those markings that inevitably lead to a deadlock, such
as (3, 3). He called these unsafe states. Markings representing such unsafe
states are represented by black nodes. As shown in [HV87] and [VJ85], the
safe states (represented by white nodes) can be characterised by their mini-
mal elements: (0, 4) and (4, 0), marked by a cross in the node.

How can the net be modified in such a way that deadlocks are avoided?
As can be seen from Figure 8.8 this would be the case if transition GRANT 1

were activated only in markings greater than or equal to (4, 0) or (0, 4). we
can thus replace transition GRANT 1 by two modified copies GRANT 1a and
GRANT 1b, as shown in Figure 8.7b. These two transitions have the same
effect as the original one, but possess a higher “activation level”, according
to the additional condition to be satisfied. An analogous construction should
be applied to transition GRANT 2. The general procedure is given in [VJ85].

The second instance ι2 = (3, (8, 3, 9), 10) is an example from [BH73]. Its
net representation is shown in Figure 8.9 and has similar properties to that
of the previous example. There are now 7 places and 4 linear invariant equa-
tions. Hence, the reachable markings can be represented within 3 dimensions
(Figure 8.11). One interesting property is the size of the reachability set,
compared with the first instance. There are now 197 reachable markings.
The subset of 137 safe states (white nodes) is generated by 10 minimal el-
ements (white nodes with cross). A general method for computing these is
presented in [HV87]. All the 60 black nodes represent unsafe states.

This second instance of the banker’s problem also shows a feature not
present in the first one: there are markings that do not necessarily lead to
a deadlock, but are not safe in the sense that some transactions cannot be
terminated. From the marking represented by the point (4, 3, 6), for instance,
the second client can continue arbitrarily many transactions, while clients 1
and 3 cannot even finish their current transactions. Therefore the definition of
safe markings has to be extended. Following Dijkstra we might call a marking
safe if the initial marking is reachable. Alternatively, a marking could be
defined to be safe if an infinite occurrence sequence, in which all transitions
occur an infinite number of times, can start in this marking. In the example
the two definitions are equivalent.

If in each round each client has to finish exactly one transaction, then a
transition called TERMINATION could be introduced, as shown in Figure
8.10. After having completed his own transaction client i marks the place
pi as a flag. When p1, p2, and p3 are marked, transition TERMINATION
can occur and reproduce the initial marking. By the place-invariants it can
easily be proved that indeed the place BANK contains 10 tokens after the
occurrence of TERMINATION .
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Fig. 8.10. Banker’s Problem with 3 clients and termination

With respect to the net model presented here, Dijkstra’s notion of a safe
state can be formalised in (at least) three different ways:

• A marking m is safe if the initial marking is reachable.
• A marking m is safe if there is an infinite occurrence sequence from m,

containing all transitions an infinite number of times.
• A marking m is safe if transition TERMINATION can be fired from m

within a finite number of steps (for the net of Figure 8.10 only).

We close the discussion of this example by a folding to a coloured net. The
folding of the place/transition net from Figure 8.9 is given in Figure 8.12. For
instance, the remaining total claim is a bag in the place CLAIM , giving the
individual claims of each client a, b, and c by the number of individual tokens
a, b and c respectively. The arc inscription on (CREDIT,RETURN) is in the
form of a case-statement, returning for a given binding such as β = [y = c] the
appropriate bag W (CREDIT,RETURN)(β) = 9′c = {c, c, c, c, c, c, c, c, c}b.
(The value of x is irrelevant for this transition and therefore omitted in
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(0, 0, 0) (8, 0, 0)

(8, 3, 0)

(0, 0, 9)

(0, 3, 9) (8, 3, 9)

Fig. 8.11. State space of the net from Figure 8.9

β.) The colour set cd(RETURN) of the transition RETURN is defined
by the colour set clients = {a, b, c} which is motivated by the case. However,
a different choice such as cd(RETURN) = {1, 2, 3} or cd(RETURN) =
{CLIENT1, CLIENT2, CLIENT3} would satisfy the formal definition as
well. In the latter case the arc inscription on (CREDIT,RETURN) should
be modified to the statement:
case y of [CLIENT1 → 8′a | CLIENT2 → 3′b | CLIENT3 → 9′c]

8.3 Coloured Nets, Abstraction, and Unfolding

Example 3: Alternating-Bit Protocol

In this example the well-known alternating-bit protocol will be modelled by
a coloured net. The upper part of Figure 8.13 describes the transmission
environment corresponding to the data link layer of the ISO/OSI reference
model: a host X produces sequences of data units d (data frames). Each
data unit is delivered to the entry of the protocol (transition A). After data
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Fig. 8.12. Folding of the Banker’s net from Figure 8.9 to a coloured net

transmission through the network, the data item is passed to the receiving
host Y by transition B . All the places have a capacity of one data item.
This is represented by the notation /1 after the name of the place and is an
abbreviation of an explicit notion given in the lower part of Figure 8.13 using
so-called complementary places .

From this restriction it follows that data transmission has to preserve the
order of messages. Therefore the net can be understood as a type of speci-
fication of the alternating-bit protocol. It is obvious from this specification
that no data item is lost. Since this cannot be guaranteed by any real trans-
mission media, the underlying layer (physical layer) is designed to assure
this property. Modelling this layer means refining the sub-net consisting of
the elements {A, s ,B}. Usually it is assumed that the channel is capable of
transmitting data in both directions, but only in one direction at a time.
In addition, errors are detected and indicated by a special signal (reliable
half-duplex channel). The channel is represented in Figure 8.14. Error events
are modelled by occurrence of transitions g and k in place of transitions h
and i respectively. The signal for error detection is F . The half-duplex prop-
erty is not explicitly modelled, but will be fulfilled by the realisation of the
alternating-bit protocol. Adding a place, as in Figure 2.10, the simultaneous
occurrence of transitions h and i would be prevented. As usual, this detail
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is omitted also in our presentation. The nets in Figure 8.13 can be under-
stood as formal specifications of the problem since correct transmission (i.e.
no corruption, no duplication, preservation of message ordering) is ensured.

Combining the specification of the channel (Figure 8.14) with the protocol
specification (Figure 8.13) we obtain the net in Figure 8.15. The realisation
(due to [BS69]) is shown in Figure 8.16, which can be seen as a refinement
of transitions A and B in the net of Figure 8.15. The behaviour of this net is
briefly described as follows. Data items follow a path from the sending host
(transition X ) passing through a, c, h, e and b to the receiving host Y . By
transition a a bit x , with the initial value x = 1 , is attached and will be re-
moved by transition b, but only when the current value of the bit in the place
s9 is complementary. This is checked by the transition e via the arc labelled
with the function expression inv(x). When an error occurs transition g fires
instead of h, producing a token F in the place s11. Then a negative acknowl-
edgement will cause a retransmission of the item. This is performed by the
sequence of transitions n followed by i and q . After a correct transmission
the next item will be sent with a complementary value x = 0 . When the ac-
knowledgement is corrupted by a faulty channel, transition k occurs instead
of i. This also causes a retransmission of the message by transition q. By this
retransmission the message could be sent twice, which is detected since the
bit has not alternated. Then the redundant message is deleted by transition
m, which also initiates a new transmission of the acknowledgement.

As explained in the specification, channel errors are modelled by transi-
tions g and k , resulting in the production of an error signal F . To satisfy the
specification that a data item is eventually transmitted by the protocol, it
is necessary to assume that after some finite number of steps, the channel is
working correctly at least occasionally. This means that transition h has to
behave fairly with respect to transition g . The same is assumed for i and k .

This example gives the modelling of a well-known protocol by a coloured
Petri net. In addition it has been shown, how specifications of the protocol and
the channel can be given by nets, and that the realisation can be understood
as a net refinement. Thus the different layers of refined and unrefined nets
correspond to the layers of abstraction of the protocol architecture.

At the end of this chapter, following an idea of [Obe81], the current ex-
ample is used to show an unfolding of the coloured net into a place/transition
net, which will contain at most one token in any place. This is of particular
interest for this example since it reflects the nature of the alternating bit.

As a first step we unfold the circular structure of the coloured net of
Figure 8.16 by omitting the controlling transitions q and m. To simplify the
net, we also omit the data items d .

Most transitions of the coloured net from Figure 8.16 have two modes, one
for the value 0 of the bit and one for the value 1. In the unfolding of Figure
8.17 the corresponding transitions bear the label 0 and 1 respectively, while
the original name of the transition is associated with the dashed rectangle
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Fig. 8.16. Realisation of the alternating-bit protocol

representing the refinement. Thus transition a is split into two transitions
labelled 0 and 1 that are referred to as a(0) and a(1). The same holds for
places, e.g. s4 is refined to s4(0) and s4(1). Hence in this net a number 0 or 1
in a place does not denote a token but rather a parameter of its name. The
only token of Figure 8.17 is in the place s6(1) simulating the token 1 of the
place s6 in Figure 8.16.

The places s11 and s12 are exceptional as they have a colour set of three
elements: 0,1,F. Therefore they are refined into three places, e.g. {s11(0),
s11(1),s11(F)}. The alternation of the bit by transition d is reflected by the
crossing arcs from d(0) and d(1) to s6(1) and s6(0). The initial marking is
represented by tokens and should not be confused with the labels 0 and 1 of
the places.

In Figure 8.18 the refinements of the transitions q , m, and n are added. For
the transition q a guard has to be satisfied. As the occurrence modes of q can
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be chosen as {(x = 0, y = 1), (x = 0, y = F), (x = 1, y = 0), (x = 1, y = F)},
the refinement of q contains four transitions instead of two. (Recall that the
domain of the variable y is the three-element set fit, whereas x can only have
values from bit.)
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9. Techniques∗

In this chapter we give general principles of modelling with Petri nets. We
will concentrate on the aspects that are specific to Petri nets. We shall discuss
how the specific building blocks of Petri nets (places, transitions, arcs, and
tokens) are used to model components and aspects of the problem.

A large part of this chapter is devoted to composition and decomposition
of net models. A bottom-up modelling strategy starts by building models
for simple subsystems and combining them into more complex ones until the
desired model is obtained. The top-down approach decomposes the system to
be modelled into subsystems, and decomposes these subsystems into smaller
subsystems to the point where subsystems can simply be modelled as nets.
Often the two approaches are combined. The gap between the system to be
modelled and the building blocks of the modelling paradigm is narrowed by
both decomposing the system and constructing some higher-level building
blocks.

In the sections to come, we will discuss the use of Petri net building blocks
for modelling. Then, we will consider the synthesis and decomposition of nets.
We start with simple (place/transition) nets and then move on to extensions
including colour, priority and time.

9.1 Building Blocks

Petri nets consist of places (circles), transitions (squares or rectangles), di-
rected arcs (arrows) and tokens (dots inside places).

Transitions are the active components of a Petri net. They are used to
model various kinds of actions. Tokens are the volatile components and are
used to model objects. Places represent the states that the objects can be in.
Arcs represent the way in which objects are created or destroyed or change
state because of the occurrence of an action.

A good way to start a model is to begin with an object class and to list
its possible states. For each state, draw a place. Next, draw a transition for
each possible state change, with an input arc to the old state and an output
arc to the new state. An illustration is given in Figure 9.1.
∗ Author: M. Voorhoeve
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bridge

water

jump

bank

hop

swim

Fig. 9.1. Playful frogs

Here the tokens represent frogs that amuse themselves with jumping into
a stream from a bridge, swimming to the bank and then hopping back to
the bridge and starting all over again. Clearly, the frogs are the objects with
three possible states and three actions that alter the state in a fixed order.

We can complicate the frog model by adding a beautiful girl who some-
times catches a frog that jumped from the bridge and kisses it. When the
frog fails to become a prince, she disappointedly throws it into a nearby bush.
The frog then hops back to the bridge to resume its play.

bridge

bank

hop bush

hop

kiss

swim water

jump

Fig. 9.2. Frogs with girl

The model is given in Figure 9.2. We add an extra state (bush) to the
frog object and the actions (kiss and hop) leading to and from it, with a
nondeterministic choice between the kissing and swimming action. Note that
the same action can used in different states. This is modelled by different
transitions with the same label.

In both models, no frog objects are created or destroyed, which is wit-
nessed by the existence of a p-flow. Often resource objects have the same
property. They can be available or occupied in several ways, but the number
of resources stays the same. This way of modelling resources is used often for
manufacturing applications (cf. Section 24.2).

Note that the same net (with one token in it) can be used to model the
life cycle of a frog object. In Section 26.3, the models in Figures 26.4 and 26.5
are similar models that describe the life cycle (state-wise and action-wise) of
objects in a certain class.
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After modelling each object class, we can investigate how the various
objects influence one another. In general, the interaction of objects must be
modelled by communication of the sub-nets of each object class, which will
be treated in the next section. Here, we give a simple example based on the
frog fairy tale, which causes the addition of places and transitions. The girl
from our story is really determined to marry a prince, so she sets herself to
the task of kissing exactly one out of every three frogs that jump from the
bridge.
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bush

hop

water
kiss
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swim

kissswim

water

2

2

Fig. 9.3. Frogs with stubborn girl

The model is given in Figure 9.3. We start from Figure 9.2 and then re-
strict the firing of the swimming and kissing actions by adding extra places
containing “permission” tokens. The first three frogs share two swimming
permissions and one kissing permission. When these permissions have been
used up, a blank transition fires that makes the same three permissions avail-
able.

The approach to modelling sketched above, first allowing all conflicts and
then restricting them by adding extra places, is well established. The first
example in Chapter 8 is very similar.

Note that even for this simple model, the need for a compositional or
hierarchical approach becomes apparent. At the highest level, a “super-place”
is modelled that restricts the firing of the conflicting transitions. At the lower
level, this superplace is modelled in detail. A great deal of this chapter will
be devoted to such techniques for combining or decomposing nets.

Also, the same model shows the need for blank or invisible components
that are needed only to influence the behaviour of the visible objects. Work-
flow models (cf. Section 25.3) are oriented towards actions (tasks), so only
blank tokens are used. It is even advisable to exclude any meaningful tokens
(such as resources) from these models. The event-oriented modelling method
in section 10.2 follows the same principles.

The state-oriented method in section 10.1 attaches much more importance
to tokens and places. Temporal logic predicates are used to characterise the
states of the nets to be modelled and the way in which these states develop
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from one another. Often, no importance is attached to the transition that
fires, so it might as well be blank.

The object-oriented method in section 10.3 uses both visible and invisible
tokens, places, and transitions. An application of this method can be found
in section 26.3. The method uses a non-graphical specification language and
generates Petri nets from specifications in that language. It is also the most
bottom-up method.

The method that is used in Section 24.3 for modelling flexible manufac-
turing systems (FMS) aims at the direct top-down modelling of Petri nets
and uses both state-oriented and event-oriented features. Blank tokens and
transitions are kept to a minimum.

9.2 Combining Nets

Both the top-down and bottom-up modelling approaches are based upon a
hierarchy. Smaller and hierarchically lower nets are combined to form larger
(higher) nets, or higher nets are decomposed into lower ones. The nets will
model some dynamic system, of which the components are subsystems. These
subsystems will communicate to perform the functions that are required for
the combined system.

There are two essentially different methods of communication: asyn-
chronous and synchronous communication. Communication by electronic
mail is asynchronous. Information is sent only one way, and the sending and
receiving of the message does not necessarily occur at the same point in time.
Since Petri nets use places as containers of information, it is by place fusion
that asynchronous communication is modelled: the output place of one sub-
system is fused with the input place of another subsystem. Similar to place
fusion is arc addition: adding an input or output arc between a place in one
subsystem and a transition in another.

Communication between people through the telephone is essentially syn-
chronous. Both communicating parties have to be present during the com-
munication, and information can be exchanged both ways. Synchronous com-
munication among more than two parties is also possible (e.g. a meeting by
telephone). Since transitions model activities in Petri nets, it is through tran-
sition fusion that synchronous communication is modelled: the activities in
two (or more) subsystems have to be synchronised.

9.2.1 Place Fusion

Combining nets by means of place fusion is a simple and effective way to
model (asynchronous) communication between sub-nets. In Figure 9.4, the
left-hand sub-net can produce tokens for its place smess, and the right-hand
sub-net can consume these tokens from its place rmess. By fusion of these
places, communication between these sub-nets takes place.
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Fig. 9.4. Asynchronous communication by place fusion

This communication is asynchronous; the action that produces a token
and the action that consumes that token cannot occur at the same time. Any
number of actions may occur between the two and the consumption may even
not occur at all.

When doing place fusion, it is good practice to consider one place as the
main place that the others are fused with. That place will be the only one
that can be initialised with tokens. The other places are mere fusion places
or “pins” that are connected to the main place. This practice also resolves
any naming problems: the name of the main place is of course retained. Pins
can be divided into input pins, from which tokens are consumed, and output
pins, into which tokens are produce. The combination of an input pin, output
pin, and place is a channel for one-way token transfer. This is the situation
depicted in Figure 9.4.

1

2

3

Fig. 9.5. More place fusion examples

Other methods for place fusion are depicted in Figure 9.5. The first sit-
uation resembles the channel concept; the difference is that the right-hand
sub-net receives transfer tokens in a place that can also be filled internally.
The second situation is common too; here an action in the left-hand sub-net
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may or may not occur depending upon the state of the right-hand sub-net.
The state of the latter does not change. The third situation is the most dan-
gerous one, as both sub-nets may remove tokens from the fusion place.

Place fusion can also occur among three or more nets. The safe way of
doing so is by allowing the connection of at most one of the sub-nets to the
fusion place by input-only arcs. Two or more sub-nets consuming from the
fusion place, such as (3) in Figure 9.5, is considered bad modelling practice.

9.2.2 Arc Addition

Arc addition is another way to communicate synchronously. Input arc addi-
tion is the addition of an arc from a place in one sub-net to a transition in
another. By the extra arc, the firing of that transition is restricted since it
needs an extra token. So, events of one sub-net become dependent upon the
state in another sub-net.

The inverse output arc addition is also used. Input arc addition restricts
the possible firings, whereas output arc addition extends them. Here, the
state of one sub-net is modified by the occurrence of an event in the other
sub-net, which is used to model message passing.

a

b

d

e

f
c

A B

Fig. 9.6. Three ways of adding arcs

A third possibility is I/O arc addition. It behaves like input arc addition,
since it restricts firings of the transition involved. It can be used to model
events that are only possible in a certain state, e.g. in workflow models.

9.2.3 Transition Fusion

By fusion of transitions of sub-nets, synchronous communication between the
sub-nets is modelled. When all the fusing transitions are enabled, the fused
transition is enabled. The consumption of the fused transition consists of
the sum of the consumptions of the fusing transitions and its production is
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the sum of the productions of the fusing transitions. In Figure 9.7, a tran-
sition fusion is depicted. The “send” transition of the left-hand sub-net is
fused with the “receive” transition of the right-hand net, thus creating the
“communicate” transition of the combined net.

Fig. 9.7. Synchronous communication by transition fusion

Transition fusion is the most natural way to combine the nets that are
created from modelling object classes. If we return to our frog example, the
model in Figure 9.2 can be combined with the model of a girl object class;
the girl can come and go to the stream and, while at the stream, can kiss a
frog, but needs to wipe her mouth afterwards. The kissing of the girl and the
being kissed of the frog are actions that can be synchronised by transition
fusion, as shown in Figure 9.8.
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Fig. 9.8. Synchronisation of actions for two object classes

In Figure 9.9, various multiple-transition-fusion constructions are given.
On the left-hand side, portions of the sub-nets are depicted together with
the way that they are fused. On the right-hand side, the result is shown.
The top situation shows a “conjunctive” three-way fusion that can be used
to model broadcasting. The other two situations show “disjunctive” fusions.
In the second one, the transition t is fused with either u or v, resulting in
transitions a and b. The arcs from t and to t are duplicated. The third example
shows a two-by-two disjunctive fusion.
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Fig. 9.9. Multiple fusions

9.3 High-Level Nets

In this section we shall discuss the extension of place/transition nets with
colour, priority and time. We also very briefly consider fairness assumptions
with respect to non-deterministic behaviour of nets.

9.3.1 Coloured Nets

In coloured nets, tokens exist in various colours. The set of all possible token
colours may be finite or infinite. For systems engineering purposes, a countably
infinite set of token colours is appropriate. A finite set of colours would be
too restrictive and an uncountable one is not needed in practice and would
preclude the computation of properties.

For any place in the net one prescribes a set of allowed colours. A transi-
tion that produces a token will not fire if it would produce a token of a colour
that is not allowed in its destination place.

For every transition of a coloured net there is a relation between the
colours of consumed and produced tokens. This relation can be described
by means of pre- and post-conditions. If the transition fires, it consumes
tokens that satisfy the pre-condition and it produces tokens that satisfy the
post-condition. These pre- and post-conditions can be denoted by adding
expressions to arcs and predicates to transitions.

The techniques of place fusion, transition fusion, and arc addition all carry
over to coloured nets. Place fusion is the simplest technique; it requires only
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that the allowed colours of fused places be the same. With arc addition, an
arc expression must be added too. Finally, transition fusion often requires
that transitions be parametrised with a fusion relation depending on the
transition parameters. We give a simple example taking the natural numbers
as colours.

The nets in Figure 9.10 model an automatic teller machine (ATM) with
the bank behind it. When the ATM is in the ready state, a client can ask
for a certain amount of money. The ATM communicates this amount to the
bank and waits for approval. When the approval arrives, the money is given
to the client. Meanwhile, the requested amount is deducted from the client’s
account. If the account is deficient, approval will not be given. In the model
here, this leads to a deadlock. In a complete model, a non-approval message
would be sent from the bank to the ATM, leading to an error message from
the ATM to the client.

The topmost net in Figure 9.10 contains a transition in that consumes
tokens from the pin amt wanted and the place rdy. The colour x of the token
consumed from amt wanted is copied to the pin amt. The fusion relation of
in is thus that the token produced in amt must have the same colour as the
token consumed from amt wanted. The token consumed from rdy and the
one produced for w appr can have any colour. Note that in the combined net
the place w appr is superfluous. It is nevertheless good practice to include it
in the ATM sub-net to ensure that a token from ok is consumed only if a
previous token in amt has been produced.

We can see from the figure that the fusion relation of chk is that the token
in balance must have a colour y exceeding the colour z from amt, that this
colour must be copied to ok and that the new colour of the balance token
must equal y − z. If y ≥ z does not hold, the chk transition will not fire.

The middle net has the same behaviour, but synchronous communication
is used instead. Note that a place such as w appr in the top net is no longer
necessary. The fused transition c must have a relation that depends upon
the colours of tokens consumed both at the bank (the balance) as well as
at the ATM (the amount). To achieve this, fusion transitions have to be
parametrised. Transition parameters consist of unique identifiers typed with
colour sets. When transitions are fused, a relation between the parameters
may be added. In the figure, the fusion transition a has a parameter x, and
t has parameter z. The fused transition c requires that the x parameter of a
and the z parameter of t be equal.

In this way, the colour x of the token consumed at the ATM is transferred
to the bank and the permission (which depends on y) is transferred back. The
parameter y is present at the bank only and plays no role at the ATM. This
is the reason that the fusion transitions are parametrised as shown.

The bottom net is the same, but using arc addition instead. For the sub-
net ATM to be meaningful, the place w ap is coloured. With the addition of
arcs comes an arc expression. Note that the parameters (x) of the interface
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Fig. 9.10. Automatic teller machine

transitions and the possible colours of the interface places have to be exported
in order to allow syntactically correct arc additions. So, although arc addition
looks very simple, there is more to it than meets the eye.

This example illustrates that transition fusion with coloured nets is less
straightforward than place fusion. Arc addition is in between the two. Ex-
isting tools for modelling and simulating coloured nets, such as Design/CPN
([Jen92b]) and ExSpect ([HSV91], [Bak96]), support only place fusion for this
very reason.
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9.3.2 Fairness, Priority, and Time

Nondeterminism is everywhere in Petri nets. In the case of a conflict, there is
no preference about which firing will occur. Many analysis results are depen-
dent upon rules that restrict the possible firing sequences which may occur
in a given situation.

The fairness rules address the infinite firing sequences possible in a net
system. A weak fairness rule states that every transition which is enabled
will either cease to be enabled (because some conflicting transition fires) or
will have fired after finitely many steps. A stronger fairness rule states that
every transition that is enabled infinitely often will have fired after finitely
many steps. In between is a rule stating that if n transitions are in conflict
infinitely often, one of them will have fired after finitely many steps.

Priority directly addresses conflicting firings for which preferences can
be indicated. A less-preferred firing will occur only if more-preferred firings
cannot. In nets without colour, preferences are attached to transitions. In
coloured nets, these preferences also depend on the bindings (the colours
of the tokens to be consumed), so it is for example possible to indicate a
preference for the largest token in some place. With parametrised transitions,
the transition parameters can also be included in determining preferences.

The treatment of time in nets can be seen as a special case of priority.
Tokens have a time stamp (e.g. their time of production) included in their
colour. Any event (firing of a transition) may depend on these time stamps
and the occurrence time of the event depends upon them. In the case of
conflicting events, the one with the earliest occurrence time will happen. A
real conflict remains only if the occurrence times are equal.

In tools such as ExSpect or Design/CPN, some specific choices have been
made with respect to the possible occurrence times of events. Tokens in
ExSpect have a time stamp that indicate their earliest possible time of con-
sumption. The occurrence time of an event equals the maximum time stamp
of the tokens consumed in it. The time stamp of input tokens cannot occur
in the pre-condition of a transition, but only in the post-condition.

This means that the situation at the top of Figure 10.19 is hard to model
in ExSpect. Here, a situation is sketched where a token in q can be consumed
by transition a if a token is present in p or will arrive within 5 time units. If
this does not happen, the token will be consumed by b. In Design/CPN, it is
actually possible to test for time stamps in the pre-condition.

Another difference between timing in ExSpect and in Design/CPN is the
handling of conflicts. The transition in the bottom net in Figure 10.19 might
fire in two possible ways, consuming the tokens with time stamps 3 and 5
or with 4 and 5. Design/CPN has a kind of LIFO firing rule for timed nets
allowing only the last firing (time stamps 4 and 5).

The above discussion shows that the modelling of time in dynamic systems
is still at a preliminary stage and few true standards have emerged.
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9.4 Decomposing Nets

In the previous sections we saw how more complex nets can be created from
simpler ones for several kinds of nets. This can be used to directly model nets
via the bottom-up strategy. For a top-down strategy we need to decompose
the net into sub-nets (that are to be modelled later) and indicate how these
sub-nets communicate.

The task of modelling the overall system then boils down to the modelling
of individual subsystems that communicate adequately. The decomposition
technique can be based on any combination of place fusion, transition fusion,
and arc addition.

When decomposing nets by means of place fusion, the sub-nets can be
compared to transitions. The difference between real transitions and these
sub-nets is that any number of tokens can be consumed by them and any
number produced. The relation between consumed and produced tokens may
also depend upon the history of the sub-net, i.e. the events relating to the
sub-net that have previously occurred.

When using colours, it is a good idea to define colour sets (data types)
for the pins of the sub-nets. Some static type checking can then be used to
detect modelling errors. In ExSpect and Design/CPN this is the standard
modelling technique supported by the tool.

When decomposing nets by means of transition fusion, one can consider
the sub-nets as abstract data types or objects. Communication with the sub-
net takes place through fusion with some predefined transitions (methods).
These methods may have parameters in the case of coloured nets.

It is perfectly natural to define sub-nets with both fusion places and fusion
transitions. Such sub-nets can be compared to objects. Transitions are like
methods and places are like attributes. The fusion places and transitions are
the exported interface, whereas the other nodes belong to the implementation.
One may then use both place and transition fusion to communicate. Another
possibility is arc addition.

It is not difficult to show that place fusion, transition fusion, and arc
addition are equivalent. By adding some extra components, it is possible to
model one kind of communication (such as place fusion) by means of any
other.

9.5 Conclusion

In this chapter, we have discussed the techniques of Petri net modelling. An
important part of our discussion has been devoted to communication among
sub-nets, in order to allow a divide-and-conquer modelling strategy. By a
careful division into components and a wise selection of the ways that these
components communicate, a modeller can concentrate on just a few aspects
at a time.
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The sketched techniques find their place within modelling methods, such
as those described in the following chapters. However, techniques and even
methods are merely aids to the modeller. What is most important is that he
knows the purpose of the models to be constructed. He must restrain himself
and not just model anything simply because he can.





10. Methods∗

This chapter is devoted to the use of Petri nets within methods that support
structured approaches for modelling systems and for validating and verifying
them using the formal foundation provided. The three approaches presented
each have their own way of Petri net modelling, aimed at verification and
validation.

Section 10.1 is devoted to a state-oriented approach in which the start-
ing point is the specification of temporal dependencies among the reachable
states of a given system. Such an approach allows a problem-oriented de-
scription of the requirements for the system being built. This specification is
transformed into a solution-oriented Petri net model by mapping the state
invariants onto net invariants. This mapping is performed by following well-
defined refinement steps. These steps allow a focus on the details needing
formal verification.

Section 10.2 is devoted to an event-oriented approach. Such an approach
starts from the interaction protocols that govern the flows of events among
well-delimited subsystems of the whole system. First the subsystems are iden-
tified. Then, in a top-down and structured approach, it is shown how to model
the protocol that governs the interactions among these subsystems. There are
two levels at which the system can now be examined. At a very low level of
granularity, all the events occurring in the system can be considered. Alter-
natively, the focus can be put on certain relevant events, abstracting from the
others. These two levels correspond to two net models which can be shown
to be equivalent by different kinds of bisimulation.

Section 10.3 is devoted to the presentation of trends in integration of
nets and objects. Object-orientation is now widely used for the structuring
facilities it offers for building systems. However, object-orientation in general
does not handle the strong requirement for verification and validation which
one faces when building systems. Different ways have been proposed to use
Petri nets to help alleviate this shortcoming. Some of these approaches are
presented in this section. Object-orientation combined with nets can benefit
from the two previous approaches. System designers can focus on the states
∗ Authors: R. Mackenthun (Section 1), M. Voorhoeve (Section 2), A. Diagne (Sec-

tion 3)
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of the objects during their life-cycle and their temporal dependencies. They
can also concentrate on the events flowing among the objects of a system.

The following three sections show that nets are worth using because they
enhance the modelling and design activities by verification and validation.
They also enable different approaches (state-, event-, and object-oriented),
each of them placing the focus on different aspects of the systems.

10.1 State-Oriented Modelling

The aim of this chapter is to give the reader an understanding of how to
combine structured and/or intuitive approaches for system design with the
formal techniques of Petri nets. This section gives a state-oriented view.

The method presented not only supports the design of a system, but also
integrates aspects of verification into the development process.

This approach starts with a formal specification that will be refined in
several steps. The specification is given in the temporal logic of unity pre-
sented in [CM88]. The intuitive unity-formalism is chosen since it is easy to
understand, the expressive power is reasonably high, and it is based on in-
terleaving semantics, the semantics mainly used in this book. In this section
only a subset of the unity properties is used. A brief introduction to these
properties is given in Section 10.1.1. The proof rules used in unity will not
be introduced here. They are used to prove the correctness of the steps of the
method, e.g. the construction of the proof graph (page 132). Such proofs are
essential for the developer of the method but not for the user. For details of
unity-proofs see Section 16.2.

In Section 10.1.2 it is shown how to transform the problem-oriented spec-
ification into a solution-oriented net model using Petri net techniques. The
development of algorithms is partially a creative process. The method cannot
replace the creative work, but it can give guidance to the creative developer.

In Section 10.1.3 the description of the modelling process is concluded by
considering implementation details.

A simple mutual exclusion (ME) algorithm will be used to clarify the
method. An advanced ME-problem will be solved as case study in Sec-
tion 11.1.

The example used in this section has the following informal description: A
fixed number of computers compete for a common resource. It is possible that
the computers will never apply for the resource. The protocol should ensure
mutual exclusion, and also ensure that a requesting computer will eventually
get permission to use the resource.

To model the dynamic properties, the net model has to be extended as
described in the following excursus.
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Excursus: Firing Rules

In ordinary nets, transitions are not constrained to fire. However, many of
system descriptions require dynamic properties such as a transition will even-
tually fire, i.e. after a finite number of steps the transition will occur. Ad-
ditionally, in the case of a conflict it is often necessary to ensure that all
conflicting transitions will eventually occur, if the conflict appears again and
again.

These problems can be solved by adding special firing rules to transitions.
In this section, three firing rules are distinguished. Productive transitions
eventually occur in an infinite occurrence sequence if they are persistently
enabled. This characteristic is also known as the finite delay property or as
the weak fair condition. In a finite sequence, productive transitions must
not be enabled in the last marking. Fair transitions (also known as strongly
fair) eventually occur in an infinite occurrence sequence if they are enabled
infinitely often. In a finite sequence, fair transitions must not be enabled in
the last marking. All other transitions (called normal) are not constrained to
fire.

In the following definition INω is the set IN∪{ω}. The total order relation
“<” of IN is extended in such a way that all natural numbers are less than
ω:

<ω= {(a, b) ∈ INω × INω|(a, b) ∈< ∨(a ∈ IN ∧ b = ω)}

The length |os| of a finite occurrence sequence os is the number of transitions
occurring in that sequence. The length of an infinite occurrence sequence is
defined as ω. Note that “<” is used for both order relations, the original
and the extended one, if the meaning can be deduced from the context.
Additionally, osT,i is the ith transition in an occurrence sequence os (i ∈ IN).

Definition 10.1.1. Let 〈N ,m0〉 be a P/T net system and let fr be a mapping
fr : T → {prod , fair ,normal} giving the firing rules of the transition.

The set of fr-conform occurrence sequences Occ(〈N ,m0〉)fr is the great-
est subset of the set of finite and infinite occurrence sequences (Occ(〈N ,m0〉))
with:

∀os ∈ Occ(〈N ,m0〉)fr . ∀t ∈ T : fr(t) = prod . ∀k ∈ IN : k ≤ |os| .(
(∀j ∈ IN : k ≤ j ≤ |os| . mj

t
→)

⇒ (∃i ∈ IN : k + 1 ≤ i ≤ |os| .osT,i−1 = t)
)

∧ ∀os ∈ Occ(〈N ,m0〉)fr . ∀t ∈ T : fr(t) = fair .(
(∀k ∈ IN : k ≤ |os| . ∃j ∈ IN : k ≤ j ≤ |os| . mj

t
→)

⇒ (∀k ∈ IN : k ≤ |os| . ∃i ∈ IN : k + 1 ≤ i ≤ |os| .osT,i−1 = t)
)

For infinite sequences the consistency of the formal definition and the informal
descriptions above is obvious. In the case of finite sequences no productive
or fair transition can be enabled in the final marking. For productive tran-
sitions the implication would be falsified for k = |os| since the first part of
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the implication would be true and the second part would be false, because
the domain of variable i is empty. For fair transitions the first part of the
implication would be true for all k and the second part would be false because
for k = |os| the domain of variable i is empty.

Figure 10.1 shows an example net that will be used to illustrate the defi-
nition. The firing rules of the transitions are: fr(a) = normal , fr(b) = prod ,
fr(c) = fair , and fr(d) = prod .

Table 10.1 gives the firing sequences as extended regular expressions,
where ω is an infinite repetition. The corresponding occurrence sequences
belong to the set of sequences given in the title of the column.

For instance, the occurrence sequence

os1 = m0, t0,m1, t1, . . . ,m5 = p, a, r, b, q, d, p, a, r, c, p

belongs to Occ(〈N ,m0〉)fr since the corresponding firing sequence is abdac.
The length of the occurrence sequence is 5. To prove that os1 belongs to
Occ(〈N ,m0〉)fr the first part of the conjunction in the definition must be
true for transitions b and d. Since b and d are not enabled in m5, there exists
no k ≤ 5 such that b or d is persistently enabled from mk to m5. Therefore,
the implication is true for all k ≤ 5. For the fair transition c the second part
of the conjunction must be true. For k = 5 there exists no binding of variable
j where transition c is enabled. Therefore the first part of the implication is
false and the implication is true.

a

d

b

c

p

q

r

Fig. 10.1. Firing rules: simple example

Occ(〈N ,m0〉) Occ(〈N ,m0〉)fr Occ(〈N ,m0〉) \ Occ(〈N ,m0〉)fr
(a(bd + c))ω ((abd)∗ac)ω (a(bd + c))∗(abd)ω

(a(bd + c))∗(ε + a + ab) (a(bd + c))∗ (a(bd + c))∗(a + ab)

Table 10.1. Firing sequences of the simple example
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10.1.1 Specification

This section describes the specification of the algorithms as temporal logic
expressions. The algorithm is embedded in an environment. The environment
can be described in terms of temporal logic or as a Petri net model. The latter
is possible since the environment has a fixed detailed behaviour from the
beginning. Nothing will be changed in the environment of the model during
the development process.

Environment. Here, the environment is given as a Petri net. In the con-
text of ME-algorithms the environment gives an abstract behaviour of the
competitors that use the ME-algorithm. The environment is called the client
or client unit . The specification of the client is given in Figure 10.2. The
behaviour of the client is modelled by the three states not interested (cni),
interested (cint), and in critical section (ccs). The first c in the name of a
place means that the place belongs to a client . The transitions are gets in-
terested (cgi), enters the critical section (cec), and leaves the critical section
(clc). Since a client is constrained to do the latter two actions to give control
back to the ME-protocol after having obtained permission, the respective
transitions are productive (solid border). The first action is optional since
the client unit will not be forced to use its critical section. The corresponding
transition is a normal one that is neither productive nor fair (dotted border).
The above-named places and transitions model the so-called state process of
the client. Initially, no clients are interested.

ccs i

cec i

cperm i

cni i cgi iclc i

crdy i
creq i

cint i

Fig. 10.2. The client unit

A client unit that gets interested sends a request to the protocol (creq).
To enter the critical section it needs permission from the protocol (cperm).
On leaving the critical section the client unit informs the protocol that it is
ready (crdy).

All clients have the same structure. We use indices for the transitions and
places to distinguish between them.

Protocol. In Petri nets states are usually modelled by markings. To specify
the behaviour of a given part of a system, properties of single markings and
temporal dependencies of different markings have to be expressed. Properties
are conjunctions, disjunctions, or negations of statements about the number
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of tokens on the places in a marking m. For instance (m(p) ≥ 3)∧(¬(m(q) =
2)) is a property of marking m.The shorthand notation p ≥ 3 ∧ ¬(q = 2)
will be used for this property. By default, p means p = 1. The notation is
extended to sets of places P e.g. P = 2 means

∑
p∈P m(p) = 2. M[r] is the set

of markings where property r holds. Such markings are called r-markings.
When reasoning about dependencies of markings, it is an advantage to

abstract from the transitions in the occurrence sequences of a net system
〈N ,m0〉. The resulting set is the set of marking sequences

MS (〈N ,m0〉) := {m0, . . . ,mn| ∀i ∈ {0, . . . , n − 1} . ∃t ∈ T . mi
t
→ mi+1}

∪{m0, m1, . . . | ∀i ∈ IN . ∃t ∈ T . mi
t
→ mi+1}.

The ith marking of a marking sequence ms is denoted as msi.
unity introduces five basic temporal operators: unless, is stable, is

invariant, ensures, and leads to. In this section only the is invariant

and the leads to operators are used. The others would only be necessary
to prove the correctness of the development steps presented. As mentioned
before, these proofs are omitted here.

An invariant property r (r is invariant) of a net system 〈N ,m0〉 holds
in the initial markings and all successor markings. Equivalent statements are
r holds in all reachable markings of 〈N ,m0〉 or r holds in all markings of
all marking sequences of 〈N ,m0〉. The meaning of an r leads to s prop-
erty (denoted as r 7→ s) is that an r-marking is already an s-marking, or a
successor marking is an s-marking. The s-marking will eventually be reached
by the net system. For a given net system 〈N ,m0〉 and its set of marking
sequences MS (〈N ,m0〉) the temporal properties are defined by

Definition 10.1.2. r is invariant iff RS(〈N ,m0〉) ⊆M[r]

Definition 10.1.3. r 7→ s iff
∀ms ∈ MS (〈N ,m0〉) . ∀i ∈ IN . (msi ∈ M[r]) ⇒ ∃j ∈ IN . (j ≥ i) ∧ (msj ∈
M[s])

Using these operators the ME-algorithm can be specified as follows:

∀i ∈ {0, . . . , n− 1} . creqi ≥ 1 7→ cpermi ≥ 1
∀i, j ∈ {0, . . . , n− 1} ∧ (i 6= j) . ccsi = 0 ∨ ccsj = 0 is invariant

The first property means that a requesting client i will eventually get permis-
sion and the second demands that the critical section be used under mutual
exclusion.

10.1.2 Design

The design starts with the specification given above. The result will be an
executable Petri net that includes several design ideas. The basic stages of
the design process are:
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1. Create the set of places used for the net model.
2. Design constraints describing the behaviour and the structure of the so-

lution, which ensure at least the safety properties of the specification.
3. Add all transitions that do not violate the constraints.
4. Prove the dynamic properties.

Designing an algorithm is a creative process and needs some experience.
Therefore, in some of the following steps there are no strict rules for how to
proceed. Nevertheless some steps can be identified that will guide the user of
the method.

There is no need to handle the steps strictly in the sequence in which they
are presented here. In general, the normal design process will need several
iterations.

Basic Method Restrictions. Until now the method has only been used in
the area of control algorithms such as mutual-exclusion algorithms and elec-
tion algorithms. This has influenced the models constructed by this method.
The algorithms developed have certain restricting properties. These proper-
ties theoretically restrict the areas where a specification can be implemented.
In practice most of the published control algorithms can be constructed using
this method.

Some of the restrictions mentioned are fundamental to the methods. They
are presented below, while some minor restrictions are described during the
presentation of the steps.

• All places are bounded. Only P/T nets are used. In a more sophisticated
version of the method coloured nets are used. In that version the number
of tokens is also bounded, but the colours can be infinite sets (to appear
in [Mac98]).

• During the design stage, transitions have no loops (forward and backward
incidence on the same place), because the existence of loops cannot be
concluded from invariants. Loops can be included at the implementation
stage.

• Transitions that only consume tokens from or only produce tokens for
places are not considered since they are not important for problems of
control algorithms.

Step 0: Designing the Components and the Communication Structure. The
first design step is the identification of components and their communication
structure. The algorithm constructed in a later step has to ensure that all
added transitions are either internal to a component or access the component
and its interface (incoming or outgoing channels).

In this approach components of the system are units that communicate
via unidirectional channels. This means that components can be distributed
to different locations, since channel communication allows real distribution.

The result of this step is a set of identified components and a set of
communication channels.
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Fig. 10.3. The components and the communication structure

In the ME-example each client is a component. This design decision is
made to separate the fixed parts in the client components from the change-
able parts in the protocol. Furthermore, the solution will contain one local
protocol component per competitor. The benefits are a modular structure
and components that can be parametrised. This is especially interesting for
symmetrical systems such as this one. Figure 10.3 gives the communication
structure for a system with two competitors. A client unit and its protocol
communicate via the channels creq , cperm, and crdy . Protocols communi-
cate via the tin-channels (token in). Along the ring, the tin-channels go from
competitors with lower numbers to competitors with higher numbers (modulo
n).

Step 1: Designing Safety Properties with Place Invariants. In this method p-
flows are used to implement the invariants of the specification. Using p-flows,
linear invariants are expressed that are much better adapted to Petri nets
than are the general invariants used in the specification. This step may entail
the loss of some possible solutions, if specific invariants are not expressible as
place invariants. Nevertheless, we get a wide range of solutions that are easy
to implement.

The result of this step is a list of place invariants. Some invariants imple-
ment the invariants of the specification, others are used to integrate certain
design ideas into the model.

Due to lack of space the design of place invariants will not be discussed
in detail. Instead, the place invariants for the ME-example will be given and
explained.

∀i ∈ {0, . . . , n− 1} . m(cni i) + m(cint i) + m(ccs i) = 1 (10.1)

∀i ∈ {0, . . . , n− 1} . m(nii) + m(wti) + m(csi) = 1 (10.2)∑
i∈{0...n−1}(m(csi) + m(uti) + m(tini)) = 1 (10.3)

∀i ∈ {0, . . . , n− 1} . m(crdyi) + m(cpermi) + m(ccsi) = m(csi) (10.4)

∀i ∈ {0, . . . , n− 1} . m(cnii) + m(creqi) = m(crdyi) + m(nii) (10.5)

Places of the clients cannot be changed to develop refined models of the
system, since the client model must not be changed. Therefore, in the local
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protocol a new state process is modelled which is strongly coupled with the
state process of the client. Equation 10.1 describes the state processes of the
clients. Equation 10.2 describes the state processes of the local protocols,
where the abbreviations are as follows: ni i for not interested, wt i for waiting
for token, and cs i for in critical section.

The coupling of the two state processes is given by Equations 10.4 and
10.5: the client is only in its critical state ccs if the protocol is in its critical
state cs (Equation 10.4), and the number of not-interested clients is given
by the number of tokens on place ni of the protocol if there are no “update
messages” in crdy or creq (Equation 10.5). Therefore place ni i will contain
a token when the current knowledge of the local protocol is that its client is
not interested.

Typically in token algorithms, either the token is used by one of the
competitors (cs i, in critical section), or it is unused but still possessed by
one of them (ut i, unused token), or it is in one of the channels (tin i, token
in)(Equation 10.3). Equation 10.4 together with Equation 10.3 preserves the
mutual-exclusion property of the specification.

In further design steps only those places are used that are introduced
in the place invariants. This requirement might again reduce the number of
possible solutions, but simplifies further steps. The set of places is

P =
⋃

i∈{0...n−1}

{cnii, cinti, ccsi, creqi, crdyi, cpermi, csi, nii, wti, uti, tini}.

From the invariants we can deduce the corresponding p-flows Φ, using the
fact that the linear invariants are Φ ·m = Φ ·m0. For details see Section 5.2.2.

The set of p-flows is Ψ =
⋃

i∈{0...n−1}{Ψ1,i, Ψ2,i, Ψ3, Ψ4,i, Ψ5,i} with:

Ψ1,i : ∀p ∈ {cnii, cinti, ccsi} . Ψ1,i[p] = 1, (inv. 10.1)
∀p ∈ P \ {cnii, cinti, ccsi} . Ψ1,i[p] = 0

Ψ2,i : ∀p ∈ {nii, wti, csi} . Ψ2,i[p] = 1, (inv. 10.2)
∀p ∈ P \ {nii, wti, csi} . Ψ2,i[p] = 0

Ψ3 : ∀p ∈
⋃

i∈{0...n−1}
{tini, uti, csi} . Ψ3[p] = 1, (inv. 10.3)

∀p ∈ P \
⋃

i∈{0...n−1}
{tini, uti, csi} . Ψ3[p] = 0

Ψ4,i : ∀p ∈ {crdyi, cpermi, ccsi} . Ψ4,i[p] = 1, (inv. 10.4)
∀p ∈ {csi} . Ψ4,i[p] = −1,
∀p ∈ P \ {crdyi, cpermi, ccsi, csi} . Ψ4,i[p] = 0

Ψ5,i : ∀p ∈ {cnii, creqi} . Ψ5,i[p] = 1, (inv. 10.5)
∀p ∈ {crdyi, nii} . Ψ5,i[p] = −1,
∀p ∈ P \ {cnii, creqi, crdyi, nii} . Ψ5,i[p] = 0

Step 2: Assigning the Places to the Components. Places are assigned to the
components by the two functions δp and δc, giving the components where
tokens are produced for places and consumed from places respectively. Places
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which are assigned to two components are channels between the components.
Places assigned to one component are internal places of the component.

∀i ∈ {0, . . . , n− 1} . δp(p) =





client i if p ∈ {cnii, cinti, ccsi,
crdyi, creqi}

protocol i if p ∈ {csi, nii, wti, uti,
cpermi, tini⊕1}

∀i ∈ {0, . . . , n− 1} . δc(p) =





client i if p ∈ {cnii, cinti, ccsi,
cpermi}

protocol i if p ∈ {csi, nii, wti, uti,
crdyi, creqi, tini}

So, for instance, cni i is internal to client i, cs i is internal to protocol i, and
tini is a channel from protocol i	1 to protocol i (	: minus modulo n, ⊕: plus
modulo n).

Step 3: Designing Further Restrictions. Users should be given some further
possibilities to describe the model in more detail, to reduce the complexity
of later steps.

One aspect that has not been described yet is the direction of the tran-
sitions. The problem is explained in Figure 10.2 on page 123. If the client
process had to be described, it could not be done only by Equation 10.1 on
page 126, since there could have been a transition from place ccs to place cint.
To describe the direction of the flow, transition sets of excluded transitions
will be given. For instance, a transition from place ni directly to place cs
should not be included in the model for design reasons.

This is achieved by giving a set Tmin of “minimal” transitions. All transi-
tions that have greater or equal forward and backward incidences are omitted.

For the ME-example Tmin is chosen as

Tmin =
⋃

i∈{0,...,n−1}

{t1,i, t2,i, t3,i}

where Pre[t1,i, nii] = 1, Post[t1,i, csi] = 1, Pre[t2,i, wti] = 1,
Post[t2,i, nii] = 1, Pre[t3,i, csi] = 1, Post[t3,i, wti] = 1, and all other en-
tries in the incidence vectors are zero.

Step 4: Constructing an Executable Net Model. In this step the first exe-
cutable net model will be constructed. The net model contains the places
given above and all transitions that do not violate the given constraints.

The final set of added transitions is created in several steps. A first esti-
mation is given by T0 = {ta,b|a,b ∈ IN|P |}. For all ta,b ∈ T0 the vectors Pre
and Post are given by Pre[•, ta,b] = a and Post[•, ta,b] = b. This is the set
of all transitions that have different incidences. To this point no constraints
are taken into account.

T is the greatest subset of T0 with the following restrictions for all t ∈ T :
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1. The number of tokens that a transition consumes from or produces for a
place p is less than or equal to the upper bound of the place b(p) (basic
restriction):

∀p ∈ P .Pre[p, t] ≤ b(p) ∨Post[p, t] ≤ b(p)

2. No transition is only producing or only consuming tokens (basic restric-
tion):

Pre[•, t] > 0 ∧Post[•, t] > 0

3. No transition consumes tokens from a place and produces tokens for the
same place (no loops, basic restriction):

∀p ∈ P .Pre[p, t] = 0 ∨Post[p, t] = 0

4. All transitions preserve the invariants (step 2):

∀Ψ ∈ Ψ .
∑

p∈P

Ψ [p] ·Pre[p, t] + Ψ [p] ·Post[p, t] = 0

5. Transitions only have an incidence on places of a single component and/or
on places that represent channels to or from the component (steps 1 and
3):

∀p1, p2 ∈ P . (Pre[p1, t] > 0 ∧Post[p2, t] > 0)⇒ (δp(p1) = δc(p2))

6. Transitions are restricted in their direction (step 4):

∀tmin ∈ Tmin .Pre[•, t] 6≥ Pre[•, tmin ] ∨Post[•, t] 6≥ Post[•, tmin ]

7. There exist no transitions in T of which the forward incidence is a lin-
ear combination of the forward incidences of the other transitions of T
and of which the backward incidence is the same linear combination of
the backward incidences of the other transitions. For all combinations of
natural numbers ca,b holds:

Pre[•, t] =
∑

ta,b∈T\t ca,b ·Pre[•, ta,b]

⇒ Post[•, t] 6=
∑

ta,b∈T\t ca,b ·Post[•, ta,b]

To skip the discussion of suitable firing rules for the moment, but to get
a model that also satisfies leads to-properties, fair firing is assumed for all
transitions. For a more detailed discussion see Section 10.1.3.

Finally the initial markings have to be added in such a way that they
satisfy the invariants. Initially all local protocols have one token on place ni i.
One of the competitors has a token on place uti (symbolised by a grey token,
e.g. in Figure 10.4). All other places of the protocols are empty.
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crdy icperm i

ut i

creq i

csi

ut i

rti i lc i

st i

rt i

tin itin i+1
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ring

wt i gi i
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Fig. 10.4. The first executable solution

Step 5: Identifying the Meaning of the Transitions. Figure 10.4 shows the
net that is constructed so far. The transitions have new names that are much
more expressive than the ones used in the construction above.

The transitions are: st (send token), rt (relay token), rti (reuse token
immediately), gi (get interested), lc (leave critical section), and ut (use token).

The dashed box named token ring in Figure 10.4 has no formal semantics
and simply symbolises where the token leaves the local protocol towards the
ring and where it comes back from the ring.

Step 6: Proving Dynamic Properties. The next step involves constructing a
proof graph that is similar to the one used in [Wal95]. Initially it can be used
to prove leads to properties of a system.

Figure 10.5a shows a preliminary version of the proof graph for a sys-
tem with two competing units. The nodes of the proof graph represent sub-
sets of the reachable markings, e.g. creq1 represents all markings m where
m(creq1) ≥ 1. Since all places are 1-safe, creq1 for instance can be interpreted
as m(creq1) = 1. Therefore, creq1 represents all creq1-markings

The property to be proven is creq1 leads to cperm1. A proof graph is
developed in two steps. First it must be investigated which markings are
reached while executing a firing sequence that starts in a creq 1-marking and
terminates in a cperm-marking.
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Fig. 10.5. Dynamic properties
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Second, it will be examined if the transitions given in the proof graph be-
tween two sets of markings will eventually occur. In the following, transitions
in the proof graph will be named graph transitions to distinguish them from
Petri net transitions.

A graph transition represented by solid arcs will eventually occur if the
current node is not left by another graph transition. The occurrence of graph
transitions represented by dotted arcs is not guaranteed.

The goal is to find a refinement where the node cperm1 can be reached
by solid arcs only, from all nodes that are reached when firing the above
mentioned firing sequences from creq1-markings. If such proof graphs can be
constructed for all required leads to properties, then we have finished our
proof.

The first problem that has to be solved is the problem of the granularity
of the proof graph. How can subsets of markings be found that can be used
to prove the property while keeping the complexity of the graph as low as
possible?

The development is started using the partition that is given by the in-
variant:

m(cni1) + m(creq1) + m(wt1) + m(cperm1) + m(ccs1) = 1,

a linear combination of Equations 10.2, 10.4, and 10.5. This invariant shows
that a marking is either a cni 1-, a creq1-, a wt1-, a cperm1-, or a ccs1-marking.
This invariant or partition is chosen since it contains both the conditions of
the leads to property, creq1 as well as cperm1.

Figure 10.5a presents the proof graph for that partition. From a creq1-
marking only wt1-markings can be reached directly, and from a wt1-marking
only cperm1-markings can be reached directly. Both arcs are dotted, since the
graph transitions are not guaranteed at that abstraction level. For instance,
transition gi 1 is only enabled in a creq1-marking if ni1 contains a token too.
So even the assumed strong fairness does not ensure the firing of the transition
at this high-level view.

This can be changed by refining the sets of markings in the proof graph.
In Figure 10.5b creq i-markings are refined using invariant 10.2. The resulting
nodes are creq i∧ni i, creq i∧wt i, and creq i∧cs i. From the invariants 10.4 and
10.5 it follows that the set of creq i ∧ wt i is empty, and the set of creq i ∧ cs i-
markings is equal to the set of creq i ∧ csi ∧ crdy i. Therefore a creq i-marking
is either a creq i ∧ ni i-marking or a creq i ∧ cs i ∧ crdy i-marking. This fact is
represented in the graph by the arcs annotated by a “⇒”. The resulting proof
graph proves the first part of the property (creq i 7→ wt i).

To prove the part wt i 7→ creq i the wt i-markings are partitioned into
five subsets in Figure 10.5c. The partition is complete because a competitor
cannot simultaneously wait for a token and use it (Equations 10.2 and 10.1)
and because of Equation 10.3. The token is either unused, in a channel, or
used by the competitors. This graph proves the required property.
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Fig. 10.6. An intermediate version

If the required property cannot be proved by further refinements, the
solution ideas of earlier development steps and their consequences have to be
changed.

Step 7: Removing Optional Transitions. If the property can be proved, then
the proof graph is used for another task. There might be graph transitions
that are optional since the leads to property is also preserved without them.
In this case we can remove the corresponding net transitions. By removing
different sets of transitions, different (classes of) algorithms are produced.
By removing the optional transition rti we get the net in Figure 10.6. The
leads to property is still valid, since only graph transitions 1 and 2 have
been removed. Graph transition 3 cannot be removed since a removal of the
corresponding net transition rt1 would also remove graph transition 4 in the
proof graph for creq2 leads to cperm2. This problem is handled in the next
subsection.

10.1.3 Implementation

The last step concerns the fairness of the transitions. Until now (strong)
fairness has been assumed for protocol transitions. Fairness is not easy to
implement and is in many cases unnecessarily strong. Fairness is only needed
to leave a cycle of the proof graph. But even in such cases, strong fairness
can often be replaced by the productive firing rule if some additional side-
conditions are added that result in a removing of arcs from the proof graphs,
thus breaking the cycle.

This aspect is explained using Figure 10.6. If place wt i and place tini

contain tokens, transition rti i and transition ut i are in conflict. There is a
cycle in the proof graph representing the moving of the token along the ring
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Fig. 10.7. The final version of the algorithm

(Figure 10.5c, graph transitions 3 and 4). So transition ut i must fire fairly,
since otherwise the token would be able to move around the ring forever. By
adding a side-condition to transition rt i (see Figure 10.7) the firing of ut i

is ensured and strong fairness can be replaced by the productive firing rule.
The side-condition can be created as follows:

To leave the cycle, transition ut i gets a higher priority than rt i. This is
implemented by restricting the enabling of rt i to the markings where ut i is
not enabled, i.e. rt i should only be enabled in tini∧¬wt i-markings. Therefore
a place ¬wt i is constructed as the complementary place of wt i and is added
to transition rt i as a side-condition.

Figure 10.5d shows the adapted proof graph which no longer has any
cycles. This completes the construction of the algorithm.

10.1.4 Conclusion

The method presented here is well suited to the development of control al-
gorithms. The aspect we focus on is the aspect of guiding a developer of the
algorithm. The approach can also be used to classify algorithms in the same
problem area as ME by giving the sequence of design decisions. Similar al-
gorithms differ only in some later design decisions or at the implementation
stage, whereas less closely related algorithms already differ in earlier design
steps.

The presented version of the method uses only P/T nets. A sophisticated
version would use coloured Petri nets. Such a version would really fulfil the
requirements for a method in the area of control algorithms. It would preserve
the main steps of this simpler version, refining some aspects of it. This simple
method gives a good indication of how to use Petri nets to model a system in
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a state-oriented way, as well as how to use their formal semantics to include
verification.

10.2 Event-Oriented Modelling

In this section we discuss Petri net modelling of discrete dynamic systems,
based on the events within the modelled system.

We advocate a top-down and structured approach, starting with high-level
modelling dividing the system into communicating subsystems, and ending
with low-level modelling defining the protocol of a subsystem.

The high-level modelling uses the power and flexibility of nets, combined
with a well-understood graphical representation, whereas the low-level mod-
elling uses the conciseness of an algebraic notation.

From the complete net model one can derive the protocol, which is often
too complicated to be of any value. However, after abstracting from internal
communication, retaining only a few essential actions, the system often has
to satisfy a simple protocol. The notion of branching bisimilarity can be used
to verify that the complete system obeys this protocol.

Our approach to event-oriented modelling is subdivided into three parts,
treating high-level modelling, protocol-oriented low-level modelling, and ver-
ification.

10.2.1 High-Level Modelling

High-level modelling aims to decompose the complete system into simpler
subsystems. This decomposition can be made on physical and functional
grounds. A system is physically decomposed into subsystems that can be
observed to correspond to different entities in the real world (e.g. by their
location), or it is functionally decomposed into subsystems that have dif-
ferent abilities. For instance, a human body can be physically decomposed
into arms, legs, head, and torso, whereas a functional decomposition would
feature muscles, blood circulation, nerves, and brain etc.

Subsystems are independent to a large extent; however they must be
able to communicate with one another. Communication consists of token
passing or full synchronisation. The former is modelled by place fusion and
the latter by transition fusion. The net formalism allows both methods of
communication, whereas algebraic methods such as CCS [Mil89] allow only
synchronisation.

When decomposing a system into subsystems, one should identify the
subsystems, briefly describing their tasks, and one should describe the com-
munication interface (fusion places and transitions) in each subsystem.

To illustrate the above concepts, we construct a model of a supermarket.
The environment of the supermarket consists of customers, who enter the su-
permarket to buy goods, and suppliers who provide the goods to be bought.
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So our initial model consists of three subsystems, called Consumer, Shop,
and Supplier. The Shop system is the one that we are interested in, whereas
the other two are modelled so as to simulate the shop’s environment. This
decomposition is physical as well as functional. It makes sense to model in-
dividual suppliers if the differences in their behaviour matter to us; however
it is pointless to model individual customers.

The task of the Consumer subsystem is to generate customers visiting the
supermarket with their various profiles, i.e. the goods which they need to buy
as well as the goods which they are inclined to buy if they are attractively
priced and/or displayed. The interface between the Shop and Consumer sub-
systems are “customer” tokens that enter and leave the shop via two places,
which are connected to the subsystems via place fusion.

Likewise, it is natural to model two interface places between the Shop and
Supplier subsystems, one containing the supply orders and one containing the
deliveries. The resulting high-level model is displayed in Figure 10.8.

Fig. 10.8. Supermarket with environment

The Shop system may be decomposed functionally into subsystems Custs
dealing with customers and Goods dealing with supplies and orders. The
interface between Custs and Goods manifests itself by a sell action. At that
moment the amount of goods on display is diminished and the amount of
goods in the custody of the consumer increased. The sell action synchronises
a load (ld) action of a product p on the customer side and a diminish (dim)
action of the same product in the goods subsystem.

One way of modelling this event is through transition fusion. At the mo-
ment that a load action takes place in the Custs subsystem, a diminish action
should take place in the Goods subsystem. Such load and diminish actions
should be possible for every displayed product. Thus it is natural to model
a single fusion transition that is parametrised with the type of product. The
resulting decomposition is given in Figure 10.9.

Of course, a model with the same power would have been obtained by
place fusion, making the set of displayed products available in the Custs
subsystem. The advantages of transition fusion become apparent when e.g.
a finance subsystem is added. Now a third action should be synchronised
with the sell action, adding the value of the loaded product to the amount
of money to pay. A triple fusion is easily implemented, whereas a message-
passing solution would necessitate the addition of extra fusion places.
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Fig. 10.9. Supermarket decomposition

10.2.2 Protocol Modelling

The high-level modelling should continue to the point where the subsystems
can be understood as collections of independent objects. Each object has a
protocol that describes the various states that an object may be in, and the
events that the object may undergo in each state. An object has an initial
state and may (or may not) terminate. This protocol can be described by an
expression or “program” that can easily be converted into a net.

We consider here an example language for protocol modelling that can be
used to supplement the high-level modelling described in the previous sub-
section. This language is a slight extension of the process algebra described
in Section 16.5.3. The expressions describing protocols are built from elemen-
tary actions and some operators. The operators are related to the standard
ones from programming, featuring sequencing, choice, and iteration. A fourth
operator, the free merge, models the independent execution of its operands.

The basic constructs are similar to those in the languages PA ([BW90])
and PTNA ([BV95b]). The difference between our approach and process al-
gebra is that the communication of subsystems is not modelled algebraically.
The high-level modelling of the previous subsection is used instead.

Protocol Language Constructs. The simplest protocol is the one that
cannot undergo any events at all from its initial state, which is denoted by
the constant δ ( “deadlock”). This protocol cannot terminate.

The second most simple protocol executes a single event and then ter-
minates. An event consists of the production and consumption of tokens,
combined with the firing of a transition. In our language, we assume that
all places and transitions have a label, which need not be unique. Transi-
tions and/or places having the same label cannot be distinguished by other
subsystems that communicate or synchronise with them.

Consumptions from a place are denoted by decorating the place label with
a question mark. Similarly, productions are denoted by decorating the place
label with an exclamation mark. The firing of a transition is denoted by the
undecorated transition label. The combination of these sub-events into one
single event is denoted by a bar symbol. So a?|b?|c|b!|b! denotes the single-
event protocol where transition c fires, consuming a token from places a and
b and producing two tokens into place b.

One may choose to disregard or abstract from some (or all) transition fir-
ings and some (or all) consumptions and productions. In this case, we have
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observed events that need not contain firings, productions, or consumptions.
So a?|b! denotes a consumption from a simultaneously with a production
into b, where the transition firing (and maybe other consumptions and pro-
ductions) have been abstracted from. There may even be events (and thus
protocols) that are not directly observed at all. Such a silent event is denoted
by τ . A silent event can be observed indirectly, since it may take an object
to a new state.

From the simple one-(or zero-)step protocols above, more complex ones
can be constructed by means of operators. Brackets can be used to indicate
the order in which the operators are applied. The operator . denotes sequenc-
ing. If X and Y are protocols, then X.Y is the protocol obtained by letting
X , upon terminating, enable the initial actions of Y . For example a?.b? is
the protocol that first consumes a token from a and then terminates by con-
suming from b. This differs from a?|b? where the tokens are consumed by the
same transition. From the descriptions above, it is clear that δ.X = δ for any
protocol X .

The operator + denotes choice. If X and Y are protocols, then X + Y is
the protocol obtained by choosing between the two protocols. The sequencing
operator has priority over the choice operator, which can be overruled by
using brackets. So in a?.(b?+c?.e!).d!, the initial event is a?, after which either
b? or c? can occur. After a c token is consumed, an e token is produced. Then,
in both cases, d! is the terminal event. A choice between X and δ equals X ,
since no events can occur in δ.

Note that the environment can influence a choice between b? and c? by
providing a token for one place and not the other. This is called external
choice. Of course, the environment can also provide both tokens, in which
case the choice is made internally, i.e. by the object itself. In a?.b?+a?.c? for
example the choice is made when consuming the a token. This choice cannot
be influenced by the environment, so it is always internal. This is an example
of nondeterminism.

The free-merge operator is denoted ||. If X and Y are protocols, then
X ||Y is the protocol obtained by independently executing X and Y . Note
that X ||Y terminates iff both X and Y terminate.

Last but not least is the possibility of splitting a protocol into subprotocols
which are identified by names and defining these subprotocols separately. We
shall use upper case letters for protocol names and lower case letters for
events. For example a protocol P can be defined by the following equations:

P = P1.(P2 + P3)
P1 = a?|b?
P2 = c!
P3 = d!|e?
By substitution, one derives that P = a?|b?.(c! + d!|e?). This feature

corresponds to a procedure call in programming. What makes it interesting
is the possibility of recursion: defining equations containing the names of
protocols to be defined. We restrict ourselves here to iteration. An iterative
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protocol P that can choose between protocol B or A followed by P itself
(thus satisfying P = A.P + B) is represented as A∗B. A protocol P that
iterates A forever (satisfying P = A.P ) is represented as A∗δ. This is correct,
since P also satisfies P = A.P + δ.

Construction of Nets for Protocols. We shall construct nets for each
protocol expression. The places of protocol nets are divided into internal
places and fusion places (pins). The internal places are called simply “places”
in the what follows. They are abstracted from, so only consumptions from
and productions into pins are observed. In the figures, pins are shaded.

A protocol net may possess a set of initial places, each marked initially
with a single token, and a set of terminal places. The marking of every termi-
nal place with a single token is called the terminal marking. The initial places
have no incoming edges and the terminal places have no outgoing edges. All
other places have both incoming and outgoing edges. Protocol nets are con-
structed in such a way that the net becomes dead as soon as the terminal
marking is reached. This property can be proved easily by induction.

First we describe an auxiliary construction giving the place product with
respect to two given disjoint sets of places in a net. An example of this
construction is depicted in Figure 10.10.

B

x y

A 1 2 3

x1 y1 x2 y2 x3 y3

Fig. 10.10. Place product construction

Let N be a net and let {ai | i ∈ I}, {bj | j ∈ J} be disjoint sets of places of
N . The place product with respect to these two place sets is the net obtained
by removing the places in the two sets and adding places {ci,j | i ∈ I∧j ∈ J}.
Every arc originally connected to a place ak with k ∈ I is replaced by arcs
connected in the same way to ck,j for j ∈ J , and every arc originally connected
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to a place b` with ` ∈ J is replaced by arcs connected in the same way to ci,`

for i ∈ I .
Note that if either set I or J is empty, the set of product places becomes

empty too and the product net is obtained by removing places and arcs. Also
note that the place product operation is commutative and associative.

The construction of a net for a given protocol is as follows. A deadlock
net is totally empty. A single event is modelled by an initial and a terminal
place, with a transition causing the event consuming from the initial place
and producing into the terminal place.

To construct the net for X.Y , we juxtapose the nets for X and Y and
apply the place product of X and Y with respect to the terminal places of
X and the initial places of Y . Its initial places are the initial places of X and
its terminal places are those of Y .

The net for X + Y is constructed by juxtaposing the nets for X and Y
and applying the place product with respect to the initial places of the two
nets, making the new product places initial, and doing the same with respect
to their terminal places, making the new places terminal.

The net X ||Y is constructed by juxtaposing the nets for X and Y . The
initial places of the new net consist of the original initial places, and its
terminal places consist of the original terminal places, provided both original
nets possess them. Otherwise, all original terminal places and the arcs leading
to them are deleted.

For iterative protocols X∗Y , we juxtapose two copies X,X ′ of the net for
X and two copies Y, Y ′ of the net for Y . We take the place product of the
initial places of X and Y as initial places. We take the place product of the
terminal places of X , the initial and terminal places of X ′, and the initial
places of Y ′ as intermediate places. We fuse the terminal places of Y and Y ′

and make these the terminal places of the protocol net.

a
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a ba

a* b
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+ c + c(a||b)* δ
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a* δ
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b
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c b
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a b
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Fig. 10.11. Net constructions for protocols
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In Figure 10.11 some examples of net construction are given. For the sake
of clarity, no consumption or production of pin tokens is depicted, however
these can be added easily.

Now that we can construct the protocol net for a single object, a net
representing the behaviour of several objects with the same protocol is easily
constructed. By marking the initial places with n tokens instead of one in the
net corresponding to the protocol P , the behaviour of n objects with protocol
P is modelled. By removing the initial and terminal places, the behaviour of
an unbounded number of objects with protocol P is modelled.

As an example, we take the Custs subsystem of our supermarket. This su-
permarket has a bakery section where employees fetch, cut, and package fresh
bread. Customers queue for their fresh bread. The checkout lanes constitute
a second queue.

The protocol for a single customer consists of entering the supermarket
(ent), loading products (ld), possibly interrupted by queuing for bread (qb)
and being served (sb), finally queuing for checkout (qc), paying (pay) and
leaving (lv). Formally this becomes the following expression, resulting in the
net in Figure 10.12 for the Custs subsystem:

cin?|ent . ld∗((qb . sb . ld)∗qc) . pay . lv|cout!

cin

ent

ld
lp1

qb

wb

sb

lp2
ld qc

wc
pay

rl
lv

cout

qc

Fig. 10.12. Customers in supermarket

The protocol nets constructed above can be refined by adding colour. In
this way, events that occurred in an object’s past can be recorded in the
object and influence decisions that are taken during its life-cycle.

In the supermarket example, the profile of the customer entering the sys-
tem will influence which objects will be purchased, and the number of objects
purchased will influence the amount of time needed to be served when check-
ing out. Such data will be kept in the customer token.
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10.2.3 Verification

The event-oriented construction of a net model sketched here is top-down,
guided by intuition and heuristics. It is essential to perform verification and
validation of the model in order to ensure that it has not diverged from what
was intended. Validation can be performed by implementing the model with
existing tools and simulating. This brings to light errors in the model i.e.
behaviour that is not intended and must be corrected.

If the validation shows no errors, we want to verify their absence. The
verification that we propose here proves the modelled net to be equivalent
to a much simpler net after abstracting from events that are invisible to its
environment.

Abstraction consists of declaring the non-essential events to be silent,
which is done notationally by labelling them with the label τ . The net thus
modified is then reduced modulo an equivalence relation that disregards τ -
labelled actions as much as possible. The reduced net is often a simple pro-
tocol net that embodies all desired behaviour and nothing more. Equivalence
notions that disregard silent events are surveyed in [PRS92].

The following example illustrates that reduction must be done with care.
In a bank, clients can apply for loans, for which collateral is needed. The
collateral is estimated, after which the loan file is sent to a responsible bank
employee, who must follow the following procedure. If the estimated value of
the collateral exceeds a percentage p of the loan, it is granted. If it is below
a smaller percentage q, it is rejected. If it is in between, he may decide either
way.

Abstracting from the estimate, we infer that the employee sometimes
automatically grants the loan, sometimes automatically refuses it and some-
times decides there and then. This differs from the case where the employee
is allowed to decide regardless of the collateral’s value. This may not be of
any concern to the client awaiting the decision (unless he plans to bribe the
employee), but it certainly matters to the bank. The difference lies in the
moment at which the choice is made, the branching time.

est1

est2

est3

refuse refuse

grant grant

apply

Fig. 10.13. Loan protocol net
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The “loan protocol” L can be described as follows; c.f. Figure 10.13.
L = apply.(est1.grant+ est2.refuse+ est3.(grant+ refuse))
When abstracting from the estimate, we obtain a protocol L̄ described by
L̄ = apply.(τ.grant+ τ.refuse+ τ.(grant+ refuse)) .
By simply omitting the τ ’s in the above expression, we would obtain
L̄ = apply.(grant+ refuse+ (grant+ refuse)) ,
which is further simplified to apply.(grant+refuse). Note that the above
protocol expressions are nets as well. As we have seen above, the moments
of choice are not adequately represented in this last expression.

In administrative procedures (and other protocols) there is a difference
between a so-called external choice a+ b, where the next action that is taken
can be influenced from outside the organisation (e.g. by the arrival of a mes-
sage or a timeout), and internal choice τ.a+ τ.b, where the decision is taken
within the organisation. This also illustrates the importance of the point at
which choices are made.

In the what follows, we first look at nets without abstraction and consider
strong bisimilarity, the simplest equivalence relation that respects moments
of choice. We then define branching bisimilarity by showing how and when
τ -labelled events can be eliminated. These equivalence notions are treated in
[PRS92] and [GW96].

Strong Bisimilarity. As we have seen earlier, an event in a net corresponds
to the firing of some transition, and the states of a net correspond to its
marking (i.e. the distribution of tokens). Two nets are considered (strongly)
bisimilar iff a correspondence between their states can be established such
that in corresponding states every event in one net can be matched by a
similar event in the other net leading to again corresponding states. This is
a branching-time equivalence.

A formal definition of bisimilarity between two nets N,M is based on
the existence of a relation R (called a bisimulation) between the reachable
markings of nets N and M such that for any markings m,m′ of M and n, n′

of N such that nRm,
m e
−→m′ ⇒ ∃n̄ . n e

−→n̄ ∧ n̄Rm′,
n e
−→n′ ⇒ ∃m̄ .m e

−→m̄ ∧ n′Rm̄
Whether two nets are bisimilar now depends on which events are possible

in a given net. If one is only interested in the functionality of a system and
not in its efficiency, it is a good choice to define single firings of transitions
as events, thus obtaining interleaving bisimilarity.

If efficiency is important, all possible simultaneous firings of transitions
can be taken as events (which may dramatically increase the number of pos-
sible events in a given state). This yields step bisimilarity. Figure 10.14 gives
examples of interleaving and step bisimilar nets. The left-hand and middle
nets are interleaving bisimilar but not step bisimilar, whereas the middle and
right-hand nets are even step bisimilar. There are even finer notions of bisim-
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ilarity that take causal relations of events into consideration. These notions
distinguish all three nets in Figure 10.14.

da

b

c

da d

b c

c b

a

b

c

c

Fig. 10.14. Bisimilar nets

From the definition of bisimilarity, one may infer that protocols of bisim-
ilar nets have exactly corresponding moments of choice. All the options of
some net in a certain state are also open to a bisimilar net in a corresponding
state and vice versa.

Branching Bisimilarity. Above, we defined “strong” bisimilarity that does
not take the special nature of τ -labelled transitions into consideration. The
label τ is considered as an ordinary label, so it is not possible to eliminate
any silent event while staying in the same equivalence class.

c

c

τ

b

a c

d
b

a
c

d

b

a

τ
c

Fig. 10.15. Visible and invisible silent transitions

Branching bisimilarity is an equivalence relation containing strong bisim-
ilarity, as it allows nets with silent events to be equivalent to nets without
them. Given a net, one can determine silent transitions that are truly invisi-
ble, i.e. that do not make choices when firing. The upper net in Figure 10.15
contains a silent transition that is not invisible, since after it fires the event
b can no longer occur. The lower net in the figure contains a silent transi-
tion that is invisible, since the possibility of an event c followed by d, which
might have become impossible when the silent transition fired, in fact remains
possible.
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An invisible transition can be eliminated from a net modulo branching
bisimilarity. In Figure 10.15, the lower net on the right-hand side is obtained
by removing the invisible transition. Here, this involves taking the place prod-
uct of the places that the invisible transition consumes from and those into
which it produces. The two c transitions can then be merged modulo step
bisimilarity, as in Figure 10.14.

Two nets are branching bisimilar iff they are strongly bisimilar after elim-
inating invisible transitions. A formal definition in terms of relations between
markings can be found in e.g. [PRS92], and in terms of transition systems in
[GW96].

ld

cout

qc

cin

ent

pay lvwc

rl

lp

Fig. 10.16. Supermarket customers after abstraction

In general, it is easy to discover and eliminatie invisible transitions. For
example, after abstracting from queuing and being served at the bakery, the
supermarket net is branching bisimilar to the net shown in Figure 10.16. The
behaviour of a customer becomes cin?|ent.ld∗qc.pay.lv|cout! After further
abstracting from e.g. the load action this becomes cin?|ent.qc.pay.lv|cout!.
After abstracting from all actions, we obtain cin?.cout!. Note that branch-
ing bisimilarity presupposes fair iteration, ruling out the possibility that a
customer will eternally load products without ever checking out.

10.2.4 Conclusion

The event-oriented modelling strategy described here uses top-down hierar-
chical modelling, until simple objects are obtained. For these objects, the
protocol (or life-cycle) is described by a language that can be translated into
a net. The net may be kept implicit, or can be constructed explicitly from the
term describing it. One can verify the constructed net by concentrating on
certain aspects, abstracting from the other ones, and using branching bisim-
ilarity to prove equivalence to the expected behaviour with respect to that
aspect.
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10.3 Object-Oriented Modelling

The integration of Petri nets with object-oriented concepts is a rich research
domain which has been tackled in many ways. It has had a considerable
exposure at conferences devoted to Petri nets or object-orientation, and some
satellite workshops have been devoted to the combination.

Three approaches are used, namely giving a formal basis to an object-
oriented language or methodology, extending Petri nets by the use of complex
data types for tokens, and using object-oriented concepts directly in the Petri
net formalism. Petri nets lack structuring facilities and this makes them less
suitable for handling large distributed systems. Each of the three approaches
aims to bridge that gap. Another immediate benefit is the enhancement of
object-oriented methodologies with a formal method for verification and with
prototyping aspects, since Petri net based models can be simulated and ani-
mated.

Association of objects with Petri nets hence allows one to satisfy the
following imperative from Mellor and Shlaer (see [MS94]): “The ability to
execute the application analysis model is a sine qua non for any industrial-
strength method, because analysts need to verify the behaviour of the model
with both clients and domain experts”.

However, such an association is somewhat difficult because the intended
modelling and structuring power of objects is often in conflict with the prov-
ing facilities of Petri nets. For instance, the use of complex data types for
tokens and the support of concepts such as inheritance and polymorphism
may cause a great loss of proving strength within formalisms. In this chapter,
the correspondences between concepts from both approaches are summarised.
Then for each of the main integration approaches, a description of selected
work is given. Thereafter, a description of our method (the OF-Class/OF-
CPN approach) is given. It aims to provide a good tradeoff between mod-
elling/structuring needs on the one hand and verification facilities on the
other.

10.3.1 Objects vs Petri Nets

Object-orientation in specification and programming is based on a set of
structuring concepts such including (see [RBP+91]):

1. Identity : An object is an entity with a handle by which it can be uniquely
identified and addressed. Identification is not possible in P/T nets but is
easy in coloured nets.

2. Classification: This involves grouping intrinsically similar objects into
classes. A class is therefore a pattern which describes the structure of
each object of a collection. Classification can also be performed at the
class level with the meta-class notion but the similarity is not forced
to be intrinsic. Classification is achieved in nets by differentiating tokens
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which circulate in the same net structure (skeleton). The common aspects
of objects are represented in the net structure and tokens carry specific
features of objects.

3. Modularity and encapsulation: An object is an entity which owns data
and performs operations to manipulate it. The many aspects of an ob-
ject can be divided into a publicly accessible part (the interface) and a
private one. Objects can thus be differentiated from one another by this
encapsulation principle. In net semantics, the encapsulation principle can
be achieved by discriminating between the interface and internal places
and transitions.

4. Interaction types : These are mainly supported by some kind of message
passing. An object can manipulate the data owned by another object
by sending a message in order to invoke the appropriate method. The
message passing can be synchronous or asynchronous.

To these basic concepts, other more elaborate ones such as inheritance
(sub-typing and sub-classing), delegation, polymorphism, and dynamic bind-
ing are added to enhance genericity, reuse, and loose coupling. Inheritance
and delegation allows an implementation to be shared and the subsequent
aspect to be optimised. Dynamic binding and polymorphism shift method
resolution to run-time. They enable polymorphic operations implemented by
many methods, each one dedicated to carry out the operation in a specific
context determined by the parameters provided.

Object-orientation also introduces a multi-level abstraction on a system.
It differentiates the internal implementation of objects from the interactions
that can occur between them. Which operations an object performs is mod-
elled by its interface and how these operations are performed is modelled in an
encapsulated way to hide it from the environment. This allows modification
of the encapsulated part provided it remains orthogonal to the interface.

There are many approaches to integrating Petri nets and object-
orientation, each focusing on the adaptation to Petri nets of some concepts
from objects.

Modularity and encapsulation are naturally obtained by decomposing flat
nets into sub-nets considered as well-defined entities. In each sub-net, one can
consider parts of the net structure (generally state machines) as performing
some given operation or method. Decomposition is used in a top-down ap-
proach (see Chapter 9). It allows one to handle large-scale nets and modu-
larity is taken into account in the analysis of such nets. For instance, liveness
and reachability can be analysed in an optimised way using modular nets
[CP92], [NM94], [Val94b].

Identity and classification are achieved by colouring of tokens. The net
structure models the class pattern and objects are modelled as tokens which
need colour to be distinguished. For this part of the integration we face similar
problems as when moving from P/T nets to coloured ones.
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Interfacing and interactions are achieved in three ways as shown in Chap-
ter 9:

• By fusion of shared bordering places which can model asynchronous data
sharing;

• By fusion of shared bordering transitions which can model synchronous
rendezvous communication;

• By arc addition which can model asynchronous message passing.

Interfacing by place fusion, transition fusion, and arc addition covers the
different ways of synchronising between objects. These interfacing mecha-
nisms enable a bottom-up approach (see Chapter 9).

Researchers have also investigated differentiated token types to support
the data-oriented view of systems which is common in the object-oriented
paradigm. For that purpose, tokens are sometimes modelled as nets or as
algebraic data types.

10.3.2 Integration Approaches

This section presents what can be considered as the four main approaches in
the integration of object-oriented concepts with Petri nets.

Multi-Level Abstraction. Firstly, some authors borrow the multi-level ab-
straction of object-orientation and apply it directly to Petri nets. Objects –
seen as entities with data and behaviour – are modelled as separate nets
called object nets or algebraic data types. The whole system is modelled as
a net, called the system net, where tokens are the object nets or algebraic
data. Synchronisation is achieved by specialising the firing rule to the com-
plex tokens (object nets). Although not using object concepts, the formalism
proposed by Valk – Task/Flow EN systems – is a representative attempt
to apply multi-level abstraction to Petri nets [Val87]. The model proposes a
bi-level approach. Systems are considered to be finite sets of tasks partially
ordered by precedence relations. A system is modelled by a system net with
one token which is a net called an object net. The model has been extended
in more recent versions to take into account more elaborate aspects of ob-
ject orientation [Val95] as well as multi-level abstraction which allows one
to model hierarchy. The enabling/firing rule of object nets expresses their
autonomous behaviour. The enabling/firing rule of the system net expresses
the interactions between objects and their combination into other objects
(Figure 10.17).

In OBJSA nets Battiston and others consider nets with objects as do-
mains [BCM88]. The tokens flowing in the net are described in a dedicated
object-oriented language. We will see below a language based on such princi-
ples. Transitions are labelled with method invocations on objects, while arcs
describe the flow of objects in the system. This approach allows one to for-
malise the life-cycle of objects in a system. Dynamic creation and destruction
of objects can be supported in this kind of model.
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X Y

Method_1_X Method_1_Y

z = Method_1_X(a,b);

<X> <Y>

<X>+<Y>

a) b)

Fig. 10.17. Using multi-level abstractions in nets. In a) tokens are objects while
in b) tokens are themselves nets.

The multi-level abstraction can be adapted to Petri nets in a recursive
way [Val95], resulting in hierarchical description of systems. It allows us at
level n(n > 1) to focus on interactions at level n − 1 whose tokens are nets
modelling concurrent actions of the system.

Petri Nets as a Formal Basis for Object-Oriented Languages. Sec-
ondly, some authors are concerned with providing a formal basis for object-
oriented languages. They mainly focus on enhancing algebraic data types
using the control structure from Petri nets. Object life-cycles are modelled
with nets. Tokens in places are objects that might be complex, and methods
are attached to transitions. In the remainder of this section, the emphasis
is on the integration approach which tries to give Petri net semantics to an
object-oriented language. We present two object-oriented languages CLOWN
and CO-OPN.

CLOWN (CLass Orientation With Nets) is developed on top of OBJSA,
a combination of algebraic Petri nets with the specification language OBJ
which provides the modular features [BCC96]. CLOWN defines elementary
classes with multiple inheritance. An elementary class in CLOWN has an
interface which specifies a list of typed formal parameters expected from the
partners (instances of other classes). It also defines instance variables and
places to specify the correctness conditions on objects (accepted values for
instance variables). Methods are described by giving the interacting part-
ners and the pre- and post-conditions (residency in places and modifications
on instance variables). Elementary classes can be combined into composite
classes. Composition in CLOWN is based on method synchronisation (tran-
sition fusion, cf. Section 9.2.3).

A system in CLOWN is a set of classes (elementary or composite) for
which an initial configuration is defined that is the set of live objects. Poly-
morphism is supported in order to enhance generic compositionality. CLOWN
allows one to model concurrent systems with strong synchronisation be-
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tween the components. It does not support dynamic instantiation. Meth-
ods of classes are specified in an axiomatic way by eventual synchronisation
with a list of partners and pre- and post-conditions. Because of the synchro-
nisation mechanism used for composition, objects can not exhibit internal
concurrency. An example of a CLOWN specification is given in Figure 10.18
(adapted from [BCC96]).

CLASS printer
INHERITS root
CONST id : PR-NAME; speed : NAT;
VAR owner : USERID; buffer:DOC; copies : NAT;
INTERFACE USER(name : 	 USER-ID; ficle : DOC; qty : NAT);
PLACES ready : owner =/= none;

METHODS 

load
WITH USER;
POST 
owner <- USER.name;
buffer	 <- USER.file;
copies <- USER.qty;

print 
PRE   copies > 0;
POST copies <- copies -1;

reset
WITH USER;
PRE  owner = USER.name and copies == 0;
POST  owner <- none;
NET

unborn dead

create leave

idle

ready

load - USER reset - USER

print

Fig. 10.18. Example of a CLOWN Class Specification.

CO-OPN (Concurrent Object-Oriented Petri Net) relies on both algebraic
specification and Petri nets [BG91]. The first formalism enables us to describe
the data structures and the functional aspects of systems while the second one
supports dynamics and concurrency. Object-orientation provides structuring



10.3 Object-Oriented Modelling 151

aspects which these formalisms lack. It allows one to structure a system as
a set of interacting components which can be organised hierarchically using
multi-level abstraction. Interactions between objects can be synchronous or
asynchronous and can be executed concurrently. Concurrency is supported
both at the intra-object and the inter-object level. In its most recent versions,
the language has achieved integration of the notions of class, inheritance, and
sub-typing. CO-OPN is the only integration of nets and objects which takes
into account the difference between sub-typing and sub-classing, the subject
of a rich debate in the object-oriented research community. Methods are mod-
elled by parametrised transitions with which other objects can synchronise.

In this type of approach, the contribution of Petri nets is to formalise
the internal behaviour of objects and the interactions between them (see the
graphic in Figure 10.18). An interface, in an object-oriented language, is a
set of operation signatures without any additional structure. Petri nets allow
some structuring of such interfaces by prescribing whether operations are
performed sequentially or in parallel.

Nets with Object-Oriented Concepts. Thirdly, some authors investi-
gate the use of object-oriented techniques more directly. These authors aim
to support object-oriented concepts such as polymorphism, inheritance, and
sub-typing/sub-classing directly in Petri nets. Nets modelling objects are
interfaced by places or transitions to model the synchronisation semantics.
Sibertin-Blanc [SB93] and others have first defined a coloured Petri net model
to build complex distributed systems whose components interact according
to the client-server paradigm. Requests and replies are based on an adapta-
tion of message passing. Messages are issued by passing an appropriate token
in an interface place or by firing an interface transition. The model has been
extended in Cooperative nets to a full support of identification of objects, dy-
namic instantiation and binding, sub-typing, and inheritance [SB94]. Tokens
are described in an ad hoc data-type system which allows the sub-typing.
Objects may pass the identity of other objects in messages (tokens). The late
binding between objects can therefore be achieved in a satisfactory way.

In Object Petri nets, Lakos has achieved a full integration of basic and
elaborate object-oriented concepts [Lak95]. The class hierarchy supports both
token and sub-net types and allows us to take into account the multi-level
abstraction of object-orientation. This model is a full object-oriented version
of the Petri net formalism.

The main drawback of this type of approach is that the authors empha-
sise structuring over proving. The complex types adopted for tokens prevent
computation and interpretation of structural invariants for such formalisms.
Models however can be simulated and animated.

Nets within an Object-Oriented Methodology. Finally, some authors
integrate Petri nets as a formal basis into object-oriented methodologies for
analysis and design, by giving Petri net semantics to object-oriented models.
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The analysis and design are performed in an object-oriented methodology
whose steps are enhanced with Petri nets in order to formalise them.

In [Mol96], net-based semantics are provided for class diagrams which
are commonly used to model structures of objects in a system. Static class
diagrams can therefore be made executable and stand for prototypes of object
specifications. The net-based semantics allows us to enhance object-oriented
methodologies by validation, verification, and prototyping features.

Lakos and others have built a software engineering environment based on
the semantics of object Petri nets and the methodology developed by Shlaer
and Mellor [LK95]. They give correspondences between the object Petri net
model and the four models supporting the Shlaer-Mellor methodology. The
Information Model of the Shlaer-Mellor methodology models the static as-
pects of object-orientation. It is mapped on a somewhat extended version of
the object Petri net model. Associations are represented by adding classes
to the model or attributes to the classes. The State Model of the methodol-
ogy represents the life-cycle of instances of a given class. It is modelled in a
state/transition way and therefore it is directly handled by Petri net concepts.
The Object Communication Model shows the flow of events between objects
in a given model. The hierarchical aspects of object Petri nets allow us to
model each class State Model as a super place and to add transitions and arcs
to model the event flow between them. Finally, the Action Dataflow Diagram
of the methodology shows the actions executed when entering each state. It
is considered to be more relevant to conceptual modelling and hence has a
level of precision which does not match that of the three previous models.
The authors do not discuss its correspondence with object Petri net models.
This work enhanced the Shlaer-Mellor methodology with a prototyping level
and most likely analysis and verification techniques adapted from coloured
Petri nets such as place invariants will be developed in the near future.

10.3.3 A Multi-Formalism Approach Including Nets

This section presents another approach for the integration of nets for verifi-
cation in a specification process. Some authors advocate the use of nets as a
validation/verification tool to be used on demand. The specification is run in
another environment which can be ad hoc or an object-oriented one. Trans-
formation to nets is performed when verification/validation is needed. Such
approaches are used in [DE96] and in [Lil96]. In [DE96], the authors have
built a component model based on a specification language. The component
model OF-Class (object formalism class) allows us to specify the components
of a distributed system in order to enhance encapsulation of the components
and explicit expression of interactions between them. Its main characteristics
are highlighted in the discussion below. As well as this component model,
a modular Petri net model called OF-CPN (object formalism coloured Petri
net) is defined which is later in this section. Transforming OF-Class to OF-
CPN (see below) is formal, fully automated, and supported by a tool. From
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the modular nets, a verification and validation method is developed, it too is
presented below.

OF-CPN is a modular coloured Petri net model that has interfacing places
and supports verification of systems modelled with OF-Class. The transfor-
mation from OF-Class to OF-CPN is fully automated and supported by a
tool. Thus, the main objective here is to compute structural properties such
as place invariants (interpreted as integrity constraints on the objects) and
to prove behavioural properties by checking the model to detect liveness,
deadlocking states, and all properties meaningful in the Petri net paradigm.
Reactive distributed systems have some specific features. A reactive system
is a system which maintains an interaction with its environment and which
is not expected to terminate [Rei92]. One therefore needs to ensure its safety
and liveness. According to Lamport, safety means that “something bad” such
as a deadlock or mutual exclusion violation does not occur, whereas liveness
means that “something good” such as a resource access without starvation or
response to a request does always occur [Lam77]. For this purpose, there is
a focus on formalising interactions.

The OF-Class Model. The OF-Class model does not aim to support com-
plex object-oriented concepts such as inheritance and polymorphism. It ex-
ploits only the modularity and encapsulation which are intrinsic character-
istics for components of a distributed system. The component metaphor
adopted is the following: a component in a distributed system is an entity
able to manage resources, to satisfy the requests on them and to request other
components when neccessary.

Therefore, the main characteristics of the OF-Class component model are
[DE96]:

• Components of a distributed system are concrete entities which must have a
life-cycle. They can have strong similarity and implement servicing policies
such as competition or cooperation. We therefore need a two-level abstrac-
tion which corresponds to classification/instantiation in object-orientation.

• Interactions between the components of a distributed system must be for-
malised. Each component defines exported services as interaction patterns
that the environment must respect when requesting such a service. An
exported service is a set of operations with attached access semantics (syn-
chronous or otherwise) and allowed sequencings. Each exported service
defines a given class of clients for the component. A component must im-
port services exported by others in order to use their operations. For a
required service, one can have expectations of the results of the operations
and specify some kind of exception processing when these expectations are
not met.

• Components of a distributed system must be autonomous and active. They
must be able to satisfy the requests from their environment. Moreover, they
must be able to evaluate the state of managed resources and trigger some
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necessary processing on their own. A component can define some opera-
tions called triggers which can not be invoked by the environment. They
correspond to asynchronous methods called at the creation of an instance
of the component and their execution may be suspended depending upon
a predicate on the state of local resources,

• in order to enable precise verification, the specification must be run at a
sufficient level of detail. We do not need an axiomatic specification but a
procedural one which describes precisely the two aspects of components of
a distributed system: which operations are performed and how they must
be performed.

For examples to illustrate the OF-Class model and its specification lan-
guage, the reader is referred to Section 11.3 in Chapter 11 and to Section 26.3
in the Applications part of this book.

4

t+5t
a b

3

p q

5

Fig. 10.19. Examples of times nets

The OF-Class model allows a precise description of components of a dis-
tributed system, but it does not have any built-in facility for verification and
validation. For that purpose, it is formally mapped onto a modular coloured
Petri net, the OF-CPN model. The main interest in such an approach is the
proof that nets can contribute in a multi-formalism environment for verifica-
tion and validation purposes. Experts in an application domain do not need
to create and manage nets for specification and verification. The main diffi-
culty is to formally transform their specification into nets and to trace back
the results of verification.

The OF-CPN Model.

Definition 10.3.1 (OF-CPN model). An OF-CPN is a 7-tuple
〈N , Pacc, Pres, Psnd, Pget,=acc−res,=snd−get〉 where:

1. N is a coloured Petri net system 〈P, T,Dom,Pre,Post,guard,m0〉
with :
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a) P is the set of places and T the set of transitions and P ∩ T = ∅,
b) Dom : P ∪ T −→ Γ ∗ defines the colour domains for places and

transitions,
c) Pre and Post define respectively the backward and forward incidence

colour functions:
Pre,Post : P × T −→ Bag(SymbDom(P )),

d) guard defines the guards on transitions :
∀t ∈ T .guard(t) : Bag(SymDom(t)) −→ B = {True,False},

e) m0 is a marking for N , i.e. ∀p ∈ P .m0(p) ∈ Bag(CDom(p)),
2. Pacc ⊂ P is a set of places such that ∀pacc ∈ Pacc .

•pacc = ∅∧m0(pacc) =
〈〉,

3. Pres ⊂ P is a set of places such that ∀pres ∈ Pres . pres
• = ∅ ∧m0(pres) =

〈〉,
4. Psnd ⊂ P is a set of places such that ∀psnd ∈ Psnd . psnd

• = ∅∧m0(psnd) =
〈〉,

5. Pget ⊂ P is a set of places such that ∀pget ∈ Pget .
•pget = ∅∧m0(pget) =

〈〉,
6. the sets Pacc, Pres, Psnd, and Pget are pairwise disjoint,
7. =acc−res : Pacc −→ Pres is a bijection such that:

a) ∀(pacc,=acc−res(pacc)) ∈ Pacc × Pres . ∀tn ∈ •(=acc−res(pacc)) .
∃t1, . . . , tn−1 ∈ T . t1 ∈ pacc

• ∧ ∀i ∈ {1, . . . , n− 1} . ti
• ∩ •ti+1 6= ∅,

b) ∀(pacc,=acc−res(pacc)) ∈ Pacc × Pres . ∀t1 ∈ pacc
• .

∃t1, . . . , tn ∈ T . tn ∈ (=acc−res(pacc))
• ∧ ∀i ∈ {1, . . . , n − 1} . ti• ∩

•ti+1 6= ∅,
c) ∀(pacc,=acc−res(pacc)) ∈ Pacc × Pres . pacc

• ∩ •(=acc−res(pacc)) = ∅,

8. =snd−get : Psnd −→ Pget is a bijection such that:

a) ∀(psnd,=snd−get(psnd)) ∈ Psnd × Pget . ∀tn ∈ •(=snd−get(psnd)) .
∃t1, . . . , tn−1 ∈ T . t1 ∈ psnd

• ∧ ∀i ∈ {1, . . . , n− 1} . ti• ∩ •ti+1 6= ∅,
b) ∀(psnd,=snd−get(psnd)) ∈ Psnd × Pget . ∀t1 ∈ psnd

• .
∃t1, . . . , tn ∈ T . tn ∈ (=snd−get(psnd))

• ∧ ∀i ∈ {1, . . . , n − 1} . ti
• ∩

•ti+1 6= ∅,
c) ∀(psnd,=snd−get(psnd)) ∈ Psnd × Pget . psnd

• ∩ •(=snd−get(psnd)) = ∅.

An OF-CPN is a modular coloured Petri net with interface places which
can contain requests and responses (both incoming and outgoing). A source
place in the interface (i.e. p such that •p = ∅) contains tokens coming from the
environment. A sink place (i.e. p such that p• = ∅) in the interface contains
tokens issued to the environment. The bijections =acc−res and =snd−get in
Definition 10.3.1 establish the correspondence between the requests and the
responses issued for them. These correspondences are important at the stage
of verification to check the reliability of the components.

The places of an OF-CPN can be partitioned into interface places
(Pacc ∪ Pres ∪ Psnd ∪ Pget) and internal places (compare Section 9.2). The
same holds for transitions. The interface transitions are the elements of
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Pacc
• ∪ •Pres ∪ Psnd

• ∪ •Pget. These partitions are based on the encapsu-
lation principle well-known in object-orientation. They allow us to separate
the observable behaviour (firing interface transitions) of a component from
the internal behaviour (firing internal transitions).

The OF-CPN model is quite simple because it takes into account only
the encapsulation and modularity concepts from object-orientation. Now our
modular net model is defined, let us consider the transformation from the
component model OF-Class to this one.

Two interacting OF-CPNs O1 and O2 can be composed by merging the
right interface places. If O1 is the server and O2 the client, the merging is
defined by a morphism1 as follows.

Definition 10.3.2 (Composition of OF-CPNs). Two OF-CPNs O1

and O2 can be combined if there is a mapping ζ : Psnd(O1) ∪
Pget(O1) −→ Pacc(O2) ∪ Pget(O2) verifying:

1. ζ(Psnd(O1)) ⊂ Pacc(O2) and ζ(Pget(O1)) ⊂ Pres(O2),

2. ∀p ∈ Psnd(O1), if ζ(p) is defined then ζ(=O1

snd−get(p)) is also defined and

ζ(=O1

snd−get(p)) = =O2
acc−res(ζ(p)),

3. ∀p ∈ Psnd(O1) ∪ Pget(O1) .Dom(ζ(p)) = Dom(p).

Such a mapping ζ is also sometimes denoted ζO1→O2 in the remainder of
this chapter.

From OF-Class to OF-CPN. The transformation method is based on the
one presented in [Hei92]. The basic principles are :

• Resources, variables, and parameters are mapped to places whose colour
domains are determined by the type of the corresponding items.

• Elementary actions (e.g. assigning a value to a variable) are transformed
into transitions while elaborate ones (e.g. loops and conditionals) corre-
spond to sets of transitions with sequencing places (see below).

• Arcs are added to model the use of resources (resp. variables and parame-
ters) by actions, and the arc-expressions model the effects of such uses.

• Special places called sequencing places are added to model the control flow
in the component. If an action t1 is sequentially followed by t2, then there
exists a sequencing place p such that p ∈ t1• ∩ •t2.

Verification and Validation. OF-CPN are modular coloured Petri nets
which can be combined by place fusion according to offer/require service
relations. This combination allows the system designer to build and vali-
date/verify subsystems (sets of interacting components). Once a set of OF-
CPNs is combined into a composite one, the interface places of the composite
can be marked by tokens modelling requests from the environment. A com-
posite (or even a simple) OF-CPN with such an abstraction of its environment

1 Each place is merged with its image by φ.
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is used for verification techniques such as reachability graph construction and
structural invariants computation. The graph supports verification of safety
and reliability properties.

Based on the (direct) executability of nets, models can be validated by
simulation or animation. In this sense, validation means model execution and
allows us to validate a priori some specific scenarios supplied by application-
domain experts.

10.3.4 Conclusion

Integration of objects and Petri nets has been tackled in many ways. In all
of them the two main achievements are:

• Enhancement of Petri nets by the addition of structuring facilities. The
Petri net formalism is therefore more relevant for the modelling of large
concurrent/distributed systems.

• Enhancement of object-oriented concepts by the formalisation of interac-
tions and control structures. The object-oriented technology is therefore
enhanced to support at least simulation and possibly verification for the
modelling of large concurrent/distributed systems.

Petri nets provide a valid formalism for enhancing object-oriented con-
cepts with formal semantics and/or validation and verification facilities. They
have semantics able to support, at least partially, the elaborate constructions
one can find in the software life-cycle (analysis, design, etc). Moreover, they
provide validation, and verification by simulation or animation facilities which
is sine qua non for any industrial-strength method [MS94].





11. Case Studies∗

This chapter presents three case studies on developing a mutual exclusion
(ME) algorithm for a ring architecture, one for each method described in the
previous chapter. This section gives a brief introduction to the problem and
a classification of the solutions within the ME-area.

The chosen algorithm does not work very efficiently. It is a compromise
between two divergent requirements. On the one hand, the algorithm should
be advanced enough to explain the features of the methods, but on the other
hand it should be easily understood by readers who have no experience in
using the methods. Improvements in efficiency would have caused overly com-
plex structures.

The Problem. The access of n computers to a common resource (e.g. a
printer) has to be organised. The printer can serve only one computer at
a time. In addition to the mutual exclusion property it is required that a
requesting computer must be eventually served, i.e. a job must be eventually
printed.

An abstract representation of the problem is: n client units compete for a
single (permission) token. The computer is represented in an abstract way by
a client unit consisting of three states client not interested (doing some local
work), client interested (waiting for the resource) and client in its critical
section. The details will be given in each case study. In the following figures
a client will be abstracted to one transition.

Token-based ME-algorithms contain a single token. A client unit has to
possess the token if it wants to enter the critical section.

In a non-distributed system the problem can be solved as in Figure 11.1.
There is one resource place (res) with a single token. The firing of a client
transition represents the compound action of taking the token, using the
critical section, and putting the token back into the resource place. If re-
source allocation is done by a fair strategy such as first-come-first-served, the
model fulfils the specification. The place in the middle represents a kind of
semaphore.

Since only one transition can fire at a time the mutual-exclusion property
holds. The dynamic property is true if some fairness assumptions are added.
∗ Authors: R. Mackenthun (Section 1), M. Voorhoeve (Section 2), A. Diagne (Sec-

tion 3)
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client 2

client 3

client 1

res

Fig. 11.1. A simple local solution

This first solution cannot be used for distributed systems. In distributed
systems clients can communicate only via message-passing through channels.
The important property of those channels is that messages can be sent only
via a channel from one location and a message can be received only at one
other location. If all three clients of Figure 11.1 are located at different sites,
place res cannot be used as a channel. Figure 11.2 gives a solution where
the clients can be distributed. It is a central-server model. The server is
represented by the net in the dashed box in the middle of the figure. It
decides which client is served next and sends the token to that client. The
server and individual clients can each have their own location. All channels
are between the server location and a client location. If the server allocates
the resource by a fair strategy the dynamic properties are also fulfilled.

client 2

client 3

client 1

client location 2

client location 3

client location 1

server  location

res

Fig. 11.2. The central-server solution

Even though this solution can be implemented in a distributed system
it would not be called a distributed algorithm. In distributed algorithms all
competing units have a similar behaviour or at least there is no unit that
determines the behaviour of the whole system. Although no formal definition
of that class of algorithms is presented here, it is obvious that the central-
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server model does not belong to this class since the server does control the
behaviour of the whole system.

client 2

client 3

client 1

client location 2

client location 3

client location 1

Fig. 11.3. The token-ring solution

An example for a distributed algorithm is the token-ring model in Fig-
ure 11.3. All units have the same structure. They are located on a logical
ring. The token moves around the ring. If each client eventually gives the
token to its neighbour and each requesting client eventually takes the token
from the ring if it is coming around, the dynamic properties are ensured.

The Solution for the Case Studies. One could object that the described
algorithm is a kind of distributed busy waiting. The token moves around
the ring even if no client is interested. To avoid this behaviour a request
mechanism is included.

The informal description of a possible solution is:

• A functional unit (FU) has used the token and still possesses it:
– If the FU wants to re-enter the critical section it sends the request onto

the ring.
– If the FU gets a request it sends the token to its neighbour.

• An FU uses the token:
– All incoming requests are delayed

• An FU has no token and is not interested:
– All incoming requests are relayed.
– If the token arrives it is relayed.
– If the FU wants to enter the critical section it sends a request.

• An FU has no token and is interested:
– If the token arrives it is used.
– All incoming requests are relayed.

This algorithm has sufficient complexity to be used for the case studies
in this chapter. The reader should not be surprised that the solutions of all
the case studies are slightly different. The representation of the algorithms
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is influenced by the method used to construct them. Nevertheless, the basic
components are the same in all the case studies.

11.1 State-Oriented Approach

In Section 10.1 the state-oriented method is explained using a simple ME-
example. This section presents an algorithm fulfilling the requirements as
given in the introduction. Since all ME-problems share some aspects, some
of the results from the method subsection will be reused.

11.1.1 Specification

The specification for the ME-problem has already been given in Sec-
tion 10.1.1. All the results of that subsection can be reused.

11.1.2 Design

Step 0: Designing the Components and the Communication Structure. The
structure of the components and the communication structure is shown for
two competitors in Figure 11.4.

client
0

client
1

proto-
col 0

proto-
col 1

cperm
0

creq
0

crdy 0 cperm
1

creq
1

crdy
1tin 0

tin 1

rin 1

rin 0

Fig. 11.4. The components and the communication structure

Only the channels for the requests (rin, request in) have been added to
the structure in Figure 10.3. While the token channels go from protocols with
lower numbers to protocols with higher numbers, the request channels go in
the reverse direction.

Step 1: Designing Safety Properties with Place Invariants. The first five in-
variants are the same as in the method section:

∀i ∈ {0, . . . , n− 1} . m(cni i) + m(cint i) + m(ccs i) = 1 (11.1)

∀i ∈ {0, . . . , n− 1} . m(nii) + m(wti) + m(csi) = 1 (11.2)
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∑
i∈{0...n−1}(m(csi) + m(uti) + m(tini)) = 1 (11.3)

∀i ∈ {0, . . . , n− 1} . m(crdyi) + m(cpermi) + m(ccsi) = m(csi).(11.4)

∀i ∈ {0, . . . , n− 1} . m(cnii) + m(creqi) = m(crdyi) + m(nii). (11.5)

The sixth invariant affects the request mechanism. To avoid unnecessary
movement of the permission token, it should never leave a competitor if there
is no request. This dynamic property can be presented as follows: On the ring
there are as many request and permission tokens as competitors waiting for
a token. If the permission token is possessed by a competitor then there are
as many request tokens on the ring as waiting competitors. This ensures that
there are always tokens moving as long as at least one competitor is waiting,
and that no token is moving if no client is interested.

∑
i∈{0...n−1}m(wti) =

∑
i∈{1...4}(m(rini) + m(tini)). (11.6)

The set of places is

P =
⋃

i∈{0...n−1}

{cnii, cinti, ccsi, creqi, crdyi, cpermi, csi, nii, wti, uti, tini, rini}.

The set of p-flows is Ψ =
⋃

i∈{0...n−1}{Ψ1,i, Ψ2,i, Ψ3, Ψ4,i, Ψ5,i, Ψ6} with

Ψ1,i : ∀p ∈ {cnii, cinti, ccsi} . Ψ1,i[p] = 1, (inv. 11.1)
∀p ∈ P \ {cnii, cinti, ccsi} . Ψ1,i[p] = 0

Ψ2,i : ∀p ∈ {nii, wti, csi} . Ψ2,i[p] = 1, (inv. 11.2)
∀p ∈ P \ {nii, wti, csi} . Ψ2,i[p] = 0

Ψ3 : ∀p ∈
⋃

i∈{0...n−1}
{tini, uti, csi} . Ψ3[p] = 1, (inv. 11.3)

∀p ∈ P \
⋃

i∈{0...n−1}
{tini, uti, csi} . Ψ3[p] = 0

Ψ4,i : ∀p ∈ {crdyi, cpermi, ccsi} . Ψ4,i[p] = 1, (inv. 11.4)
∀p ∈ {csi} . Ψ4,i[p] = −1,
∀p ∈ P \ {crdyi, cpermi, ccsi, csi} . Ψ4,i[p] = 0

Ψ5,i : ∀p ∈ {cnii, creqi} . Ψ5,i[p] = 1, (inv. 11.5)
∀p ∈ {crdyi, nii} . Ψ5,i[p] = −1,
∀p ∈ P \ {cnii, creqi, crdyi, nii} . Ψ5,i[p] = 0

Ψ6 : ∀p ∈
⋃

i∈{0...n−1}
{rini, tini} . Ψ6[p] = 1, (inv. 11.6)

∀p ∈
⋃

i∈{0...n−1}
{wti} . Ψ6[p] = −1,

∀p ∈ P \
⋃

i∈{0...n−1}
{rini, tini, wti} . Ψ6[p] = 0

Step 2: Assigning the Places to the Components.
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∀i ∈ {0, . . . , n− 1} . δp(p) =





client i if p ∈ {cnii, cinti, ccsi,
crdyi, creqi}

protocol i if p ∈ {csi, nii, wti, uti,
cpermi, tini	1, rini⊕1}

∀i ∈ {0, . . . , n− 1} . δc(p) =





client i if p ∈ {cnii, cinti, ccsi,
cpermi}

protocol i if p ∈ {csi, nii, wti, uti,
crdyi, creqi, tini,
rini}

Step 3: Designing Further Restrictions. The set Tmin is chosen as

Tmin =
⋃

i∈{0,...,n−1}

{t1,i, t2,i}

where Pre[t1,i, wti] = 1, Post[t1,i, nii] = 1, Pre[t2,i, csi] = 1,
Post[t2,i, wti] = 1, and all other entries in the incidence vectors are zero.
So, the local protocol may not change its internal state directly from wt i to
ni i or from cs i to wt i.

Step 4: Constructing an Executable Net Model. The result of the construction
is shown in Figure 11.5 (already including step 5).

crdy i

cperm i

ut i

wt i

creq i

csi

ni i

ecnt i lc isr i

rti i

ecut i

sti i

rin irin
i-1

rr i

st i

rt i

tin itin i+1

token 
ring

req.
ring

Fig. 11.5. Request token ring – first version

Step 5: Identifying the Meaning of the Transitions. The protocol includes the
required solution. An interested competing unit sends a request(sr for send
request). If it possesses the token, the token will be sent on an incoming re-
quest (st for send token). The critical section will be entered if a token arrives
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(ecnt for enter critical section with a new token). Not-interested competing
units must be able to relay incoming tokens (rt for relay token) and units
that do not possess the token must be able to relay incoming requests (rr for
relay request).

Additionally there are some short cuts in the net. A token can be reused if
it is still possessed by a competitor which gets interested again (rti for reuse
token immediately). Since requests are used to activate the token, a unit that
possesses the token can immediately send the token if it gets interested (sti
for send token immediately). It can also enter the critical section if a request
comes in (ecut for enter critical section with a used token). This transition
can occur if a unit suddenly decides to reuse the token but has already sent
a request.

Step 6: Proving Dynamic Properties. The dynamic property is proved by the
graph in Figure 11.8. It contains some extended arcs, labelled by (⇒). The
semantics is that the system being in one of the states represented by the
starting node is already in one of the states represented by the ending nodes
or it will eventually reach one of those states.

Step 7: Removing Optional Transitions. The proof graph shows that all short-
cut transitions can be removed without violating the dynamic properties. The
resulting proof graph is not shown here. The net is given in Figure 11.6.

11.1.3 Implementation

At the implementation stage, transitions rr and rt have to have a lower
priority than the transitions st and ecnt . This is again achieved by adding
loops (Figure 11.7). The proof graph for the final version is given in Figure
11.9.

crdy i

cperm i

ut i

wt i

creq i

cs i

ni i

ecnt i lc isr i

rin irin i-1

rr i

st i

rt i

tin itin i+1

token 
ring

req. 
ring

Fig. 11.6. Request token ring – intermediate version
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crdy i

cperm i

ut i

wt i

creq i

cs i

ni i

ecnt i lc isr i

rin irin i-1

rr i

st i

rt i

tin itin i+1

token 
ringreq. 

ring

nt i

ni i

Fig. 11.7. Request token ring – final version

11.2 Event-Oriented Approach

In this section, we shall indicate how the request ring node can be modelled
by an event-oriented approach. The interface between the nodes is modelled
asynchronously by place fusion, and the interface between a node and its
client is modelled synchronously by transition fusion. The section is termi-
nated by verifying the models with respect to their desired functionality.

11.2.1 Modelling a Node

The modelling process starts by identifying the events in the external be-
haviour of a node. The events that are exchanged between the node and its
client are the following firings of transitions:

creq requesting enty into the critical section,
cperm permitting entry into the critical section,
crdy terminating the stay in the critical section.

The protocol that the node and client must follow is that the client,
when wanting to enter the critical section, issues a request and waits for
permission. If the permission arrives, the critical section is entered and the
actions therein are executed by the client. Upon termination of these actions,
the critical section is left. A new request can then be issued.

The events of the node-node communication to ensure mutual exclusion
are the following.
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Fig. 11.8. Proof graph – first version

treq? receiving request for token,
treq! sending request for token,
tok? receiving token,
tok! sending token.

Let R be the protocol of a node that just has left the critical section,
and thus possesses the token. Clearly, the creq and treq! events can be
synchronised, as can the cperm and tok? events. Furthermore, after crdy, a
tok! event must occur in order not to monopolise the token, and this tok!

event can be synchronised with a treq? event. So the protocol R can be
modelled by the expression
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Fig. 11.9. Proof graph – final version

((creq|treq!||treq?|tok!).tok?|cperm.crdy)∗δ

By the algorithm for constructing a net from a given protocol we obtain
the net of Figure 11.10. The net contains the following internal places:

ni not interested in entering critical section,
at awaiting the token,
pt having the token,
nt not having the token,
cs within critical section.

The above definition of R disregards the need to relay incoming requests
and tokens. The relaying of tokens is performed when the token is not wanted
by the node, so ni must be marked. The relaying of requests is performed
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st

at

ni

nt

pt

cs

tok!

tok?

treq?treq!

crdy

creq

cperm

Fig. 11.10. Protocol without relaying

when the token is no longer possessed by the node, so nt must be marked.
This leads to additions to Figure 11.10, resulting in Figure 11.11.

st

treq?

at

ni

nt

pt

cs

treq!

tok!

tok?

rt

rr

creq

crdy

cperm

Fig. 11.11. Protocol with relaying added

The net contains the following internal transitions:
rt relay token,
rr relay request,
st send token.

The ring is connected by means of place fusion, and each node is connected
to its own client by transition fusion as indicated in Figure 11.12. The treq!

pin of the k-th node and the treq? pin of the (k + 1)-th node are connected
to the place rk . Similarly, the tok! pin of the k-th node and the tok? pin of
the (k+1)-th node are connected to the place tk. The given node is connected
with its treq! pin to r1, its treq? pin to rn, its tok! pin to t1 and its tok?
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client

node
tok?

treq?

tok!

treq!r4

t4 t1

r1

r2

t2

r3

t4

creq
cperm

crdy

Fig. 11.12. Request token ring

pin to tn. These places are initially not marked. We assume that initially one
node has just left its critical section and thus is holding the token. The other
nodes are in their rest state (not interested and without token).

zzz

crq cp

crd

Fig. 11.13. Client protocol

The protocol of a client has been treated already. A client may either
issue a request by synchronising with the crq action of his server or “fall
asleep”. He does not have to become interested, but if he does, he must
synchronise with the permission and ready actions, completing the cycle.
The protocol expression thus becomes (zzz.δ+crq.cp.crd)∗δ, giving the net
in Figure 11.13.
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11.2.2 Verification

The verification of the request ring protocol is done in two steps. First, we
show that only one client can be in the critical section. This can be done
by directly establishing a place invariant for the net; here we choose to first
simplify the net modulo branching bisimilarity. In order to verify that in a
ring of n nodes all clients are guaranteed to have access to the critical section,
it is proved that a given node can accommodate the needs of its client.

In Figure 11.14, two neighbouring nodes from Figure 11.12 with their
clients have been expanded with trivial simplifications. Our first abstraction
step consists of abstracting from the relaying and token release events.

crd2

cp2

t4 t1 t2

r2
r1r4

crd1

cp1

crq1 crq2

τ τ

τ

τ τ

τzzz1 zzz2

Fig. 11.14. First abstraction step

It turns out that the token release and the request relaying events are
invisible. Removing them from the net, we obtain Figure 11.15. However, in
doing so, an extra place rp (requests pending) has to be added. Its marking
reflects the number of nodes that are interested in entering the critical section.
Only if this place is marked will tokens be relayed. From the figure, it can be
inferred that every cp event must be followed by a corresponding crd event
before any new cp event can occur. Thus the critical section can be entered
by at most one client at a time. This follows from a place invariant in both
nets stating that there is only one “token” token in the ring.

Next, we abstract from all but one client’s actions. It turns out that
all silent events become invisible and the ring poses no restrictions upon the
client, since it becomes branching bisimilar to Figure 11.13. Thus every client
is able to enter the critical section after a request.
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t4 t2
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Fig. 11.15. Reduction modulo branching bisimilarity

11.2.3 Adding Colour

By adding colour to the above model it is possible to model any size of request
ring. Each node in the ring possesses a unique identifying number n, ranging
from 0 toN−1. The transitions are parametrised by the node identifier. These
numbers are also the colour sets of the places. Node n sends its requests to
node n − 1 and its tokens to the node n + 1. All other consumptions and
productions are of tokens with the same colour as the transition parameter.
Addition and subtraction is performed modulo N , so node N − 1 sends its
tokens to and receives its requests from node 0 and vice versa.
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Fig. 11.16. Coloured request ring

The resulting coloured net is displayed in Figure 11.16. The state where
node 0 possesses the token and no node is interested is depicted. Abstracting
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from the relaying and token release events and then removing invisible events
gives Figure 11.17. The place rp is “uncoloured”; its marking indicates the
number of waiting interested nodes. The properties of this simpler net can
be studied.
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Fig. 11.17. Abstraction of Figure 11.16

11.3 Object-Oriented Approach

This section is dedicated to the specification of the mutual exclusion token
ring in an object-oriented way. The object-oriented method focuses on how
the events are implemented on each node rather than on the way they must
happen (protocol-oriented approach) or their causal relations (temporal-logic-
oriented approach). Events are implemented as modifications of the states of
given nodes. These modifications influence the way later events are processed.

We therefore consider a class named NodeCoordinator whose instances
relay tokens and requests and allow other objects located at the same node
to enter and exit the critical section. An instance of the NodeCoordinator has
a set of resources describing its current state. Events are processed according
to the current state and can eventually modify it.

The NodeCoordinator is described using the OF-Class formalism de-
scribed in Chapter 10. A Petri net is then synthesised from this description.
This net is the entry point of the activities relevant to the Petri net formalism.

11.3.1 Structure of the NodeCoordinator

On each node, we have an instance of the NodeCoordinator OF-Class to coor-
dinate the objects for entering and exiting the critical section. The NodeCoor-
dinator instances communicate by means of signals sent on the corresponding
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signal interfaces. These signals are relayed or not according to the current
state of the instance, e.g. an incoming request signal is relayed if the token is
not present and the site is not willing to enter the critical section. If the site
wants to enter the critical section, the incoming request is delayed. If the site
is idle and holds the token, the request is discarded and the token is sent.
The state of the node at a given moment is determined by its resources:

• TokenPresent is an integer resource set to 1 when the node holds the token
and to 0 otherwise.

• InCS is an integer resource set to 1 when the node is in the critical section
and to 0 otherwise.

• CSWanted is an integer resource for the number of local pending requests
for the critical section.

• PendingRequest is an integer resource for the non-local pending requests
for the critical section.

• GoCS is a semaphore for the control of the critical section access on each
node. The first call to the P operation on the semaphore is blocking.

The NodeCoordinator has two operations (EnterCS and ExitCS ) and two
triggers (RelayToken and RelayRequest). These operations are called by local
objects requesting or releasing the critical section. Triggers run automatically
and forever to handle incoming tokens and requests.

The NodeCoordinator’s main role is to send the token on demand when
it is present, and to relay the requests and the token when the node is idle.
Incoming requests are delayed when the node is in its critical section or
waiting for the token. The NodeCoordinator also offers a service for other
objects on the same node to enter and exit the critical section. When a
request for the critical section occurs on a node, the NodeCoordinator sends
a request and stops relaying incoming requests. It waits for the token in order
to enter the critical section. When the node exits the critical section several
cases are possible:

1. There is only one pending request on the node; it is discarded and sub-
sequently the token is sent.

2. There are many pending requests on the node; they are all relayed except
one for which the token is sent.

3. There is no pending request; the token is kept until a new request comes
in; then the request is not relayed but the token is sent.

To ensure fairness, the protocol prevents a node from starving the others
by using the token more than once each time it is present. A node, even when
holding the token, has to send a request before each critical section access.
If the token is present and all sites are idle, the request comes back after one
loop and the token goes for a loop because requests are undistinguishable.
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11.3.2 The NodeCoordinator in OF-Class Formalism

We now give a description of the NodeCoordinator in the OF-Class Formal-
ism.

NodeCoordinator ISA OFClass

INTERFACE

EXPORTS {
SERVICE AccessCS

OPERATIONS { void : EnterCS(void),void : ExitCS(void) }
AUTOMATA AccessCS is { EnterCS, ExitCS }
INVOCATION-MODE synchronous }

PROVIDES {
SIGNALS {

OutRequest TRANSMISSION synchronous,
/* signal interface for incoming requests */

OutToken TRANSMISSION synchronous
/* signal interface for incoming token */}}

EXPECTS {
SIGNALS {

InRequest FROM NodeCoordinator,
/* signal interface for outgoing requests */

InToken FROM NodeCoordinator
/* signal interface for outgoing token */}}

STRUCTURE

RESOURCES {
int : TokenPresent default false duplicated,

/* 1 if the node holds the token */
int : InCS default false duplicated,

/* 1 if the node is in critical section */
int : CSWanted default 0 duplicated,

/* number of critical section requests */
int : PendingRequest default 0 duplicated,

/* number of pending requests to be relayed later */
semaphore : GoCS init 0 duplicated

/* permission semaphore for the critical section */ }
OPERATIONS /* for critical section request and release on a node */
{

void : EnterCS(void)
{

CSWanted++; /* increasing the requests for a critical section */
signal(outRequest); /* sending a request to other nodes */
P(GoCS); /* waiting for a critical section permission */
InCS := 1; /* the node is in critical section */
return;

}
void : ExitCS(void)
{

CSWanted–; /* decreasing the requests for a critical section */
InCS := 0; /* the node is no longer in critical section */
if( PendingRequest != 0 ) then

TokenPresent := 0;
PendingRequest–; /* one pending request discarded */
signal(outToken); /* sending the token for the discarded request */
while(PendingRequest != 0) do

signal(outRequest); PendingRequest–;
done; /* relaying other pending requests if any */

endif
return;

}
}
TRIGGERS /* for handling incoming token and requests automatically */
{

RelayToken(void)
pre-condition true;
{

while(true) do
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signal(inToken); /* blocking to wait for the next incoming token */
if (CSWanted != 0) then /* a local critical section is wanted */

TokenPresent := 1; /* marking the node as holding the token */
V(GoCS); /* allowing a critical section access */

else /* no critical section request on the node */
signal(outToken); /* relay the token out */

endif;
done

}
RelayRequest(void)
pre-condition true;
{

while(true) do
signal(inRequest); /* blocking to wait for the next incoming token */
if(TokenPresent == 1 and InCS == 0) then

TokenPresent := false; signal(outToken);
endif; /* discard the request and send the token */
if(TokenPresent == 1 and InCS == 1) then

PendingRequest++; /* delay the request */
endif;
if(TokenPresent == 0 and CSWanted != 0) then

PendingRequest++; /* delay the request */
endif;
if(TokenPresent == 0 and CSWanted == 0)

signal(OutRequest); /* relay the request */
endif;

done
}

}
ENDOFCLASS /* The Node Coordinator is fully specified */

11.3.3 Net Synthesis from the NodeCoordinator Specification

From the description of the NodeCoordinator in OF-Class, we can synthesise
a Petri net in order to verify the model. The net synthesis is based on the
method we describe in Chapter 10. We give below a reduced version of the
resulting net.
Here is the net modelling one NodeCoordinator instance. In order to have

a model for one ring configuration, we use two or more such instances. The
ring configuration is achieved as follows:

• The OutRequest place of each instance is merged with the InRequest place
of the instance located at the downstream node;

• The OutToken place of each instance is merged with the InToken place of
the instance located at the downstream node;

• One node holds the token (its TokenPresent place is marked 1).

11.3.4 Verification of Protocol Correctness

The Petri net modelling the NodeCoordinator has two interesting p-flows:

• The first one is: <x1>Idle + <x1>EnterCS + <x1>CS + <x1>ExitCS +
<x1>GoIdle + <x1>Wait2 + <x1>Go + <x1>GoRelay + <x1>Relay =
<x1>. This means that an object on a given node is always in one of these
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states. Hence the access to the critical section is correctly handled in this
implementation of the protocol. This p-flow corresponds to a sub-net which
is a state-machine; it shows that the process can have cyclic behaviour.

• The second one is: <x1>CS + <x1>Wait1 + <x1>ExitCS = <x1>CS
+ <x1>Wait2 + <x1>Go + <x1>ExitCS. This means that a request to
the critical section access (Wait1) is either blocked waiting for the token
(Wait2) or authorised (Go).

For a ring configuration with two nodes which we do not show here for sake
of space, we compute a p-flow which means that the token is either present
on a given node or circulating on the signal ports.



12. Conclusion

In the previous chapters, Petri net models have been presented for various
systems. In retrospect, these systems (and the models for them) are somewhat
similar. This is no coincidence, since Petri nets are well suited for modelling
distributed systems, i.e. systems that consist of many largely independent
subsystems that work towards a common goal.

The examples used were communications networks and logistic chains. It
is possible to model a monolithic (non-distributed) system such as a com-
puter program as a Petri net, but the net formalism will add little to the
understanding of such systems.

Modelling a system as a Petri net requires the distributed nature of the
net. In a full-fledged distributed system, each component has its own state,
which is altered by the occurrence of events. These events can be either
external, from the system’s environment, or internal, from other components
of the same system.

We have seen a modelling strategy based primarily on states and one based
on events. These approaches are complemented by an object-orientation-
based one, stressing both state components (attributes) and event compo-
nents (methods). In [DNV90], it has been shown that all approaches have
the same power, since it is possible to model states as future events, and to
model the execution of an event as a state component.

In a large project, all three approaches can be used at different stages.
Components are identified with the messages and protocols of communica-
tion between them. Next, one identifies local state components reflecting the
protocol stages, together with predicates that one wants to make true or keep
invariant. At the design and implementation stage, one identifies objects and
their classes.

Methodologies that combine some or all of these approaches are still the
topicof research. No doubt it will be important to have one theoretical frame-
work for every “flavour” of modelling with Petri nets. However, it will largely
be up to the modeller to choose an adequate strategy for the specific problem
addressed.
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13. Introduction: Issues in Verification∗

The diversity of the verification methods developed for Petri nets and their
extensions may be confusing for the engineer trying to choose appropriate
techniques to solve his problem. This chapter aims to clarify the basis of
such a choice by discussing some general issues involved in the design and
application of a verification method:

• The net models that the method enables us to verify;
• The kind of properties to be checked;
• The families of methods;
• The interplay of different methods.

On the one hand a net model with highly expressive power such as a
coloured Petri net enables us to handle complex systems. On the other hand,
this expressive power implies difficulties for the verification process (e.g. in-
creasing complexity, semi-decidability, or restrictive types of properties). In-
dependently, some high-level models enlarge the range of the results by intro-
ducing a parametrisation (e.g. abstract data types or variable cardinalities of
domains).

The specification of the properties must address the following question:
How should we define good behaviour of a net? Among the different answers,
one can suggest:

• A family of properties expressing the behaviour of the net independently
of its interpretation (e.g. liveness, boundedness);

• A language of properties adapted to dynamic systems and especially con-
current ones (e.g. linear time logic, branching time logic);

• Behaviour equivalence with another net modelling, for instance, a more
abstract view of the system (e.g. bisimulation);

• The response to a sequence of tests (e.g. failure tests, acceptance tests).

The methods may be classified according to basic criteria. What types of
nets are supported by the method? Does the method work at the structural
level (i.e. the net description) or at the behavioural level (i.e. the reachability
description)? Is the verification process entirely or partially automatic? What
kinds of properties is the method able to check?
∗ Author: S. Haddad
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Finally, to combine the different verification methods, it is necessary to
understand what benefits one method can take from the results of another.
Furthermore, this may also have an impact on the specification process: for
instance, the system could be modelled with a very abstract net and exhaus-
tive results, then refined while retaining as many results as possible.

The remainder of this chapter is organised as follows : in Section 13.1 we
present a classification of net models and especially of coloured nets, then in
Section 13.2 we discuss the types of properties one can check. In Section 13.3
we list and provide details about the criteria of each method, and we show
how to combine them in Section 13.4. We conclude the chapter in Section 13.5
with an overview of the methods presented in this part of the book.

13.1 Classification of Nets

From the model of P/T nets, one can derive new models in different ways:
restriction, extension, abbreviation, and parametrisation. In this section, we
discuss the impact of these derivations on the verification methods.

13.1.1 Restriction of Nets

The most meaningful restrictions from the point of view of verification rely on
the conflicts among transitions. For instance, the well-known model of free
choice nets [Bes87] restricts the conflicts among transitions with the same
input places. The impact of such a restriction is twofold: new algorithms with
reduced complexity may be developed to check properties, and an equivalence
between structural properties and behavioural properties may be established.
A characteristic property which has been defined by Commoner states that
any siphon must contain a marked trap (see Section 15.3 for an explanation).
Thus a free-choice net is live if and only if it fulfils the Commoner property.

13.1.2 Extension of Nets

A net model is an extension of the P/T net model if its expressive power is
strictly greater than that of the original model. The first extensions proposed
for P/T nets aims togive more flexibility in the design process [CDF91b],
[LC94]. The inhibitor arcs model the zero test; the transition priorities model,
for instance, the interruption mechanism; and the flush arcs model, for in-
stance, the crash of a machine, etc.

In most cases, the new model has the same expressive power as Turing
machines, and thus the reachability problem – is one marking reachable from
another one? – becomes undecidable [Hac75]. However this drawback should
not be overestimated:
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• At first, many structural methods which produce results will remain un-
changed. For instance, the computation of the flows is unaffected by the
presence of inhibitor arcs since they do not induce movement of tokens.

• The hypothesis of bounded nets required for many state-based methods
transforms the extension into an abbreviation. For instance, the inhibitor
arcs can be modelled by the method of complementary places.

• Often, the modification brought to the verification methods is easy to de-
velop and straightforward. For instance, the computing of the (extended)
conflict sets among transitions handles the inhibitor arcs in an intuitive
and natural way.

Nevertheless the extensions have a pernicious effect on the design process.
Let us look at the two nets of Figure 13.1. These two nets model concurrent
accesses to a file by readers and writers. The safety property is evenly en-
sured in both cases. However, the computation of the flows will give us this
property directly in the first net, while it will give only information about the
number of readers and writers in the second net. The key point is that the
more the extensions are involved in the design process, the less the classical
methods will give significant results. As a heuristic principle, one can state,
“Use extensions only when necessary.”
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n

R W

WR WW
n m

R W

n m

Fig. 13.1. Two Reader-Writer nets

13.1.3 Abbreviation of Nets

A net model is an abbreviation of a P/T-net model if:

1. There is a common semantics for the two models;
2. For any net there is a semantically equivalent P/T net (generally larger).
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A useful abbreviation of a P/T net is the model of coloured nets intro-
duced by K. Jensen [Jen92b]. The main interesting features of this abbrevia-
tion are the information associated with tokens using colours and the ability
to factorise activities with the help of firing instances of a transition. The
unfolding is quite easy: any node (place or transition) is developed in a set of
nodes indexed by the colours of its domain, and the arcs are defined according
to the applications of colour functions.

Given this unfolding, it is not difficult to transform a verification method
for P/T nets into a method for coloured nets:

1. Unfold the coloured net;
2. Apply the algorithm;
3. Interpret the results for the original coloured net.

However, such a transformation is unsatisfactory for two main reasons: the
complexity of the algorithm depends on the size of the unfolded net, and
it is sometimes difficult to interpret the results. So the main objective of a
verification theory for coloured nets is to develop algorithms which do not
require the unfolding of the nets.

In order to avoid the unfolding of nets, one is led to examine the syntax
and properties of the colour functions. However, the general definition of
coloured nets works at the semantic level. The easiest way to give a syntactical
definition of a colour function is to represent it as an expression in which the
constants denote bags of colours, the variables denote projections of colour
domains, and operators denote operations on functions. Then syntactical
conditions on an expression provide necessary and/or sufficient conditions
on the denoted function. Let us take an example: in a net reduction (called
a pre-agglomeration) a transition is required not to share its input places. In
the coloured net, the equivalent condition is defined by:

1. The transition does not share its input places,
2. The colour functions which label the input arcs fulfil a condition called

quasi-injectivity.

Rather than explain what quasi-injectivity is, let us say that there are nu-
merous necessary or sufficient conditions for quasi-injectivity. In the example
of Figure 13.2, we have depicted two coloured nets with their unfolded nets.
The first unfolded net does not share the input places, and it can be detected
directly in the expression of the coloured net since the expression is a tuple of
all the variables of the transition. The second unfolded net shares the input
places and it can also be detected directly in the expression of the coloured
net since not all the variables of the transition appear in the expression.

Other important properties can be checked in expressions such as the
algebraic structure for the flow computation or the symmetric structure with
respect to a colour domain.
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Fig. 13.2. Two coloured nets with their unfoldings

13.1.4 Parametrisation of Nets

A net model is a parametrisation of a P/T net if it denotes a family of P/T
nets. Implicitly an unmarked P/T net is a parametrised Petri net [CDF91a]
and we can already obtain results which do not depend on the initial marking.
Nevertheless the parametrisation of nets is very interesting in the field of
coloured nets since there are many ways to achieve it, among them:

• Abstract predicate/transition nets [Gen88]
• Algebraic Petri nets [Rei91]
• Well-formed Petri nets [CDFH93]

An abstract predicate/transition net is associated with first-order logic,
and colour functions are expressions of this logic. Each interpretation of this
logic provides a concrete predicate/transition net which is a syntactical deno-
tation of a coloured Petri net. The main theoretical results of this parametri-
sation concern the existence of a normalised specification of such nets; this
makes it possible to decide whether two nets are semantically equivalent.

An algebraic Petri net is associated with an abstract data type, and colour
functions are expressions of this abstract data type. Each algebra which fulfils
this abstract data type also gives a coloured Petri net. There are various
results on algebraic Petri nets; for instance one can establish statements such
as: If the net associated with an initial (or final) algebra has a certain property
then a net associated with any algebra has that same property. The algebraic
Petri nets can easily be integrated into a prototyping software environment,
which is another advantage.
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Well-formed Petri nets (WFNs) were introduced in order to develop effi-
cient verification methods for coloured nets and parametrised coloured nets.
The syntax of such nets relies on three basic constructions: the variables;
some particular constants (the static subclasses) which denote colours with
similar behaviour; and one operator, the successor function, which chooses
the colour “following” a colour selected by a variable. Despite their restricted
syntax, it has been shown that WFNs have the same expressive power as
general coloured nets. The parametrisation is introduced by the cardinalities
of colour domains. Reductions and flow computations exploit the parametri-
sation whereas the construction of the symbolic reachability graph operates
on an unparametrised WFN. Numerous applications of the symbolic graph
have been developed to obtain measures of performance (steady-state prob-
abilities, bounds, tensorial decomposition, etc.).

13.2 Properties

The choice of properties for Petri nets raises the same problem as the choice
of the Petri net model. Specifying a large set of properties forbids the develop-
ment of efficient specialised algorithms whereas a restricted set of properties
fails to express the various properties of protocols and/or distributed algo-
rithms.

If one chooses to restrict the properties then these properties must be
generic in the following sense: they must express the behaviour of the mod-
elled system for a large range of interpretations. Let us see how such an
interpretation is possible. We give below a non-exhaustive list of properties
which, of course, do not cover all the general properties a net may have (see
the discussion later on in this section):

• Quasi-liveness “Every transition is fired at least one time” expresses a
syntactically correct design in the sense that any activity or event must
occur at least once in the net behaviour.

• Deadlock-freeness “There is no dead marking” means that global dead-
lock never happens in the system.

• Liveness “Every transition is fired at least once from any reachable mark-
ing” means that the system never loses its capacities.

• Boundedness “There is a bound on the marking of any place” ensures
that the system will reach some stationary behaviour eventually. Let us
note that multiple stationary behaviours are possible.

• Home state “There exists a marking which is reachable from any other
marking” indicates that the system is able to re-initialise itself.

• Unavoidable state “There exists a marking which can not be avoided
indefinitely” indicates that the system must necessarily re-initialise itself.

Despite the generality of the previous properties, there will always be
some features of behaviour that are not captured by a fixed set of properties.
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For instance, “The firing of t1 will eventually be followed by the firing of t2”
is a useful fairness property which is not mentioned above. Of course, one
could include it, but there are many possible variants. Thus it is better to
adopt a language of properties adapted to dynamical systems and especially
concurrent ones. Among such languages, the temporal logic framework (e.g.
linear time logic, branching time logic, etc.) has been widely used for Petri
nets (see for instance [Bra90]). The reason for this development is twofold:
most interesting properties of concurrency are expressed by simple formulas
and the model checking associated with these logics can be easily transported
to the reachability graph. In fact, by exploiting the structure of Petri nets,
the complexity of model checking can be reduced; we will discuss this topic
in Section 13.3.

The framework of temporal logic is interesting if one wants to verify a
set of properties which characterises the desired behaviour of the modelled
system. Nevertheless, starting from a global behaviour such as a set of ser-
vices, specifying the correct formulae requires a great deal of work. Moreover
the modeller is led to build more and more complex formulae in which the
semantics becomes mysterious. In such cases, it is much simpler to specify
the set of services with a Petri net and to compare the behaviour of the net
modelling the services with the behaviour of the net modelling the protocol.
However, it is necessary to define equivalence between nets. First, one has to
distinguish between internal transitions (implementing the protocol) and ex-
ternal transitions (associated with the service interface). Then the projection
of the protocol net language onto the external transitions should be equal to
the language of the service net (language equivalence). However, the language
equivalence does not capture the choices offered by a net upon reaching some
state. Equivalence including language and choice can be defined by means
of one of the numerous bisimulation definitions [BDKP91] which roughly say
that whatever one Petri net can do (sequence and reached state) the other
can simulate. The bisimulation has two interesting features :

• An efficient algorithm has been developed once the reachability graph of
the Petri nets is built.

• For models such as process algebras, axiomatisation of equivalence is pos-
sible at the structural level.

Moreover, Petri nets refine the definition of equivalence by distinguishing
true concurrency from interleaving concurrency (see Figure 13.3). Lastly (see
Section 13.5) the Petri net model can be translated into a process algebra
during the design of a system in order to facilitate rewriting techniques and
equational reasoning. Again it should be noted that restrictions are required
in order to avoid the undecidability of bisimulation for Petri nets [Jan94].

Another possibility (and the last we examine here) is the response of a
Petri net, or more generally a transition system, to a sequence of tests [Bri88].
A typical test application may be described as follows:
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Fig. 13.3. Two nets which do not bisimulate concurrently

1. It starts with a specification (often a process algebra model),
2. Then it generates an intermediate object called a success tree which takes

into account the sequence of transitions and the choice offered by the
states;

3. This tree is transformed into a transition system called the canonical
tester;

4. The synchronous product of the Petri net and the canonical tester is
formed,

5. The observation of deadlocks in the product provides information on the
failures of the implementation given by the Petri net.

13.3 Classification of Methods

There are different ways to discriminate between the methods: automatic
verification versus manual verification, property verification versus property
computation, specific Petri net methods versus general transition system
methods. Let us develop each of these points.

One objective of formal models is computer-aided verification. At first
sight, automatic verification may appear as highly desirable. However, there
are some inherent limitations to automatic verification that the modeller
should be aware of:

• There are numerous undecidable properties;
• even for decidable properties, checking is so complex that it may become

impractical;
• Automatic verification never takes into account the specifics of the mod-

elled system.

Another advantage of manual verification is the insight it gives into the
behaviour of the system. However, manual verification is prone to errors,
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and a sound (and sometimes complete) axiomatisation of proofs may help to
develop correct proofs. The duality of the manual and automatic verification
should be emphasised: for instance, the reduction or abstraction of nets may
be done automatically whereas refinement of nets requires the participation
of the designer. Yet these are two facets of the same theory.

The automatic method may check properties given by the modeller or
simply generate valid properties of the model. Each method has its own
drawbacks. Checking of properties is sometimes tricky: an inductive proof
may not be obtained whereas it might be possible to find a stronger property
which is inductive. Indeed, for a large class of transition systems, a property
is true if and only if there is a stronger property which is inductive. On the
other hand, the automatic generation of properties is generally limited in
scope: a non-linear invariant will never be generated by the computation of
the flows.

Different models may be employed when developing a system. Thus even
if one models a system with Petri nets during the design phase, it is not
neccessary that the verification be Petri-net-based. For instance, the com-
positional aspect of a model is not easily exploited by Petri net techniques.
Translation into a process algebra may be fruitful in this particular case.
Nevertheless there are some good reasons for usimg Petri net formalisms:

• The most important techniques from other models of parallelism have been
adapted for Petri nets;

• Petri net verification is one of the most flexible because of the various
methods;

• Some methods have no equivalents in other models (e.g. computation of
the flows);

• Some other methods have equivalents but their application in Petri nets is
easier (e.g. partial order methods).

However the most important criterion for verification techniques depends
on which aspects of Petri nets are exploited. We will list these aspects before
introducing the methods based on each:

• A Petri net is a graph and the token flows must follow the arcs of this
graph; structural deadlocks are clearly based on this feature.

• A Petri net is a linear transformation of the vector of tokens and so linear
algebra can be used (for instance, computation of the flows).

• A Petri net underlies event structures with causality and compatibility
relations. Partial-order methods reduce the complexity of constructing the
reachability graph.

• The colours of a domain often have the same behaviour. The symmetry
methods also reduce the reachability graph, using equivalence relations.

• The application of logics is widely used in Petri nets: for instance a logic can
encode semantics of Petri nets in such a way that one obtains properties by
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deduction, or one can build a graph of formulas where a formula naturally
denotes a subset of reachable states.

Graph Theory. The examination of the graph structure leads to two dif-
ferent and complementary families of methods which are based either on the
local structure or on the global structure. The local structure of a sub-net
may make it possible to reason about its behaviour independently of the rest
of the net. This is the key point of the reductions theory, in which the ag-
glomeration of transitions corresponds to transforming a non-atomic sequence
of transitions into an (atomic) transition ([Ber87], [Had89], [CMS87]). Even
if they just simplify the net by, say, eliminating a transition, their impact
is considerable. Indeed, in the reachability graph they eliminate all the in-
termediate states between the initial firing and the terminal firing of the
sequence. Roughly speaking, an agglomeration divides by two the reachabil-
ity space and thus n agglomerations have a reduction factor of 2n. Analysing
the global structure of the net can be done by restricting the class of Petri
nets and developing polynomial algorithms for the standard properties (e.g.
liveness). With no restrictions on the Petri nets, similar algorithms provide
necessary or sufficient conditions for the standard properties.

Linear Algebra. Linear algebra techniques rely on the state-change equa-
tion, which claims that a reachable marking is given by the sum of the initial
marking and the product of the incidence matrix with the occurrence vector
of the firing sequence. Thus a weighting of the places which annuls the inci-
dence matrix (i.e. a flow) is left invariant by any firing sequence. Similarly,
a vector of transition occurrences which annuls the incidence matrix (i.e. a
rhythm) keeps any marking invariant.

Thus there are two objectives for linear algebra techniques: computing
a generative family of flows (respectively rhythms), and then applying the
flows (respectively rhythms) to the analysis of the net. The computation of
the flows is more or less easy depending on the constraints on the flows.
For instance, the complexity of the computation of general flows is polyno-
mial whereas unfortunately the computation of positive flows is not polyno-
mial [KJ87]. However, positive flows are often more useful than general flows
and researchers have produced heuristics to decrease the average complexity
[CS89]. In P/T nets, such algorithms are now well known. The applications
of flows and rhythms are numerous: they help to define reductions, they
characterise a superset of the reachable set, they give bounds on maximal
firing rates, they make it possible to compute synchronic distances between
transitions, etc. Some of these applications are illustrated in Chapter 15.

State-based Methods. Before speaking about partial-order and colour
analysis methods, we must point out that one common objective of these two
methods is to reduce the complexity of the state-based methods. As these
latter methods are, together with simulation, assuredly the most widely used
ones, it is important to give an insight into the different ways to cope with
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the space complexity of the state graph. There are two approaches: manage
the graph construction or build another graph.

An efficient management of the graph construction has an important ad-
vantage. It is independent of the structural model which generates the graph
and thus can be applied to Petri nets, process algebras, etc. The two main
methods of this type are the binary decision diagram (BDD) and on-the-fly
verification.

Binary Decision Diagrams. Originally the BDD technique was defined
to compress the representation of boolean expressions [Ake78]. Any boolean
expression is represented by a rooted acyclic graph where non-terminal nodes
are variables of the expression with two successors (depending on the valua-
tion of the variables), and there are two terminal nodes (true and false). In
order to evaluate an expression one follows the graph from the root to a ter-
minal node choosing a successor with respect to the chosen assignment. Since
subexpressions occurring more than once in the expression are factorised, the
gain may be very important.

The application of the BDD technique to graph reduction relies on the
representation of a node by a bit vector, and the representation of the arc re-
lation by an expression composed of variables denoting the bits of the vectors.
It can be shown that the formula of modal logics can also be represented in
this way, and lastly that the building of the graph and the property checking
can be reduced to operations on BDDs. In a famous paper, this technique
has been employed to encode graphs with 1020 states [BCM+90]. A drawback
of the method is that it is impossible to predict the compression factor even
approximately.

On-the-Fly Verification. The on-the-fly technique is based on two ideas:
state properties can be checked on each state independently, and in a finite
state graph there is no infinite path with different states. Thus one does not
build the entire graph but instead develops the elementary branches only.
The only memory required is what is that needed for the longest elementary
path of the graph [Hol87]. In the worst case there is no gain, but on average
the gain is important.

Moreover, the technique can be extended to check the properties of tem-
poral logics [JJ89]. There the trick is to dynamically develop the product of
the state graph with an automaton (say for instance a Buchi automaton for
the LTL formula) and check for particular states [CVWY90].

What is interesting in this method is its adaptation to the memory space of
the machine. Indeed, one can add a cache of states which remembers a number
of states that are not on the current path, thus reducing the development
of the branch if a cache state is encountered. Another fruitful aspect of this
method is that it can be combined with other reduction methods (for instance
the partial-order method discussed below).

Partial-Order Methods. The partial-order methods rely on structural cri-
teria to reduce the state graph, and are efficiently implemented on Petri nets.
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The two main methods – sleep set and stubborn set – associate a set of tran-
sitions to a state reached during the building, and use this set to restrict fur-
ther developments of the graph. These sets of transitions are based on a basic
structural (or possibly marking-dependent) relation between transitions. Two
transitions are independent if their firings are not mutually exclusive. The in-
dependence property is structural if the pre-condition sets do not intersect,
whereas it is marking-dependent if the bag sums of the pre-conditions do not
exceed the current marking.

The sleep set method keeps track in a reached marking of independent
transitions fired in other branches of the graph [God90a]. The method ensures
that if one fires a transition of this (sleep) set, one encounters an already
reached marking. Thus the sleep set method “cuts” arcs on the reachability
graph, but the number of states is left unchanged. Figure 13.4 illustrates such
a process.
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Fig. 13.4. Application of the sleep set method

Given a marking, a stubborn set of transitions is such that any sequence
built with other transitions includes only independent transitions with re-
spect to the stubborn set [Val89]. Note that if the independency relation is
marking-dependent then the independency must be fulfilled at the different
firing markings. Then it can be shown that restricting the firing of an enabled
transition in any stubborn set preserves the possibility of the other firing se-
quences. The building of the reduced graph is similar to that for the ordinary
one except that:

• Once a state is examined, the algorithm computes a stubborn set of tran-
sitions including at least one enabled transition (if the marking is not a
deadlock);

• The successors of the state are the ones reached by the enabled transitions
of the stubborn set.

An interesting consequence is deadlock equivalence between the reduced
graph and the original graph. Figure 13.5 illustrates such a process. Note
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that the initial stubborn set is {a,b,c} since starting from a one must include
c and then b. Another possible stubborn set would have been {d,e}. The at-
tentive reader will have noticed that an arc building would have been avoided
by combining stubborn sets with sleep sets.

q+r

p+q+r+m

a b

b

q

p
a

b
c r

d

e

m

n

{a,b,c}
{b}

{a,c}

p+n+r+m

a

c

n+r
∅{d,e}

n
d

e

p+r
∅{d,e}

p
d

e

Fig. 13.5. Application of the stubborn set method

The stubborn set method requires more computations than the sleep set
method since there is no incremental computation of the stubborn set and
the computation includes disabled transitions. On the other hand, the reduc-
tion factor is often more important as here states are pruned. Nevertheless,
the combination of the two methods is straightforward, and this improves the
reduction factor [GW91b]. What is more difficult to obtain is a large equiv-
alence of properties between the reduced graph and the original one. Safety
properties may be obtained if the property is taken into account during the
building process. The handling of general liveness properties is not possible
and one is restricted to the checking of special liveness properties [Val93c].

A third partial-order method is based on unfoldings of Petri nets. An
unfolding of a Petri net is an acyclic Petri net in which places represent tokens
of the markings of the original net, and transitions represent firings of the
original net. One starts with the places corresponding to the initial marking
and one develops the transitions associated with the firings of every initially
enabled transition linking input places to the new transition and producing
(and linking) output places; then one iterates the process. Of course if the
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net has an infinite sequence the unfolding would be infinite and thus this
unfolding must be “cut”. In order to produce finite unfoldings, different cut
methods have been proposed ([McM92], [ERW96]). The unfolded net is a very
compact representation of the reachability set and thus safeness properties
can be checked with a low space complexity (time complexity may also be
reduced but not so significantly). Recently the method has been extended to
support linear temporal logic verification [CP96]. The principle is to build a
graph of unfolded nets in which the relevant transitions for the property are
always graph transitions.

Colour Structure Analysis. Colour structure analysis has many theoreti-
cal applications. Here we just mention three theoretical developments (which
will be discussed in more detail in Chapter 15 and Chapter 16). The first im-
portant point is that a theoretical development may be applied to coloured
nets and/or to parametrised coloured nets. As discussed before, parametri-
sation is better from the modeller’s point of view but more difficult from the
researcher’s point of view. Moreover, there are two ways to obtain results
for parametrised coloured nets: first develop a theory for unparametrised
coloured nets and then adapt the conditions to include the parametrisation;
or restrict the kind of parametrisation to develop a particular theory.

The reduction theory for coloured nets is based on the following approach:

1. Take a reduction for an ordinary Petri net.
2. Add coloured conditions to the structural conditions (i.e. conditions on

the colour functions valuating the arcs); these coloured conditions are as
weak as possible to ensure the structural conditions on the unfolded net
for a set of reductions.

3. Check that there is a possible ordering of the set of reductions in the
unfolded net.

4. Define a structural transformation similar to the original reduction with
complementary coloured transformations; this transformation must cor-
respond to the successive reductions of the unfolded net.

The parametrisation of the method is more or less straightforward since
coloured conditions may be ensured by syntactical conditions on expressions
(see the discussion above in Section 13.1)

The flow computation for coloured nets requires deeper analysis of the
colour function structure. It appears that the cornerstone of the flow com-
putation is the algebraic concept of generalised inverses. Colour functions
are linear transformations on a set of bags and thus this algebraic concept
is sound. Moreover, a elegant algorithm adapted from Gaussian elimination
rules can be developed, provided that the successive generalised inverses may
be computed. The space and time complexity are dramatically reduced and
the flows are represented in a compact way which allows for natural interpre-
tation.

Unfortunately, the parametrisation of this method is not possible. So re-
searchers have used a different approach: colour expressions can be identified
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with polynomials. The idea is then to apply a Gaussian-like elimination to
a ring of polynomials. The difficulty lies in the transformation (and the re-
ciprocal transformation) from a colour function to a polynomial one. Some
subclasses of well-formed nets have been successfully studied (regular nets,
ordered nets) with this technique. Another way to obtain parametrised meth-
ods is not to require that the flow family be a generative family. Then simple
methods can work on very general nets and give useful information (even if
not complete).

The symbolic reachability graph of well-formed nets exploits the sym-
metry of colour functions with respect to the firing semantics. This symme-
try leads to an equivalence relation between markings and transition firings.
Once canonical representation of equivalence marking (and firing transitions)
classes is defined, symbolic graph building is similar to ordinary graph build-
ing. Some studies show that the difference between the reduction factor of
symmetrical methods and partial-order methods depends on the modelled
system. These methods may again be combined. Another difference between
symmetrical methods and partial-order methods is that very general proper-
ties may be checked on the symbolic reachability graph (indeed any formula
of CTL*).

Logics. Logics is the support of reasoning about nets. Often some inductive
rules or schemes are defined to derive properties. There are two ways to do
so.

The first is an automatic (but semi-decidable) verification of a property.
For instance, a safeness property must be true at the initial state and also
true afterwards. Then one begins with the initial formula and derives succes-
sively stronger formulas using the firing rule until stability is obtained. This
technique may be refined using a graph of formulas where a formula is an
intensive representation of states.

The other direction is manual proofs using a proofs scheme. An example
is given by a verification diagram which is in fact a directed acyclic graph of
the formula used to prove safeness or fairness properties. Even if the proof
schemes are very detailed, the verifier needs skill to obtain his proof.

13.4 Verification Process

The verification step is closely linked to the design process. Ideally, even
the (formal) specification of the properties which should be satisfied by the
system has to be checked. Indeed there are examples where the protocol meets
the service requirements but the service is not correctly defined! Generally,
the verification process is interleaved with the different steps of new designs.
The reasons for these steps are multiple. Obviously, a new model is required
if failures are detected. But if the design is incremental, then once a first step
of verification is successful, the model is enriched with more detail before
further checks.



198 13. Introduction: Issues in Verification

The two main mechanisms for incremental design are refinement and
composition. Here we focus on the consequences for the verification process.
Sound refinement should be local so that the properties are retained. Never-
theless, it is clear to the skilled modeller that the hypothesis of locality must
be formalised in order to preserve properties. The composition aims to com-
bine results already obtained for the components. Much work has been done
in this respect but considering the difficulties encountered by the theoretical
research we have to impose some restrictions:

• A process must have restricted choice between synchronisation actions and
local actions;

• The behaviour of a synchronisation must not – or only slightly – depend
on previous synchronisations.

It should be noted that refinement and composition have their counterparts
in the area of verification, namely, reduction and decomposition. These two
aspects are very similar, however, there are particularities for the latter which
are:

• The reduction (respectively decomposition) process should be automatic;
• The choice among reductions (respectively decomposition) is proof-

oriented;
• If the congruence of reductions (respectively decomposition) rules is en-

sured then the order of application is irrelevant, and this is a great com-
plexity reduction factor.

Here are some hints on how the different verification methods should be
ordered. Starting from a Petri net, applying automatic structural methods
has numerous advantages:

• It points out what was implicitly in the modelling. For instance, the process
decomposition and message traffic are often described as flows of the net.

• It quickly discovers modelling bugs such as an unmarked structural dead-
lock.

• The established properties can dramatically simplify a deductive proof.
• Lastly it helps the modeller to choose the next verification methods. As a

simple illustration, positive flows covering all the places of the net ensure
the success of state-based methods and also give an upper bound on the
size of the state space.

Once the structural methods have been fully exploited, the modeller can
use the state-based methods. As said before, it may happen that the state
space is too large to be generated. However, even in this case, the modeller
has some alternatives:

• Classically, he can always simulate his net and the consequences are
twofold: negative properties are shown and long runs without trouble help
to develop confidence in the model.
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• He can do on-the-fly verification which, although it takes much longer, can
check all the important properties of the net. Here, the key point is that
the complexity space is related to the longest simple path in the graph.

• He can generate a smaller object equivalent to the state graph with respect
to some properties. Partial-order methods and symmetry methods typically
produce such objects.

Alternatively, deduction methods avoid the space complexity problem.
This does not mean that these methods should be used after the other meth-
ods have failed. Indeed, if the modeller has a clear idea of how his model fulfils
its properties, he often develops a quick deductive proof of its correctness.
Examples are numerous in the area distributed algorithms.

Lastly it should be pointed out that the deductive methods can be em-
ployed in the design process by means of system synthesis. Indeed, if the
specification is a formula and the semantic models of the logic involved are
the behaviour of the nets, then the system synthesis can be based on the sat-
isfiability resolution. Using this resolution, one begins to produce a semantic
model, then folds the semantic model in order to obtain a Petri net. The first
step is often possible with modal logics (they verify the small model prop-
erty), but the second step is technically and sometimes theoretically difficult.
At the current time, this is an open field of research.

13.5 Overview

Chapter 14 describes state-based methods. It develops some of the techniques
which we have presented above. First it shows how the computation of the
state space may be managed efficiently. Then it introduces more precisely
the partial-order methods, symmetries, and modular methods. There is more
development on the use of symmetries including the implementation for well-
formed coloured nets where this building can be completely formalised. This
part ends with comparing these methods according to different criteria such
as space and time reduction, property equivalence, and how these different
methods may be combined.

The rest of the chapter takes into account the types of properties that
can be checked and the impact on the graph building. An original technique
of parametrised building is developed including the verification of temporal
logics. Lastly, the problem of model checking is discussed as a whole.

In Chapter 15, structural methods are developed. Some accurate reduc-
tion rules are presented with special emphasis on the implicit place. The
implicit place has a particular rôle since it simplifies the structure of the net
and makes it possible to apply other techniques more efficiently. Moreover,
implicit places have a strong connexion with positive flow computation as
shown in the chapter. The linear algebraic techniques are then developed and
the equivalence between behavioural properties and linear algebraic results
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is pointed out. Then siphons and traps are carefully studied since they are
the cornerstone of necessary and sufficient conditions for liveness properties.

In the last part of the chapter, some syntactical subclasses are defined,
showing what behavioural consequences can be established from the syn-
tactical restrictions. The behavioural properties include fairness, liveness,
deadlock-freeness, and the relation between reachable states and linear in-
variants.

Chapter 16 presents new techniques which cover an open field of research.
The techniques presented in the beginning of that chapter are based on logics:
rewriting logic, temporal logic, and linear logic. The relevance of linear logic
is twofold: it provides Petri nets with an operational semantics, and a proof
scheme for linear logic gives the proof of a property in the corresponding
Petri net.

The last section is devoted to a technique that shows how to benefit from
multi-formalisms. This technique starts from a specification of the system
given in process-algebraic terms. Then it constructs a Petri net model of the
system. The Petri net is simulated to show bad behaviour in order to reinforce
confidence in the model. Finally the Petri net is transformed again into a
process algebra so that the two process algebras (modelling the specification
and the implementation) are equivalent. Emphasis is put on the design cycle
rather than on technical aspects.



14. State-Space-Based Methods and Model
Checking∗

Previous chapters bring out the need for system designers to profit from
automated verification techniques. Effectively, the known problem of state-
space explosion makes it difficult to achieve an a priori understanding of
the whole behaviour of any reasonable system. Verification techniques must
exceed the capabilities of structural approaches which mainly allow us to
check that the system is well-structured. One also wants to know the real
semantics of the system to be designed.

The current chapter presents techniques which allow the automatic ver-
ification of a wide range of properties. It shows how some specific logics,
namely temporal logics, can formally capture the required temporal aspects
of properties. For instance, they can capture that all further executions after
the sending of a message will contain the message receptions by the correct
addresses.

Given the formal descriptions of both system and properties, the verifi-
cation stage can be automated in a so-called “model checking procedure”.
Assuming that the system has a finite state space, the verification of a prop-
erty consists in checking that none of the possible executions of the system
state space may invalidate the ones induced by the temporal aspects of the
property.

Model checking techniques offer a complete framework for verification
purposes, however the related complexity depends mainly on the size of the
state space, which grows exponentially in the number of represented objects.
This drawback is mainly caused by concurrence and, in particular, the in-
terleaving semantics used to represent any sequence of possible actions. To
be applicable in an industrial context, model checking must be strongly as-
sociated with methods and techniques useful for reducing the problem, such
as:

• Restrictions and abstractions which reduce the size of the represented sys-
tems;

• Efficient state-space explorations which do not require the construction of
the whole state space;

• Limitations on the effects of the interleaving semantics;
∗ Authors: C. Dutheillet (Sections 1 & 4), I. Vernier-Mounier (Sections 1 & 4),

J.-M. Ilié (Sections 2 & 4), D. Poitrenaud (Sections 3 & 5)
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• State space reductions by detection of symmetrical behaviours;
• Techniques for coding the state space compactly.

For the first point, techniques such as Petri net reductions can be ap-
plied. In this chapter, we assume that the represented system is correctly
reduced and concentrate our presentation on the other points. Hence, we aim
to present automatic techniques which offer powerful memory reduction while
retaining a capacity for verification.

The organisation is as follows: Section 14.1 recalls the principles of tempo-
ral logics and model checking, and Section 14.2 presents on-the-fly techniques
which tend only to build the necessary portion of the state space with regards
to the checking of a property. Section 14.3 discusses partial-order techniques
which benefit from independence notions so as to avoid the representation of
useless interleavings of state changes. Section 14.4 exploits the symmetries of
system descriptions and introduces symbolic and parametrised approaches,
and Section 14.5 demonstrates how to compact state space information. Sec-
tion 14.6 contains our concluding remarks; in particular, we observe that the
techniques presented can be used simultaneously, and give an overview of
current research on model checking problems.

14.1 Properties, Temporal Logic, and Fairness

The verification of a system consists in checking whether it satisfies a set of
properties that are derived from its specification. Properties of concurrent
systems can be classified according to the type of behaviour they describe.
Two important kinds of properties are the liveness and safety properties.
A liveness property stipulates that “good things” do happen (eventually).
They are properties that must be satisfied by all the executions. A safety
property stipulates that “bad things” do not happen during the execution
of a program. Actually, in [AS87] it has been shown that any property of
executions can be decomposed into a safety property and a liveness property.
The decomposition is such that the original property is the conjunction of
the liveness property and the safety property.

For an automatic verification of a property of a system, one needs two
things: a formal description of the system and a formal description of the
property to be verified. In this section, we consider systems with a finite
state space, i.e. that can be formally described by a bounded Petri net, and we
focus on the description and verification of their properties. The verification
methods actually depend on the class to which the property belongs.

The Petri net in Figure 14.1 models a mutual exclusion algorithm. Two
processes try to access a critical section. Each process has three possible
states: Idle, Wait, and CS. Transition Req is fired when a process in place
Idle wants to enter the critical section. Once in place Wait, a process can
enter the critical section (place CS) if and only if the other process is neither
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in place CS nor in place Wait. These conditions are modelled by the inhibitor
arcs that link transition Enter i with places Wait j and CS j . Inhibitor arcs
are routinely used to ease the first steps of Petri net modelling, and stipulates
that a place can inhibit the firing of a transition whenever it contains tokens.
Finally, when a process leaves the critical section (transition Free) it goes
back to place Idle.

●
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Enter1

Free1

Free2
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Req2

CS2Wait2
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Idle2

Fig. 14.1. Mutual exclusion algorithm

To verify that this mutual exclusion algorithm is deadlock-free and fair,
we need to verify the following four properties :

P1 : The algorithm is deadlock-free.
P2 : At each state, there is at most one process in the critical section.
P3 : The algorithm is starvation free. Each process that asks for the critical

section will obtain it.
P4 : The entries in the critical section are in the same order as requests.

The first two properties are safety properties. The “bad things” that do
not happen are deadlocks and two processes simultaneously in the same place.
The last two properties are liveness properties. The “good thing” that even-
tually happens when a process asks for a critical section is that the process
will enter it according to the order of requests.

As we consider dynamic systems, the truth value of an assertion P on
the behaviour of the system, such as “Process p1 enters the critical section”,
depends on the time it is pronounced. Hence, we need a language that takes
into account the possibility for the truth value of a formula to change over
time. This is the case for temporal logic, where two typical temporal opera-
tors are sometimes and always: sometimes P is true now if there is a future
moment at which P becomes true, and always P is true now if P is true at
all future moments.

Among the languages that can be used to formalise a property, an advan-
tage of temporal logic is that the meaning of its operators is rather intuitive,
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while the range of properties that it can express is large. There exist sev-
eral logics that correspond to different views of time. We consider here logics
based on a discrete representation of time because the execution of Petri nets
is performed with respect to discrete time. Actually, the different moments of
an execution are the reachable states of the system. The reachability graph
of a Petri net describes the set of all possible executions of the system, every
execution being represented by a path in the graph. In this representation
a state may have several successors. Since we identify states and moments,
moments also have several successors. This view is known as branching-time.

We present in this section CTL∗, which is a very general branching-time
temporal logic, in the sense that it has a high expressive power. We also
consider two restrictions to CTL∗, namely CTL and LTL. Their interest lies
in the fact that efficient algorithms have been developed to check the truth
value of their formulae, while they retain a high expressive power.

14.1.1 The Temporal Logic CTL∗

Let us come back to our example and try to see which operators would be
useful to express the properties that we want to check. Since the system has
several possible executions, we first need to specify if a property has to be
true for one execution or for all possible executions. This can be done by
means of two quantifiers, the existential quantifier 3 meaning there is a path
from and the universal quantifier 2 meaning for all paths from. Property P1
requires that deadlock-freeness be true in every state of the system, i.e. for
all paths, always. This is the same for Property P2. Property P3 relies on the
dynamics of the system: for all paths starting from a state where a process
asks for the critical section, sometimes this process enters the critical section.
Property P4 imposes an order among the actions: if process 1 requests the
critical section before process 2, then process 2 must not enter the critical
section before process 1, which can also be expressed as “Process 2 enters the
critical section” remains false until “Process 1 enters the critical section” is
true. Hence, we can see that with a restricted set of operators, we can express
a wide range of properties.

CTL∗ was introduced by Emerson and Halpern in [EH86]. Besides the
operators presented above, the language includes an operator ◦, meaning
“next time”, making it possible to require that a property become true in
the next state. As the notion of future state or future moment is not defined
for a terminal state, a loop is added to the states with no successors. This
is actually necessary because in the models presented below, only infinite
executions are considered.

Syntax. The CTL∗ language is formed by the set of state formulae that are
generated inductively by the set of rules below:

A state formula is:

• An atomic proposition;
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• ¬f1, f1 ∧ f2 where f1, f2 are state formulae;
• 2f,3f where f is a path formula.

Atomic propositions allow one to express elementary conditions on
the values assigned to some variables in the system. When we consider
place/transition nets, the atomic propositions are conditions on the number
of tokens in places allowing one to test the markings.

A path formula is:

• A state formula;
• ¬f1, f1 ∧ f2 where f1, f2 are path formulae;
• ◦f1, [f1 U f2] where f1, f2 are path formulae.

The semantics of CTL∗ formulae is defined using the state graph.

Semantics. A structure for a CTL∗ formula (with a set AP of atomic propo-
sitions) is a triple M = 〈S,R, π〉 where:

S is a finite or enumerable set of states.
R is a total binary successor relation on S (R ⊆ S × S) that gives
the possible transitions between states.
π: S → 2AP assigns truth values to the atomic propositions at each
state.

For example, the truth value of the atomic proposition “p ≤ 2” is true at
each marking with at most two tokens in place p.

The structure 〈S,R〉 is the reachability graph of the model. A path, or an
execution, is an infinite sequence of states (s0, s1, . . .) such that ∀i . 〈si, si+1〉 ∈
R (remember that each state has at least one successor, which is itself). If
x = (s0, s1, . . .) is a path, we denote by xi the suffix path (si, si+1, . . .).

For a structure M , a state s0 ∈ S, and a path x we have:

〈M, s0〉 |= p iff p ∈ π(s0), for p ∈ AP
〈M, s0〉 |= f1 ∧ f2 iff 〈M, s0〉 |= f1 and 〈M, s0〉 |= f2
〈M, s0〉 |= ¬f iff not 〈M, s0〉 |= f
〈M, s0〉 |= 3f iff for some path x = (s0, s1, . . .), 〈M,x〉 |= f
〈M, s0〉 |= 2f iff for all paths x = (s0, s1, . . .), 〈M,x〉 |= f

〈M,x〉 |= f iff 〈M, s0〉 |= f
〈M,x〉 |= f1 ∧ f2 iff 〈M,x〉 |= f1 and 〈M,x〉 |= f2
〈M,x〉 |= ¬f iff not 〈M,x〉 |= f
〈M,x〉 |= [f1 U f2] iff ∃i, i ≥ 0. 〈M,xi〉 |= f2 and ∀j . 0 ≤ j < i, 〈M,xj〉 |= f1
〈M,x〉 |= ◦f iff 〈M, s1〉 |= f
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When we consider a net system, 〈N ,m0〉, 〈N ,m0〉 |= f is the notation
for 〈RG(N ,m0),m0〉 |= f where RG(N ,m0) is the reachability graph of
〈N ,m0〉.

At this point, we can notice that the operators sometimes and always are
not included in the language. They are merely notations and can be expressed
by means of the operator until:

〈M,x〉 |= Ff
def
= 〈M,x〉 |= [trueU f ]

〈M,x〉 |= Gf
def
= 〈M,x〉 |= ¬ F¬f

In other words, Ff states that f holds sometimes on the path, i.e. at least
at one state. Gf states that f holds at all the states of the path, i.e. always.
We now apply the syntax of CTL∗ to express the properties that we want
to check in our example. Let us consider property P3, which states that a
process which is waiting for the critical section will eventually enter it.

Atomic propositions can express the fact theat a process is waiting for the
critical section (Waiti=1) or is in the critical section (CSi=1). To simplify
the formulae, we use the logical implication operator “⇒” with its usual
meaning. Then we can find two different but equivalent ways of expressing
property P3 with CTL∗:

〈N ,m0〉 |=
∧

i∈{1,2}

2G[Waiti = 1⇒ F(CSi = 1)]

〈N ,m0〉 |=
∧

i∈{1,2}

2G[Waiti = 1⇒ 2F(CSi = 1)]

The first expression corresponds to a view in which the different execu-
tions of the system are considered independently. In each execution, a state
has a single successor; hence an execution of the system is seen as a linear
sequence of states starting from the initial state. The property is satisfied if
it is satisfied by all the executions. This view is known as linear time. In the
second expression, every time a state in which a process is waiting for the
critical section is encountered, all the executions initiated at this state are
considered. Hence, a state may have several successors. This view is known
as branching time.

From this, we notice not only that CTL∗ makes it possible to express a
wide range of properties, but also that its grammar does not introduce too
many constraints on the expression of a property. However, the drawback of
the generality of CTL∗ is the complexity of the algorithms for verifying a
formula. They are linear in the size of the model, i.e. the number of nodes
of the reachability graph, but exponential in the size of the formula, i.e. the
number of operators and atomic propositions.

Hence, various restrictions have been proposed; we present CTL (com-
putation tree logic) which corresponds to the branching time view and LTL
(linear time logic) which adopts the linear time approach.
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The Temporal Logic CTL. The CTL logic was introduced by Clarke,
Emerson, and Sistla in [CES86].

Syntax. The CTL language is given by:

f := p | ¬f | f ∧ f | 2 ◦ f | 3 ◦ f | 2[f U f ] | 3[f U f ]

where p ∈ AP is an atomic proposition.
The semantics of CTL is the same as for CTL∗. We illustrate the language

by expressing the properties that we want to check in the mutual exclusion
example.

To express property P1 with a temporal logic formula, we first have to
express the possibility that a marking is deadlock free. This is true if it enables
at least one transition. This property involves no temporal operator.

Let N = 〈P, T,Pre,Post, Inh〉 be a place/transition net with inhibitor
arcs, then a reachable marking m is deadlock free if and only if it satisfies
the formula:

fdeadlockfree(N ) =
∨

t∈T

∧

p∈P

(p ≥ Pre[p, t] ∧ p < Inh[p, t])

When we consider the net of Figure 14.1 the formula fdeadlockfree(N ) is:

(Idle1 ≥ 1) ∨ (Idle2 ≥ 1) ∨ (CS1 ≥ 1) ∨ (CS2 ≥ 1)∨
((Wait1 ≥ 1) ∧ (CS2 < 1)) ∨ ((Wait2 ≥ 1) ∧ (CS1 < 1))

Therefore, the whole net system is deadlock free if and only if all the
reachable markings are. Hence, Property P1 is true for 〈N ,m0〉 iff

〈N ,m0〉 |= 2Gfdeadlockfree(N )

Property P2 states that in every reachable marking, the two processes
must not be simultaneously in the critical section. This last part of the
property can be identified with the atomic proposition (CS1 + CS2) ≤ 1.
Therefore, Property P2 is true for 〈N ,m0〉 iff

〈N ,m0〉 |= 2G((CS1 + CS2) ≤ 1)

For Property P4 to be true, the entries in the critical section must be
in the same order as the requests. This means that if a process i has fired
transition Reqi while process j was in place Idlej , process i will be in the
critical section before process j. With the “until” operator, we can say that
place CSj will stay empty until place CSi is marked. We use the property
that a process cannot be in several places at the same time. Therefore, for
each marking, there is exactly one token in one of the places Idlei,Waiti or
CSi. Therefore, Property P4 is true for 〈N ,m0〉 iff

〈N ,m0〉 |=
∧

i,j∈{1,2},i6=j

2G[(Waiti = 1 ∧ Idlej = 1)⇒

2[¬(CSj = 1) U (CSi = 1)]]
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Verification. CTL formulae can be verified by means of rather intuitive
algorithms that apply directly to the reachability graph. Algorithms 14.1,
14.2, 14.3, and 14.4 make it possible to check the basic CTL formulae. The
first two algorithms are trivial. The idea of Algorithm 14.3 is to mark a state
as soon as the value of the formula can be decided for this state. When the
formula is true in a state, its value can also be decided for the predecessors
of that state. This is done by means of procedure Propagate. A state can
be unmarked after loop ∀s . V erify 3U(s), meaning that the value of the
formula has not yet been decided for it. This happens for states where f1 is
true but which have no (direct or indirect) successors for which f2 is true.
Hence the formula is false for these states. In Algorithm 14.4, the idea is that
a state verifies the formula if f2 is true in this state, or f1 is true and all
its successors verify the formula. This verification is performed in recursively.
This time, the marking of states is used to stop the recursion, and states
are marked as soon as they are considered. If a marked state is considered
again, it has necessarily been reached through a path where f1 is always
true, otherwise the recursion would have been stopped before. If the value
of the formula is not yet decided for this state, it means that the state is
participating in the current recursion and thus it belongs to a cycle where f1

is always true but f2 is never true. Hence the formula is false in this state.
A complex formula is verified by repeatedly applying the algorithms on

the simple formulae that comprise it. The overall complexity for checking a
CTL formula is linear in the size of both the model and the formula.

Algorithm 14.1 3 ◦ f

for every state s do
if ∃s′ successor of s such that s′ |= f then

s |= 3 ◦ f
else

s |= ¬3 ◦ f
fi

od

Algorithm 14.2 2 ◦ f

for every state s do
if ∀s′ successor of s, s′ |= f then

s |= 2 ◦ f
else

s |= ¬2 ◦ f
fi

od
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Algorithm 14.3 3[f1 U f2]

Procedure Propagate 3U(s)
if s is not marked then

mark(s)
if s |= f2 or s |= f1 then

s |= 3[f1 U f2]
∀s′ predecessor of s, Propagate 3U(s′)

else
s |= ¬ 3[f1 U f2]

fi
fi

Procedure Verify 3U(s)
if s is not marked then

if s |= f2 then
mark(s)
s |= 3[f1 U f2]
∀s′ predecessor of s, Propagate 3U(s′)

else
if s |= ¬ f1 then

mark(s)
s |= ¬ 3[f1 U f2]

fi
fi

fi

begin
∀s unmark(s)
∀s Verify 3U(s)
∀s if s is not marked then

s |= ¬ 3[f1 U f2]
fi

end

The Temporal Logic LTL. The LTL logic was introduced by Pnueli
in [Pnu81]. It is one of the most common versions of propositional linear-
time temporal logic appearing in the computer science literature.

Syntax. The LTL language is given by

f := p | ¬f | f ∧ f | ◦f | [f U f ]

where p ∈ AP is an atomic proposition.
All these formulae are path formulae. To be properties of a model, they

have to be satisfied by all the possible executions of the model. The semantics
of LTL formulae is defined for one execution. Hence, unlike CTL∗ and CTL,
the successor function R in the structure for an LTL formula is a function
S → S that for each state gives a unique next state.

As for CTL, we use properties P1, P2, and P4 to illustrate LTL.
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Algorithm 14.4 2[f1 U f2]

Procedure Verify 2U(s)
if s is marked then

if s |= 2[f1 U f2] then
return(true)

else
return(false)

fi
else

mark(s)
if s |= f2 then

s |= 2[f1 U f2]
return(true)

else
if s |= ¬ f1 then

s |= ¬ 2[f1 U f2]
return(false)

else
if ∀s′ successor of s, Verify 2U(s′) then

s |= 2[f1 U f2]
return(true)

else
s |= ¬ 2[f1 U f2]
return(false)

fi
fi

fi
fi

begin
∀s unmark(s)
∀s Verify 2U(s)

end

P1 〈N ,m0〉 |= Gfdeadlockfree(N )

P2 〈N ,m0〉 |= G((CS1 + CS2) ≤ 1)

P4 〈N ,m0〉 |=
∧

i,j∈{1,2},i6=j

G[(Waiti = 1 ∧ Idlej = 1)⇒

[¬(CSj = 1) U (CSi = 1)]]

Verification. The verification technique that we present for LTL is often
referred to as the automata theoretic approach. It is based on the fact that
a property can also be characterised by the set of behaviours that satisfy it.
This set of behaviours is described by a specific kind of automaton, namely
a Büchi automaton (see [GPVW93] for instance). Such an automaton is fi-
nite, possibly contains several initial states, and has a set of particular states
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called the accepting states. A transition of this automaton is labelled with
a set of atomic propositions. Informally, an infinite word is accepted by the
Büchi automaton if it corresponds to an infinite execution of the automa-
ton encountering infinitely often an accepting state. Figure 14.2 presents an
example of such a Büchi automaton. State 1 is an initial state, and states
2 and 3 are accepting states. The language of the automaton, i.e. the set
of accepted words, is True∗(w1 ∧ ¬cs1)(¬cs1)∞ + True∗(w2 ∧ ¬cs2)(¬cs2)∞

where ∗ stands for finite and∞ stands for infinite repetition. This automaton
actually represents the formula:

∨

i,j∈{1,2}

F[Waiti = 1 ∧G(CSi < 1)]

if wi stands for Waiti = 1 and ¬csi stands for CSi < 1.

1 3

True

2
w1 ∧ ¬ cs1

¬ cs1

w2 ∧ ¬ cs2

¬ cs2

Fig. 14.2. Büchi automaton for Property ¬ P3

This temporal logic formula is the negation of Property P3. As a conse-
quence, the automaton represents the set of behaviours for which Property
P3 is false. In order to check whether our mutual exclusion model verifies
Property P3, there are two possibilities: either check whether all the infinite
behaviours represented by the reachability graph of the system are included
in the set of behaviours that satisfy the property, or check whether there
exists a behaviour in the reachability graph for which the negation of the
property is true. In the first case, we prove that the property is true, and in
the second we prove that it is false. The second approach is usually chosen
because it is less expensive.

In this case, the verification is done by finding the intersection between
the behaviours of the system and those represented by the Büchi automaton
associated with the negation of the property. A way to compute the intersec-
tion is to construct the synchronised product of the reachability graph and
the Büchi automaton. Informally, this product is an automaton in which the
states are pairs (ei, ej) where ei is a state of the reachability graph and ej

a state of the Büchi automaton. There is a transition between states (ei, ej)
and (ek, el) if and only if there is a transition between ei and ek in the reach-
ability graph, there is a transition labelled by a between ej and el in the
Büchi automaton, and a is true in ei. The initial states of the product graph
are states (ei, ej) such that ei is an initial state of the reachability graph
and ej is an initial state of the Büchi automaton. The accepting states of
the product graph are states (ei, ej) such that ej is an accepting state of the
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Büchi automaton. We illustrate this construction on our example. The reach-
ability graph of the mutual exclusion model is presented in Figure 14.3 and
the synchronised product of this graph with the Büchi automaton associated
with Property ¬P3 is given in Figure 14.4.

1

2 3

4 5 6

7 8

1 : Idle1 + Idle2

2 : Idle1 + Wait2

3 : Idle2 + Wait1

4 : Idle1 + CS2

5 : Wait1 + Wait 2

6 : Idle2 + CS1

7 : Wait1 + CS2

8 : Wait2 + CS1

Free2 Free1

Req2 Req1

Req1 Req2
Enter1Enter2

Enter2 Enter1Req1 Req2

Free1Free2

Fig. 14.3. Reachability graph for the mutual exclusion algorithm

The verification of a property by means of the resulting automaton com-
pletely depends on the class of this property. For safety properties, the re-
sulting automaton has only one accepting state. Checking that the property
is true reduces to verifying that this accepting state is not reachable from
an initial state. For liveness properties, the resulting automaton should not
accept infinite sequences that encounter infinitely often an accepting state.
In other words, there must be no cycle reachable from the initial state that
contains an accepting state.

In our example such a cycle, for instance (82, 22, 52), exists. Hence, Prop-
erty P3 is not true. Actually, this cycle shows the existence of an infinite
sequence in which Process 2 infinitely waits for the critical section without
entering it.

Linear time model checkers are exponential in the size of the formula but
linear in the size of the model [LP85, VW86]. However, advocates of linear
time logics argue that the high complexity of the model checkers is acceptable
for short formulae.
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Fig. 14.4. Synchronised product of the RG and the Büchi automaton

Model Checking under Fairness Assumptions. Very often, only some
of the executions represented by the reachability graph are of interest when
one wants to verify a formula. The executions that are eliminated are those
which do not correspond to a possible behaviour of the system, for instance
those where the scheduling of the tasks is not compatible with the scheduling
algorithm executed by the system. In particular, the allocation of the proces-
sor is generally assumed to be fair, in the sense that a task that remains ready
will eventually be executed. Hence, only fair executions should be considered
when checking some property on the system.

Instead of trying to represent the fairness of the scheduler when modelling
the behaviour of the system, it is more convenient to “filter” at the verification
step the executions that should not be considered. The idea is to represent
the fairness constraint by a temporal logic formula. This can be done easily
with the linear time logic LTL and the verification of a formula f under
fairness constraint f ′ will be done by checking that the model verifies the
LTL formula f ′ ⇒ f .

Let us come back to our mutual exclusion example. We consider the case
where the scheduler obeys the so-called Strong Fairness constraint, i.e. if an
action is enabled infinitely often, then it is executed infinitely often. In the
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particular case of access to the critical section, this constraint can be written
as: ∧

i∈{1,2}

[GFenabled (Enteri)]⇒ [GF(CSi = 1)]

where enabled (Enteri) is a predicate which is true each time Enteri is
enabled. In our example, it can also be expressed as (Wait1 ≥ 1)∧ (CS2 < 1)
for i = 1 and (Wait2 ≥ 1) ∧ (CS1 < 1) for i = 2. Hence, the starvation
freeness in this strongly fair environment would be expressed as

∧

i∈{1,2}

[GFenabled(Enteri)]⇒ [GF(CSi = 1)]⇒ P3

It is easy to check that this new property is true.
The example above uses the LTL formalism. Actually, fairness properties

cannot be expressed with CTL. An extension of the language, the so-called
Fair-CTL [EL87], has been proposed to take into account fairness constraints.

Conclusions. Many theoreticians and practitioners recognise the utility and
appropriateness of temporal logic as a specification and verification tool for
concurrent systems. However, they are divided into two groups: the advocates
of linear time and the advocates of branching time. Some arguments for linear
time logic can be found in [Lam80], whereas some arguments in favour of
branching time logic are presented in [EH86]. In both cases, the arguments
rely on the expressiveness and the complexity of formulae and verification
algorithms.

Although the examples of the current section do not illustrate this fact,
some properties can be expressed with a linear time logic and not with a
branching time logic and vice versa. For instance, it is not possible to express
the indeterminism of concurrent programs, i.e. possibilities of an execution
(possibility properties), with a linear time logic. On the contrary, pure branch-
ing time logic is not suitable for the expression of fairness constraints.

We have seen that the complexity of verifying a formula is linear in the size
of the model for both CTL and LTL. It is linear in the size of the formula for
CTL but exponential for LTL. The complexity for verifying a CTL∗ formula
is the same as for verifying an LTL formula, and Büchi automata are also
often used in this case. Actually, Büchi automata are being used more and
more even in the model checking of CTL formulae.

However, the complexity with respect to the formula is usually not the
most important consideration since many interesting properties of a system
can be expressed with short formulae. In contrast, the number of states of the
model is often huge and it is very expensive to store the complete reachability
graph in the memory of a computer. Hence, model checking techniques have
been developed which either avoid storing the whole graph at the same time,
or make it possible to check a property while constructing only a part of the
graph. The next section of this chapter is devoted to the presentation of some
of these techniques.
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14.2 On-the-Fly Approaches

In Section 14.1.1, we have shown that automata theoretic approaches offer
a new understanding of model checking by reducing it to cycle detection.
Cycle detection is a classical problem of graph theory which can be solved in
linear time with respect to the size of the graph, and which mainly consists
of computing the strongly connected components of a graph. Hence, one can
state the validity of a formula by (1) building two automata: the state space
of the system (i.e. the reachability graph) and the automaton which charac-
terises the formula to be checked, (2) building the structure corresponding to
the synchronised product of these automata, and (3) computing the strongly
connected components over the result viewed as a graph. While this is a
simple way to demonstrate the intuition of the model checking procedure,
it is clearly not a reasonable way of implementation. In fact, one must face
complexity problems induced by the size of the representations to be built,
in particular:

• Because of combinatorial effects, formulae and state spaces can yield au-
tomata too large to be stored entirely in memory.

• The size of the synchronised product representation is strongly related to
a product of nodes, thus can easily exceed the strict bound imposed by
the size of the memory, even if the construction of the former automata
succeed.

• The execution time required can be excessive since it is proportional to the
size of the synchronised product representation.

Another way to proceed consists of checking the satisfaction of the prop-
erty during the building of the synchronised product representation. Hence,
one aims to finish the model checking as fast as possible, while reducing
the need for memory. Various techniques based on this approach have been
applied to check temporal logics and are known as on-the-fly model checking.

In this section, we concentrate on the easily implemented solutions that
have been proposed for LTL properties. The starting point is a synchronisa-
tion between the state space of the system and a Büchi automaton which cor-
responds to the negation of the property to be checked. A synchronised prod-
uct between a reachability graph and a Büchi automaton has been demon-
strated in Section 14.1.1. In this context, the negation of the property is
detected to be false (equivalently, the property is shown to be true) as soon
as a reachable cycle that loops over an accepting state is found in the synchro-
nised product. In this case, depth-first searches (DFS) can be used instead
of computing strongly connected components.

An On-the-Fly Algorithm for Checking LTL Properties.
In [CVWY92], the cycle search is performed using two kinds of DFS:
DFS1 is used to detect the states that are simultaneously reachable from
the initial states and accepting from the Büchi automaton point of view,
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whereas the purpose of DFS2 is to check whether any accepting state which
is reachable from the initial state is also reachable from itself. There are two
possible outcomes:

• The algorithm ends normally without finding any cycle;
• It aborts as soon as a cycle is detected, indicating that the property is

false.

The two kinds of DFS can be nested in order to directly produce a sequence
of states that invalidates the property, if such a sequence exists.

Because several reachable states may be accepting, the same path can
be parsed several times (by distinct instances of DFS2). Fortunately, the
reachable accepting states can be ordered in such a way that the ones which
have already been visited for a cycle detection need not be visited again in
further searches. The parsing made by DFS1 is used to order these states
according to their most recent visits. This is based on the following key points:

• The DFS algorithm on a graph structure corresponds to the parsing of
a tree provided every cycle is cut (i.e. a cycle is detected whenever the
current state is already visited),

• The parsing of a tree can be performed from its root by a recursive proce-
dure which is called for every possible successor of the current node;

• States which are accepting are detected during the backtracking process of
DFS1; hence the reachable accepting states which are the closest to the
leaves are considered first.

Algorithm 14.5 follows this scheme (see also [CVWY92]). For the sake of
simplicity, we consider that there is only one initial node in the synchronised
product. The DFS1 starts with a call to procedure search; moreover, as
soon as a reachable accepting state is detected, a DFS2 starts with a call
to procedure detectCycle. Each DFS is associated with two kinds of data
structures:

• An explicit stack is used to store the visited nodes of the current path
(Stack1 and Stack2);

• An explicit heap is used to store the other visited nodes (H1 and H2).

The memory is assumed to be large enough that any node yet unvisited can be
stored. The reader may refer to Section 14.5 (state-space caching and hashing
compaction) in which this assumption is relaxed by the use of efficient data
management techniques.

Example. Figure 14.5 depicts the behaviour of the algorithm on a synchro-
nised product representation which is assumed to be developed on-the-fly.

1. The first part of DFS1 develops a tree, the nodes of which are
0, 1, 2, 3, 4, 5, and6.

2. During the backtracking, node 3 is detected as an accepting node.
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Algorithm 14.5

Initialise: Stack1 and Stack2 and H1 and H2 are emptied;
enter s0 in H1;
push s0 onto Stack1;
search()

end
search() begin

s = top of Stack1;
for all s′ = succformula,system(s) do begin

if s′ is NOT already in H1 ∪H2 then
enter s′ in H1;
push s′ onto Stack1;
search();
fi

od
if s is accepting then

transfer s from H1 to H2

push s onto Stack2;
detectCycle();

fi
pop s from Stack1;

end{search}
detectCycle() begin

s = top of Stack2;
for all s′ = succformula,system(s) do begin

if s′ is bottom of Stack2 or in Stack1 then abortSearch(Stack1 · Stack2);
if s′ is NOT already in H2 then

transfer s′ from H1 to H2;
push s′ onto Stack2;
detectCycle();

fi
od
pop s from Stack2;

end{detectCycle}

3. A DFS2 is started from node 3, hence nodes 4, 5, and 6 are parsed again,
with the partial result that no cycle is detected from node 3.

4. The second part of DFS1 is developed, backtracking from node 3 and
parsing nodes 7 and 8. One may note that nodes 6 and 0 are not visited
again since they have been already visited by the first portion of DFS1.
Moreover, during the backtracking from node 8, node 7 is detected as the
second accepting state to be dealt with.

5. So, a second DFS2 is started from node 7, which parses nodes 8, 0, 1,
and 2 without parsing node 3 which was already visited during the first
DFS2. Finally, node 7 is reached again, causing a cycle to be detected and
the search to be aborted. Actually, the stack of DFS1 which currently
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Fig. 14.5. Example of on-the-fly model checking

stores nodes 0, 1, 2, and 7 and that of DFS2 which stores 8, 0, 1, 2, and
7, yield the erroneous path.

Concluding Remarks. Model checking is a major foundation for checking
temporal properties, and on-the-fly approaches contribute to the use of it.
The algorithm presented deals efficiently with LTL formulae by considering
their representations in Büchi automata. Moreover it is worth noting that
the authors of [GPVW93] have presented an incremental translation of the
LTL formula into a Büchi automaton which makes the on-the-fly approach
possible.

Nowadays, LTL on-the-fly techniques have been integrated into the major
tools of model checking, for instance SPIN [Hol97], PROD [VHHP95], and
PEP [BG96]. It is worth noticing that extensions exist for CTL∗ formulae,
the truth values of which can also be captured within an automata theoretic
approach, by means of weak alternating automata.

Despite the efficiency of the on-the-fly algorithm, a large portion of the
state space may be built and parsed; therefore, the next section will show how
the Petri net formalism used to model the system can be exploited to improve
model checking techniques. Also, some improvements will be obtained by
efficient implementation (see Section 14.5).

14.3 Partial-Order-Based Approaches

Partial-order methods attack one of the main drawbacks of the standard in-
terleaving semantics: transition firings are interleaved even if some of them
can be executed in true concurrency. This may cause the representation to be
exponentially larger than necessary. For instance, the state space of a system
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composed of n transitions that can be fired in true concurrency from some
state contains n! interleavings in order to represent all the firing sequences.
Since the difference is only in the order of firings, the state-space represen-
tation can be reduced by defining some representative sequences for these
interleavings. Mazurkiewicz in [Maz87] gave the first foundations of this new
theory, by defining the notion of traces. A trace represents a set of firing se-
quences, such that two sequences in a class can be obtained from each other
by successively permuting independent and adjacent firing occurrences. In
practice, the independence relation between the system events is defined in
opposition to dependence relations: e.g. two events may be in conflict (the
firing of t1 prevents that of t2 or vice versa) or may be in causal relations (an
occurrence of t1 must be preceded by a firing of t2).

The corresponding methods are called partial-order methods since de-
pendence and independence relations feature the partial ordering of tran-
sition firings. Two rather distinct directions are followed: the first one
proposes to reduce the reachability graph representation by removing the
sequences which are redundant for the trace representation. The trace-
based graph approach has been developed by several researchers, includ-
ing Valmari [Val88, Val89, Val90b, Val92b, Val93c], Godefroid and Wolper
[God90b, God, GW91b, GW94], and Peled [Pel93, Pel94, KP92, PP94].

The second approach aims to represent the partial order of transition
firings directly, by reusing the notions of concurrency and conflict from
place/transition nets. This was initiated in [NPW81, Win87] by introduc-
ing a translation of any Petri net to a specific labelled Petri net, called
a branching process. Such a translation is called an unfolding since any
transition (and thus any place) may be represented several times within
a process, according to possible firings of the transitions. In this represen-
tation, events which are independent are modelled by independent transi-
tions, thus featuring any of their interleavings without representing them.
Several works have developed this approach, demonstrating efficient algo-
rithms for building such a structure and checking system properties on it
[McM95, Esp92a, Esp93, KKTT96, CP96].

Partial-order approaches, trace-based graphs, and net unfoldings are used
to check a very large class of temporal properties. In the next sections, we
recall their foundations and investigate related results as well as their algo-
rithms of verification.

Figure 14.6 presents a simple net (and its reachability graph) which is
used as an example to illustrate these different techniques.

14.3.1 Traces and Verification Issues

Within a state space, partial order is related to a basic relation of indepen-
dence among certain transition firings, namely the diamond property, that is
if one sequence t1.t2 is enabled from some state, then t2.t1 is also. Moreover
both sequences reach the same target state. According to this independence
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Fig. 14.6. A net and its reachability graph from state p1 + p4.

relation, the scenarios of a system can be gathered in equivalence classes
called traces in such a way that two sequences are equivalent if they can be
obtained from each other by successively permuting adjacent independent
transition firings. From the reachability graph depicted in Figure 14.6, one
may note that (t1, t4) from state p1 + p4, (t2, t4) from state p2 + p4, (t1, t5)
from state p1 + p5, and (t2, t5) from state p2 + p5 are pairs of independent
transition firings. Therefore sequences from state p2 + p4 such as t2.t4.t5,
t4.t2.t5, and t4.t5.t2 can be regarded as equivalent and be represented by the
same trace, e.g. [t2.t4.t5].

In a reachability graph, the number of interleavings can be reduced by
focusing on representative sequences of traces. More precisely, a trace starting
from the initial state of the reachability graph will be represented if each
of its sequences corresponds to a prefix of another sequence obtained by a
valid permutation of one path of the reduced graph. Observe that the prefix
relation is introduced to obtain a more concise graph, for instance, sequence
t4.t2 is a prefix of t4.t2.t5, therefore it can be represented by trace [t2.t4.t5].
Figures 14.7, 14.8, and 14.9 illustrate three reduced graphs with respect to
the above definition (the corresponding technique will be detailed further in
sections 14.3.2 and 14.3.3). In these figures, bold arcs represent the selected
transition firings. The removed arcs are also drawn but with gray lines, to
show the gain achieved by of each technique. These graphs differ according to
their chosen representatives, but any of them covers all the traces obtained
from the initial state of the system, that is all the traces contained in one
the following three expressions: [t1.t2.t4.t5], [[t1.t2.t3 + t4.t5.t6]

∗.t7.t1.t2.t4.t5],
and [[t1.t2.t3 + t4.t5.t6].t7]

∞. The best case is obtained in Figure 14.9 since
no more reduction can occur without loss of traces.
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Another important point is that incorrect behaviours must not be in-
troduced with respect to the properties to be verified. Hence, only reduced
representations of the reachability graph are possible, thus avoiding the exis-
tence of incorrect states and incorrect sequences of transition firings. In the
same way, sub-traces (in the sense of trace inclusion) are risky since one can
conclude falsely that there is no causal relation in some path. For instance,
without more information, the use of the graph in Figure 14.8 is confusing
with respect to deadlock properties: sub-trace t1.t4.t5 from the initial state
leads to the representation of false deadlocks.

By using a valid trace-based graph, a large class of properties can be
checked. A partial representation of traces is sometimes enough. In partic-
ular, the quasi-liveness property can be checked by saving only one trace
per transition. Invariant properties are also simple since they can be checked
by introducing a test transition, then non-quasi-liveness is required. For in-
stance, the property which expresses that “places p2 and p5 are never marked
simultaneously” can be tested by introducing a transition with p2 and p5 as
input places and checking that the added transition is not quasi-live. Gen-
eral safety and liveness properties need more effort because one must take
into account observable and invisible transitions with respect to a property
to verify. Transitions are defined to be observable provided their firings could
change the truth values of the atomic propositions comprising the formula,
while the other transitions are called invisible because their effects are not
observable in the proposed model checking. In the place/transition net con-
text, a transition can be defined as observable whenever one of its input or
output places is concerned with the atomic properties of the formula to ver-
ify. Actually, three key points must be considered, since temporal properties
can be sensitive to the order of transition firings:

1. A sufficient set of traces must be preserved in order to cover all the
interleavings of observable transition firings, thus allowing a comparison
against sequences of the Büchi automaton of the formula.

2. A consequence of the first point is that reduction must involve invisible
transitions only. This allows us to check the safety property and also
liveness properties concerning infinite cycles over observable transition
firings. However, a path which contains a loop over invisible transitions
risks being lost. Such a path, called a divergent sequence, must be cap-
tured if one wants to check general liveness properties; hence there is a
need to retain some loops of invisible transitions (but not necessarily all).

3. The third point is to define the kind of formulae that would benefit
from trace-based graph techniques. Effectively, the satisfaction of point
(1) suggests the building of the standard reachability graph as a trace-
based graph in case where all transitions are observable. Of course, this
would eliminate the benefit of using trace-based graph techniques. This
is the case for state-based formulae containing the Next-time operator,
therefore several works refer to LTL-◦ (where ◦ means the Next-time
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operator) [WW96]. Such a logic belongs to a large family of logics that
restrict the class of properties to stuttering-invariant properties. Stutter-
ing invariance means that the truth value of a formula is not affected
if some information needed for the verification is repeated through a fi-
nite sequence of states. Without ensuring stuttering invariance, all the
transitions must be considered as observable (i.e. by definition, invisible
transitions cause such repetition of information). In [PWW96], a fine al-
gorithm is presented to decide stuttering invariance with regard to some
property.

Of course, it would be irrelevant to detect (in)dependence relations of
transition firings by building the reachability graph. In practice, trace-based
graphs are built on-the-fly since it is possible to compute independence rela-
tions from the Petri net structure with respect to each visited marking. This
computation is mainly based on an absence of firing conflicts among subsets
of enabled transitions according to some state. Hence, it is possible to select
only some of the enabled transitions from a state, provided their firings do
not cause conflict with the other enabled ones. As a consequence, the enabled
but unselected transitions at some state remain enabled in the next states
until one decides to fire them. The graph obtained can thus be a reduced rep-
resentation of the reachability graph, however, it is worth noting that it does
not necessarily preserve important sequences allowing one to prove certain
properties. Actually, two problems may appear whenever some transition is
enabled but not selected:

• The first problem, called the ignoring problem of transition firings, is re-
lated to the enabled transitions at some state that are unselected and which
remain unfired in all further reached states. This appears when some sets of
transition firings are independent of others, whatever the state considered.
A system composed of independent processes can be used as a straightfor-
ward example: a trace-based graph selecting only enabled transitions from
only one independent process would leave aside the enabled transition fir-
ings of the other processes.

• The second problem, called confusion cases, is related to some state that
remains unvisited although it is the beginning of sequences that are not
represented in another way. Let us again consider the net of Figure 14.6
and the trace-based graph of Figure 14.7. Although transitions t1 and t4
are not in effective conflict from the initial state, both must be fired from
this state. Effectively, if one of them is not fired, e.g. t4, then every sequence
containing the firing of t6 is lost since state p1 + p6 is never reached. This
is due to a structural conflict between t1 and t6 which is not effective
in the initial state but which becomes effective after firing t4.t5. Thus, a
dependence relation can be hidden behind causal relations.

We now discuss three kinds of solutions for building complete and valid
reachability graph reductions which benefit from the trace-based approach.
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The first one, persistent sets, is a direct application of the above presenta-
tion, while the sleep set technique is a complementary approach. Finally, the
covering step technique allows one to build a particular graph which can also
be viewed as a trace-based graph.

14.3.2 Persistent Set Searches

A set of enabled transitions called a persistent set is defined in every state
so as to select each time a subset of transition firings which are independent
from the other ones. In other words, if T is a persistent set in a state s and
if one sequence t.w is enabled from s such that t belongs to T and w is a
sequence of transition firings taken out of T , then all the permutations mixing
the firing of t with the transition firings of w are enabled and reach the same
target state. As a brute force case, the set of all the transitions enabled from
a state is a persistent set in that state.

With such a notion, the building of a trace-based graph is similar to the
ordinary one except that:

• Once a state is examined, the algorithm computes a persistent set of transi-
tions including at least one enabled transition (if the marking is not dead).

• The successors of the state are the ones reached by the enabled transi-
tions of the persistent set. The persistent-set technique can be viewed as
a linearisation of independent transition firings. Effectively, the enabled
transitions which are not selected in a state remain enabled in the next
states until they are fired. Consequently, the representation of the state
space is reduced while preserving all deadlocks and the existence of infi-
nite firing sequences. It is worth noting that the independence of persistent
sets from the other transition firings would lead to the ignoring of some
enabled transitions. Fortunately, this does not occur if the net is bounded
and strongly connected [Val89]. In other cases, the ignoring problem can
be avoided by checking in each visited state the satisfaction of some ad-
ditional constraints, called provisos. In [Val89], a first proviso is proposed
based on the detection of every non-trivial terminal strongly connected
component while building the visited state space. In case some enabled
transition remains unselected within one of these, an additional persistent
set is chosen so as to consider more enabled transitions. Another proviso,
more simple, is proposed in [HGP92]. It consists of detecting states from
which an enabled transition firing closes a circuit. In such a state, all the
enabled transition firings are considered. The fact that there are no ignored
enabled transitions yields a valid trace-based graph in which deadlocks as
well as invariant state properties can be checked.

Several additional provisos have been proposed to enable model checking
of (linear time) temporal properties. That of Valmari [Val90b] expresses the
following two requirements: (1) from each visited state that is reached during
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the construction of the trace-based graph, if there exist invisible transitions
then at least one is executed; (2) every cycle must contain at least one state
where all enabled visible transitions are explored. Intuitively, the first require-
ment maintains cycles of invisible transitions in the trace-based graph, while
the second ensures that visible transitions are not ignored. Several works have
demonstrated how to build a trace-based graph ensuring requirement (2). In
particular, another proviso can be used to force the firings of all the transi-
tions enabled from the state currently treated during the graph construction
each time this state is detected to close a cycle [Val93c, Pel94]. Moreover,
when model checking is performed by means of an on-the-fly synchronisation
against the states of a Büchi automaton (see Section 14.2), it is possible to re-
duce the checking of the former two requirements: the first requirement must
be ensured only when meeting accepting states, while the second is required
in the case of non-accepting states [Val93c].

Based on the analysis of a Petri net structure, different algorithms have
been proposed to efficiently compute persistent sets in each visited state,
from the most simple one which limits the searches to conflict detections
[God, Bau97] to the most advanced one, the stubborn set technique [Val89].
These techniques are presented next.

Stubborn Set Searches. A stubborn set is built at each state to select a
subset of the enabled transition firings which are independent from the others.
In order to avoid confusion cases, it can also contain disabled transitions for
capturing conflict cases that might be effective in the next states. Hence,
dependencies of transitions are analysed not only through conflicts but also
through causality relations. Any selected transition must satisfy one of the
following two conditions, depending on the result of its enabling test:

• If it is enabled, also select all the transitions which are in structural conflict
with it.

• If it is disabled, then choose one of its deficient input places and also select
all the input transitions of that place (deficient means that such a place
does not have enough tokens and thus disables the transition).

This results in a fixpoint procedure since one may have to select some
other transitions each time a transition is selected, depending on whether it
is enabled or disabled. The worst case would yield a stubborn set containing
all the enabled transitions of the state considered (no reduction appears).
The stubborn set may also be a single enabled transition, without conflict
against any other transition.

If the current state is not a deadlock state, then from the computation
of a stubborn set, a persistent set is obtained which contains at least one
enabled transition, and includes all the enabled transitions of the stubborn
set. Figure 14.7 depicts a reduced graph obtained by applying the stubborn
set technique at each visited state, with respect to the net of Figure 14.6. For
instance, the stubborn set of the initial state is {t1, t6, t5, t4, t3, t2} leading to
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Fig. 14.7. Stubborn set method

the persistent set {t1, t4}. It can be built from transition t1 which is enabled
in the initial state; since t1 is selected, t6 is also due to conflict (t1, t6); then
t5 is selected because t6 is disabled, p6 is the input place of t6, and p6 is the
output place of t5; then t4 is selected for similar reasons; then t3 is selected
since t4 is enabled and in conflict with t3; then t2 is selected since t3 is
disabled; then t1 is selected again since p2 is disabled, which terminates the
searching procedure.

Of course, the size of a stubborn set is very sensitive to the choice of
the first enabled transition and the choice of an input place in the case of a
disabled transition. There may exist several stubborn sets for a state. In order
to ease the choice of a (small) stubborn set, Valmari observes that testing the
inclusion of stubborn sets can be checked in linear time because it corresponds
to a search of a minimal strongly connected component. The reader may refer
to [Val89] for more details. For instance, in state p2 + p4 (i.e. after the first
firing of t1), there are two stubborn sets containing enabled transitions: {t2}
is found if the analysis starts from transition t2, whereas {t4, t3, t2} is found
from transition t4. The observation that {t2} is included in {t4, t3, t2} allows
one to take {t2} as a persistent set in either case (note that t2 is enabled).
Thus, the selection of the enabled t4 transition is postponed to further visited
states.

The efficiency of a stubborn set implementation may depend on several
parameters:

• The choice of an input place in the case of disabled transitions;
• The choice of a persistent set since there may be several possible persistent

sets for one state;
• The choice of a procedure to detect and solve the ignoring problem of

enabled transitions.
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Conflict-Based Dependency Searches. A simpler technique for comput-
ing a persistent set appears in [GW91a]. It is based on the following two
remarks:

1. A set of enabled transitions which is obtained by a fix point procedure
on the conflict relation is a particular type of persistent set (in other
words, starting from one enabled transition, this procedure recursively
adds the transitions that are in structural conflict with the ones previ-
ously selected; in addition, it fails whenever a disabled transition risks
being added).

2. It is always possible to avoid disabled transitions by using the following
method: if the former construction fails, then return the entire set of
enabled transitions.

Hence, all the transitions selected in the persistent set are enabled and
have no conflict with those not selected. Often, this technique may yield
larger persistent sets than those of the stubborn set technique, because the
application of point (2) gives no reduction in a state. The former approach
can however be efficient for some nets such as the one depicted in Figure 14.6.
For this example, the conflict-based dependency approach obtains the same
graph as that comuted by the stubborn set technique (see Figure 14.7). In
fact, in this example the application of point (1) never fails, so point (2) is
never applied.

For model checking, this technique is comparable to stubborn sets, and
the same general solutions can be used. Complementary approaches have
been developed by Bause. In [Bau97], the way to choose a convenient subset
of the enabled transitions in a state is specified by means of a notion of
transition priority (high and low), dynamically reconsidered from each state:
low priority transitions cannot be fired if some higher priority transitions
are enabled. Some interesting results are given which assume that the net
is bounded and strongly connected. In particular, the dynamic priority rule
ensures that liveness (in a Petri net sense) is preserved. Also, home states can
be preserved given the following restriction: a high priority in a state may
concern only a set of enabled transitions which are in (extended) equal conflict
, one from another. In other words, these conflicting transitions are enabled
and share the same input places, thus are either all enabled or all disabled.
One may remark that a transition which has no conflict is a degenerate case
of equal conflict. For instance, this is the case for transitions t2 and t5 in the
net of Figure 14.6, and both are enabled from the state p2 +p5, therefore one
may linearise their firings while preserving home state properties.

In [Bau97], it is also highlighted that, instead of an arbitrary policy, a
careful selection of persistent sets can improve the graph reduction. The
proposed algorithm in a sense mimics the firing of T-invariants to reduce the
length of visiting cycles as much as possible. Experience shows that it should
perform well when large parts of the net have an equal-conflict structure.
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14.3.3 Sleep Set Searches

The sleep set technique, introduced by [God], exploits the absence of effective
conflict between some transition firings. It aims to avoid having some target
states reached by several interleavings (due to the diamond property). In
this technique, a specific set, called the sleep set , is associated with each
state. Unlike stubborn sets, a sleep set of a state represents the enabled
transitions that are not worth firing, because their own target states are
known to be reached by another way. In this way, the sleep set technique
proposes eliminating some arcs of the reachability graph.

Sleep sets are built on-the-fly during the graph construction, starting from
an empty sleep set associated with the initial state. From an already com-
puted state s and its sleep set, consider the firings of the enabled transitions
successively except for those of the sleep set. Whenever the firing of one of
these transitions, t, reaches a state not yet visited, define the sleep set for this
state to be the one obtained when reaching s, augmented with all transitions
considered in s before t, and purged of all transitions that are in effective
conflict with t in s.
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Fig. 14.8. Sleep set technique

The graph of Figure 14.8 is an example of reduction using the sleep set
technique. According to the sleep set procedure, the sleep set of the initial
state is empty, hence both transitions t1 and t4 are fired as usual. If t1 is
fired first, then state p2 + p4 is obtained first, and then p1 + p5 is yielded by
the firing of t4. The sleep set of p2 + p4 remains empty but that of p1 + p5 is
{t1} due to the mutual independence between t1 and t4. From p2 +p4, all the
enabled transitions are fired as usual since the associated sleep set is empty,
causing in particular state p2 + p5 to be reached. From p1 + p5 and its sleep
set {t1}, only transition t5 is fired although t1 is enabled. So, state p2 + p5

is reached from the initial state but only by sequence t1.t4. More generally,
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one can observe that only state p7 is reached twice while the other states are
reached only once.

The main interest of the sleep set procedure comes from the fact that
it strongly decreases the number of state matchings against sets of already
visited markings. From a space point of view, the fact that all states are
preserved indicates that very often the graph reduction is less important than
with the stubborn set technique. The comparison of Figures 14.7 and 14.8
highlights such a case. The opposite case is also possible, in particular, sleep
set reductions may exist because of an absence of effective conflict for some
transition firings, while the persistent set procedure may yield the entire set
of enabled transitions at every state.

The preservation of reachable markings allows one to verify all reachability
properties, including state invariant ones. All traces are also represented since
the removed arcs are useless, but they may be accompanied with sub-traces,
such as [t1.t4.t5] with respect to trace [t1.t4.t5.t2] from the initial state. Hence,
some properties such as deadlocks can be checked only by assuming that the
transitions of sleep sets are fired. More generally, the standard verification
techniques based on the trace-based graph must be modified to take into
account the sleep sets associated with the states.
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Fig. 14.9. Combining stubborn set and sleep set techniques

Sleep set techniques can also be used to reduce stubborn sets: a sleep
set of transitions is removed from any considered stubborn set. Hence, valid
trace-based graphs are obtained which are often reduced more than the ones
of the standard stubborn set technique. This is highlighted by the graph
of Figure 14.9 where the p2 + p6 intermediate state is no longer reached.
Effectively, from the initial state, state p1+p6 is reached by the firing sequence
t4.t5 and {t1} is the selected sleep set of this state. Since {t1, t6} is the
persistent set of state p1 + p6, only t6 is fired.
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As with persistent sets, general properties can be checked since the proviso
proposed by Godefroid to solve the ignoring problem for persistent set tech-
niques remains valid. In fact, an improved version is used since a transition
that appears in a sleep set is by definition not ignored.

14.3.4 Covering Step Graphs

The building of a covering step graph (CSG) has been proposed recently in
[VAM96, VM97] in order to decrease the interleavings of transition firings.
Basically, it takes advantage of independence of some enabled transitions to
fire these transitions in a single step, i.e. simultaneously from a state. Hence a
new structure, namely CSG, is obtained wherein nodes are taken among the
reachable markings, and arcs may represent steps of simultaneous transition
firings. For instance, four steps are represented from the initial marking of the
CSG in Figure 14.10. The p3 + p2, p4 + p2, p1 + p5, and p1 + p6 intermediate
states are void, causing deadlocks such as p3 + p6 to be found more rapidly.

By means of a linearisation of steps (i.e. fire the transitions of any step
one by one), one can retrieve a valid trace-based graph such as that depicted
in Figure 14.10. However, the construction of a CSG offers more since all
the sequences of the reachability graph are covered. More precisely, every
transition firing sequence in the reachability graph is represented by the prefix
of a sequence, equivalent (in the sense of Mazurkiewicz) to a sequence of steps
in the CSG. This can be seen by considering the graphs of Figure 14.10.
For instance, sequence t3.t2.t5 which exists from the initial marking of the
reachability is covered by sequence {t2, t3}.{t5} in the associated CSG. In
contrast, this sequence has no representation in the trace-based graph.
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A CSG represents the firing sequences of the reachability graph, except
that certain transitions are fired by steps according to some independence
relations. In every state, the set of enabled transitions is partitioned into a
set of transitions that must be fired on their own, and a set of mergeable
transitions, i.e. transitions that can be included in steps. The CSG is con-
structed on-the-fly, once a definition is chosen for independence relations. A
rather simple way to define such relations consists of testing in each state the
absence of effective conflict with respect to the enabled transitions.

The algorithm for building a CSG is very similar to that for building a
reachability graph, however the firing procedure from a state must follow
three key points:

1. All the enabled transitions are fired;
2. An enabled transition firing is considered as mergeable if the transitions

with which it is in direct conflict are also enabled;
3. There are as many steps as cases of merging with respect to the conflict

relations among the mergeable transition firings.

Point (1) ensures that no starts of sequences are forgotten while point (2)
avoids possible confusion cases because conflicts void merge operations. For
instance, let us consider the initial marking of Figure 14.11. By point (1),
transitions t1, t2, t3, and t4 are enabled and can be fired. Because of point
(2), the firing of these transitions can be merged. Finally, point (3) ensures
that every sequence is covered since every possible merge of independent
transition firings is built. Since t1 and t2 are in conflict and so are t3 and t4,
four possible merges occur from the initial state of the CSG of Figure 14.10:
{t1,t3}, {t1,t4}, {t2,t3}, and {t2,t4}. Hence, the same transition firings can
be repeated several times in steps.

It is worth noting that the efficiency of the CSG approach compared to
other techniques such as persistent sets depends on the system considered.
In the example of Figure 14.10, the factor of reduction is almost the same for
the CSG as for the standard trace-based graph. Effectively, the combinatorial
effect of step buildings is compensated by the fact that some (intermediate)
states disappear in the CSG. In this example, states p3 + p2 and p4 + p2 are
present in the trace-based graph while they disappear in the CSG. Moreover,
from each of them, the firings of transitions t3 and t4 occur. In contrast the
CSG of Figure 14.11, which corresponds to the net of Figure 14.6, highlights
the opposite case since it contains only one possible step of two transition
firings, and thus few reductions. The resulting CSG can be compared to the
trace-based graphs of Figures 14.7 and 14.9 which are obtained by persistent
set techniques.

Considerable reduction can appear with CSG when some processes in
the system can flow independently but periodically reach the same places
(or equivalent ones). Examples, such as a model of a multi-copy distributed
database, can be found in [VAM96]. In this example, a request broadcast
from one site to the others causes the others to answer after some wait. Since
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Fig. 14.11. A CSG for the net of Figure 14.6

there is no direct relation between the addressees, they can act synchronously
in single steps while receiving a request, waiting, and answering. In contrast,
persistent sets linearise the actions of the addressees. In this case, the more
sites, the better the CSG representation with respect to standard trace-based
graphs.

The nice property that all sequences are covered by the CSG implies
that several path-based properties can be checked, such as deadlocks and
above all the liveness of transitions (in a Petri net sense). In contrast with
persistent set techniques, no proviso is needed. Moreover, the algorithm may
easily be adapted to deal with (observable) transitions. In particular, model
checking of the temporal logic property is enabled if every step is constrained
to contain at most one observable transition firing. Hence, all the interleavings
of observable transition firings are preserved.

14.3.5 Branching Process Techniques

Branching process techniques aim to obtain a direct representation of the
partial order of system events, in terms of Petri nets. The basic method is
called the unfolding computation. The second method, called the branching
process graph computation, corresponds to a generalisation of the unfoldings
to make the verification of temporal properties possible.

Branching Process and Unfoldings. The unfolding method was in-
troduced by K.L. McMillan in [McM92] and various improvements ex-
ist: [Esp92a, Esp93] are concerned with the verification of properties;
[ERW96, Röm96] with implementation problems; and [KKTT96] with adap-
tation to more general classes of Petri nets.

As for the reachability graph, the aim is to characterise all the reach-
able markings and the events enabled from each of them. But rather than
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representing interleavings of transition firings, the basic idea is to model inde-
pendent transition firings by independent transitions. Roughly speaking, an
unfolding of a given Petri net yields another net wherein nodes are labelled by
the elements of the original one; hence, a firing sequence or a reachable mark-
ing of an unfolding can always be interpreted in the context of the original
net using the labels. The problem is to structurally constrain the unfolding
in such a way that efficient procedures for its construction and analysis are
defined.

The proposed solution exploits causality and conflict relations. Basically,
one can define a labelled causal net, namely a process, for the representation
of a Mazurkievicz trace [Eng91]. A process of a net is defined as follows:

• It is acyclic.
• Each place has at most one input transition and at most one output tran-

sition.
• Each place (respectively transition) of the process is labelled by a place

(respectively transition) of the original net.
• The environment of transitions of the original net must be preserved by

defining a convenient set of input and output places for each transition of
the process. Thus, with respect to any transition and to the corresponding
transition in the original net, there is a one-to-one correspondence of labels
of adjacent places.

• The initial marking of a process corresponds (via the labels) to the initial
marking of the original net.

Because places have at most one input transition, any pair of process
transitions are either in causal dependence (i.e. one must occur before the
other) or independent (both can occur concurrently); hence, no conflict can
appear.

Moreover, just as the initial marking of a process corresponds to that of
the original net and the environment of the transitions is preserved, reachable
markings and firing sequences of the process can be interpreted in the context
of the original net.

Figure 14.12 presents two processes of the original net from Figure 14.6.
The labels referencing nodes of the original net are in italic. The first process
(Figure 14.12i) represents trace [t1.t2.t4.t5] for which the e1 and e2 events
are in causal dependence, as are e3 and e4. Nine reachable markings are
represented: p1 +p4, p2 +p4, p3 +p4, p1 +p5, p2 +p5, p3 +p5, p1 +p6, p2 +p6,
and p3 + p6. In contrast to this process, that one of Figure 14.12ii is infinite.
It describes the trace [(t1.t2.t3.t7)

∞].
In a process, any reachable marking is featured by a cut , which is a max-

imal (with respect to set inclusion) set of process places that can be marked
concurrently; in other words there is no causal relation between the places of
a cut. For instance, the set {c5} is a cut of the process of Figure 14.12ii and
corresponds to the reachable marking p7 of the original net.
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Fig. 14.12. One finite and one infinite process of the net of Figure 14.6

The notion of configuration in a process is the counterpart of cuts since it
focuses on transitions instead of places. A configuration is a set of transitions
downward closed with respect to the causal relation, so it characterises a pre-
fix of a trace. For instance, set {e1, e2, e3} is a configuration of Figure 14.12i.
With each transition of a process is associated a minimal configuration, that
is the minimal set of transitions containing the given transition and forming
a configuration. For instance, the minimal configuration of transition e2 in
the process of Figure 14.12i is the set {e1, e2}. Observe that there is a close
relation between the notions of configuration and cut: to each configuration
there corresponds a maximal cut ({c3, c4} for {e1, e2} in Figure 14.12i) and
to each cut there corresponds a minimal configuration ({e1} for {c2, c4} in
Figure 14.12ii).

In [Eng91], Engelfriet has shown how a set of processes can be represented
by a labelled occurrence net called a branching process. A branching process
is a process in which conflicts are permitted. Hence, a branching process is
also an acyclic net in which places can have at most one input transition
but the number of output transitions is not constrained. As for a process,
the environment of the transitions of the original net must be preserved.
Figure 14.13 presents a branching process of the net from Figure 14.6.

The notions of configurations and cuts have to be redefined in the context
of branching processes. To be a configuration, a set of transitions must not
only be downward closed with respect to the causal relation of transitions
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Fig. 14.13. A finite branching process of the net from Figure 14.6

but also must not contain any pair of conflicting transitions. For instance, set
{e1, e2, e4, e5} is a configuration of the process of Figure 14.13 but this is not
the case for set {e1, e2, e3, e4} because transitions e3 and e4 are in conflict. In
a similar way, the set of places forming a cut must be concurrently reachable,
i.e. there must be neither causal nor conflict relations between them. For
instance, set {c2, c6} is a cut whereas set {c3, c8} is not a cut because both
places are in indirect conflict (because of c1).

Finally, an unfolding can be defined from the notion of branching process
after introducing the notion of stability for a cut. A cut is stable with respect
to its corresponding marking if all the transitions enabled from this marking
are represented by output transitions of the cut. For instance, cut {c3, c5}
of the branching process of Figure 14.13 is stable because e3 and e4 are the
output transitions of this cut and correspond to the enabled transitions (t3
and t4) from marking p3 + p4 in the original net. This is not the case for the
cut {c4} because the transition t7 is not represented in the branching process.

In this context, an unfolding of a net is a finite branching process such
that each reachable marking of the original net is represented at least once
by a stable cut. For instance, the branching process of Figure 14.14 is an
unfolding of the net depicted in Figure 14.6. All the reachable markings of
this net are represented and for each of them one can find a corresponding
stable cut: {c4} for p7 and {c1, c5} for p1 + p4.

The main advantages of the unfolding are the following:

1. For a highly concurrent system, we can obtain a reduced representation
of the reachable markings (compared to a classical approach);

2. The acyclic nature of branching processes enables the specification of
efficient procedures for the construction and verification of properties.
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Fig. 14.14. A finite branching process (which is an unfolding) of the net from
Figure 14.6

The remainder of this section is dedicated to the presentation of this
second aspect.

The construction presented is restricted to safe nets. Its generalisation to
k-bounded nets can be found in [KKTT96].

The construction of an unfolding starts with the generation of a place
for each marked place in the initial marking of the original net. Adding a
transition to the unfolding is done by selecting a set of concurrent places cor-
responding to the input set of an original transition. From such a transition,
a place set corresponding to the output places of the original transition and
the corresponding arcs can be generated. This process is done repeatedly.

This procedure leads to the construction of an infinite branching process
if the original net is able to perform an infinite firing sequence. The termina-
tion of the procedure is achieved by the introduction of cutoff transitions. A
cutoff transition is a transition of the branching process from which it is not
necessary to continue the construction. In order to ensure the completeness
and the stability of the construction, cutoff transitions have to be well chosen.
Different definitions have been presented (see [McM92, Esp92a, KKTT96]).
For all of them, a transition is a cutoff if there exists a cut of the branch-
ing process corresponding to the same reachable marking represented by the
cut of the minimal configuration of the transition considered. Moreover, the
configuration of the cut must not contain a cutoff transition and must be
strictly inferior (in some sense depending on the definition) to that of the
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minimal configuration of the transition. The most simple decision procedure
is that due to McMillan. The order relation on configurations is their size.
For example, the cut of transition e7 in Figure 14.14 corresponds to marking
p1 +p4. This marking is also represented by the cut {c1, c5}. Event e7 can be
considered as a cutoff transition, because the minimal configuration of this
cut is the empty set and thus strictly included in the minimal configuration of
e7. The output places of e7 are then not considered in the next construction
steps of the unfolding. The same reasoning cannot be applied to transition e6
since the size of the minimal configuration of e6 is equal to that of e3. Hence
another order has been defined in [Esp92a]. This order (and the one presented
in [KKTT96]) is more elaborate and leads to more concise unfoldings in such
situations.

It is worth noting that the implementation of the decision procedure for
a set of concurrent places and configurations has a large influence on the
efficiency of the whole algorithm. Interested readers can refer to [KKTT96,
Röm96] for more details of this part of the algorithm.

Verification procedures on unfoldings take advantage of the particular
structure of branching processes. This fact is highlighted by the detection of
the presence of a deadlock.

The principle of the algorithm is to construct a configuration wherein
there is a transition in (direct or otherwise) conflict for any cutoff transition
of the branching process. Hence obviously some dead markings are reachable
from the reachable marking corresponding to the cut of such a configuration.

The procedure is illustrated for the branching process of Figure 14.14.
Initially, the configuration is set to the minimal configuration of a transition
in conflict with a given cutoff transition. In our example, the configuration
is set to the minimal configuration of e4 (in conflict with the cutoff e7). To
complete the algorithm, a transition in conflict with the cutoff e8 must be
introduced into the configuration. Because e1 satisfies these properties and
because the union of its minimal configuration with the already constructed
configuration also yields to a configuration (there is no transition in conflict),
the algorithm leads to the construction of the configuration {e1, e4}. From
the corresponding reachable marking p2 + p5, the dead marking p3 + p6 is
reachable.

The verification of invariant properties is performed according to the
same principle (i.e. construction of particular configurations). The related
algorithms can be found in [Poi96]. Moreover, a model checking proce-
dure dedicated to the verification of safety properties has been presented
in [Esp92a, Esp93].

Branching Process Graph. The main objective of this technique is the
construction of a graph which enables the verification of linear temporal logic
formulas . From a formula, a branching process graph is constructed and
classical model checking algorithms can be applied. The size of the graph is
closely related to the number of observable transitions implied by the formula.
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In the worst case where all the transitions are observable, this technique leads
to the construction of the complete reachability graph. This method is well
adapted to the verification of stuttering-invariant formulae (LTL without the
Next-time operator for instance).

A branching process graph is a graph wherein nodes are stable branching
processes and arcs are labelled by transitions of the original net. A branching
process of a node cannot contain any transition representing an observable
transition. Then the firing of an observable transition is always represented
by an arc of the graph, and a node represents adjacent reachable markings
which can be reached from the initial marking of the node without firing an
observable transition.

A branching process comprising a node can contain two particular kinds of
transitions: cutoff transitions, as for unfolding, and external transitions which
correspond to output arcs of the node. For a given arc, the initial marking of
the target node must represent the same marking as the one represented by
the cut associated with the external transition of the source node. Obviously,
to be valid a branching process graph must contain a node for which the
initial marking of the branching process corresponds to the initial marking
of the original net and it must be stable and complete (i.e. all possible firings
and reachable markings are represented in it).

Figure 14.15 presents a branching process graph of the net from Fig-
ure 14.6.
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Fig. 14.15. A branching process graph with respect to {t5} as observable transition
set
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External transitions are represented as solib black rectangles and cutoff
transitions are shown in grey. This graph has been constructed with respect
to the observable transition set {t5}.

The cut associated with the external transition e5 of node 1 is {c1, c6}
and it corresponds to the marking p1+p6 of the original net. The arc which is
labelled t5 corresponds to this external transition and leads to node 2, which
has an initial marking again corresponding to marking p1 + p6.

This graph does not contain enough information so as to enable the de-
sired model checking. Effectively, some infinite or dead sequences may not be
represented in the graph. For example, the projection of the dead sequence
t1.t2.t4.t5 on the observable transitions cannot be found. In fact, the graph
has to be completed. In particular, any node which contains a dead marking
must be marked as blocking. Similarly, it is possible that a node may repre-
sent a suffix of an infinite sequence, composed only of invisible transitions.
This is because of the presence of cutoff transitions. For example, the infinite
sequence (t1.t2.t3.t7)

∞ is represented in node 1. Such nodes are the source of
divergent sequences and have to be marked as divergent.

So, to be equivalent to the reachability graph as far as model checking
is concerned, a node (denoted B) without a successor is added to the graph
and all blocking nodes have this node as a successor (via an edge labelled by
τ). Moreover, a loop is added on every divergent node, labelled by τ .

Figure 14.16 shows the equivalent graph derived from the branching pro-
cess graph of Figure 14.15.

1 2 B

τ

τ

t
5

t
7

Fig. 14.16. Equivalent graph derived from the one of Figure 14.15

This graph can be used for verifying a temporal formula which requires
the observation of transition t5.

A node of a branching process graph is constructed as an unfolding except
that observable transitions are taken into account. A transition labelled by
an observable transition is always external. In order to limit the number of
nodes of the graph, a transition for which the marking corresponding to the
cut of its minimal configuration is also the initial marking of an other node
can also be considered as an external transition. This is the case for transition
e4 of node 2 in Figure 14.15.

The detection of the blocking nodes is performed by applying the deadlock
detection algorithm presented in section 14.3.5 to each node. The detection
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of the divergence of a node is more difficult. A solution is to construct the
branching process comprising the node using the inclusion set as the order for
the definition of cutoff. Effectively, the presence of such a cutoff corresponds
to the capability of the system to perform an infinite sequence.

Deadlock detection and the verification of invariant properties is per-
formed as for unfolding, by applying the same algorithms on all the nodes
of the graph. Moreover, the graph can be used to verify any linear tempo-
ral property (in this case, the observable transitions are the ones which can
potentially modify the truth value of the atomic properties comprising the
formula).

14.3.6 Conclusion

Partial-order techniques can be used without risk since they often reduce the
size of the representation of the state space while preserving the ability to
verify a large class of properties, from deadlocks to temporal logic formulae,
e.g. LTL-◦ (◦ means the Next-time operator).

The partial-order techniques are based on dependency relations among
system events, such as conflict and causality relations. We have presented
three families of techniques which take advantage of Petri nets to handle
these dependencies automatically:

1. The persistent sets which can be combined with sleep sets aim to linearise
the independent transition firings within a reachability graph represen-
tation.

2. The covering step technique also deals with the reachability graph rep-
resentation, but gathers some independent transition firings in steps.

3. The branching process techniques refines the Petri net representation to
define the partial order of transition firings, thus with no direct expression
of interleavings.

The comparison of these techniques is not easy because they do not nec-
essarily offer the same reductions in all parts of the system state space.

As reachability graph techniques, the first two can be used efficiently
to check properties on-the-fly, however a minimal graph is rarely obtained
since sufficient conditions are applied to detect the partial order of transition
firings. Moreover, depending on the chosen technique, sufficient conditions are
applied during the construction to ensure that there is no loss of interesting
traces with respect to some property to verify. In particular, persistent sets
can be augmented to avoid ignoring problems or to maintain some of the
divergent sequences. When using the covering step graph technique, the same
transition can be fired several times in order to cover every prefix of sequences
(i.e. a transition firing may appear in several steps). Here again, additional
conditions are considered during the building of steps, not only to ensure the
absence of confusion cases, but also to force the interleavings of transition
firings that must be observed.
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In contrast to the reachability graphs, the branching process technique
offers a direct representation of the partial order of transition firings, however
the building must be completed before starting the verification (i.e. it is
not an on-the-fly procedure). The technique is especially interesting for two
reasons: (1) the number of markings and transition firings of the standard
reachability graph that refer to the same element of the branching process,
and (2) the efficiency of the algorithms that run on the branching process
structure. Here again, more effort is needed to maintain some of the divergent
sequences. More precisely, a graph is built wherein each node is a branching
process such that internal dead markings or divergent sequences are detected.

The partial-order techniques have already been implemented, in particu-
lar:

• In SPIN [Hol97], a model checking is proposed using persistent sets and
sleep sets.

• In PROD [VHHP95], the model checking is based not only on persistent
sets but also on other reduction methods such as the exploitation of sym-
metries and the use of BDD coding.

• In PEP, an unfolding construction is supplied [Röm96], from which safety
properties can be checked.

• Moreover, a prototype of the branching process graph exists and is pre-
sented in [Poi96].

In fact, partial-order techniques can exceed the standard application do-
main of Petri nets. Several adaptations and extensions have been proposed
in several languages according to possible representations of causality and
conflicts. Models for SPIN are designed in PROMELA, a language used to
specify communicating processes. Engineers may define possible access con-
flicts between data operators. Such conflicts can be taken into account to
refine the dependency relations of transitions. In PROD, the specification is
a coloured Petri net with C coloured functions which is unfolded into a stan-
dard Petri net so as to allow a verification process. In PEP, specifications are
defined according to either a process algebra or its translation into a Petri
net [BG96].

With such environments, both trace-based graph techniques and branch-
ing process techniques have demonstrated their ability to deal with large
systems. However, given the difficulty of defining the best algorithm for a
given system, more than one approach is generally proposed in software en-
gineering platforms. In the PEP environment, branching process tools are
accompanied by the ability to launch the PROD environment from the same
description of the system. In the CPN-AMI environment, for which specifi-
cations are designed in terms of communicating objects or in coloured Petri
nets, it is possible to launch PROD and PEP tools, as well as other tools
which exploit techniques such as symmetries [MT94].
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14.4 Symbolic and Parametrised Approaches

The idea common to the techniques that we present in this section is to
reduce the size of the representation of the reachability graph by grouping
states into classes. The reduction is always done in such a way that most
important properties of the system can be checked on the reduced graph.
However, the set of preserved properties depends on the reduction technique
that is applied.

We start by presenting techniques where states are grouped according to
some symmetry relation. A typical case where such relations occur is the
mutual exclusion example presented in Section 14.1. There are two states,
namely states 7 and 8, where one process is in the critical section and the
other process is waiting for the resource. Since both processes potentially have
the same behaviour, it does not matter which one is accessing the resource.
This states are said to be symmetric and they can be grouped into a class.

The second class of techniques that we present are known as parametrised
graphs. This approach is somehow orthogonal to the previous one. States are
grouped according to the cardinalities of sets of processes that are in the same
situation. A typical example would be a mutual exclusion with n processes,
where one process accesses the critical resource and i(i < n) processes are
waiting for this resource. When leaving the critical section, the behaviour of
the process may depend on whether there is someone waiting for the resource
or not. However, it will usually be the same whether there is 1, 2, or (n− 1)
processes waiting for the resource. Hence, it would be interesting to group
all these states into one single class. The interesting feature of such graphs is
that they can be constructed independently of the value of n.

14.4.1 Symbolic Reachability Graph

The idea of the symbolic reachability graph (SRG) is to exploit the intrinsic
symmetries of a system to obtain a compact representation of the reachable
states. These symmetries occur when different components of a system have
the same behaviour. It is often the case that such systems are represented
with coloured Petri nets in which the equivalent components are identified
by different colours. However, when dealing with a state of the system, the
identities of the components may not be relevant. It is thus possible to de-
fine an equivalence relation between markings. Equivalent markings have the
same distribution of tokens in places, but the colours of these tokens are dif-
ferent and correspond to the identities of similar components. The classes of
markings thus obtained are the nodes of the SRG. Yet the problem remains
of making it possible for the designer to exploit the symmetries of the sys-
tem without having to define them in the model. By introducing a syntax in
the definition of the colour functions, well-formed nets provide a modelling
framework in which symmetries can be used automatically to reduce the size
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and complexity of the representation. In this section, we first give the defi-
nition of well-formed nets, then introduce the concepts of symbolic marking
and symbolic firing that are used to build the SRG and we present some
properties which can be checked directly on the SRG.

Definition of Well-Formed Nets. A well-formed net [CDFH91, CDFH93]
is a coloured net where additional constraints are introduced in the definition
of the different features. The goal is to ensure that a WN model will be
somehow structured, and that it will be possible to use this structure to
develop efficient analysis techniques.

The starting point in the definition of the WN colour syntax is the set
of basic colour classes from which colour domains are constructed. A basic
colour class is a non-empty, finite (possibly ordered) set of colours. It may be
partitioned into several static subclasses: colours belonging to different static
subclasses represent objects of the same type but with different behaviour.
When a class is ordered, this order is cyclic, meaning that the successor of
the last colour is the first colour of the class. A consequence is that if we want
to represent a total order among colours (sites on a bus as opposed to sites
on a ring in the cyclic case), we need to have one static subclass per colour
of the class.

The colour domain of a place is defined by composition through the carte-
sian product operator of basic colour classes. An interpretation of this is that
the information associated with tokens comprises one or more fields, and each
field in turn has a type selected from the set of basic colour classes.

The colour domain of a transition defines the type of the parameters of the
transition. Each parameter is associated with a variable on an arc connected
to the transition, and has a type selected from a basic colour class. Restric-
tions on the possible bindings of the parameters can be defined by adding
a guard to the transition. Hence, the colour domain of a transition is com-
posed of two parts: the parameter type, and the guard defined as a Boolean
expression of (a restricted set of) basic predicates on the parameters1.

The arc functions are defined as weighted (and possibly guarded) sums
of tuples. The elements composing the tuples are in turn weighted sums of
basic functions, defined on basic colour classes and returning multisets of
colours in the same class. The multiset returned by a tuple of basic functions
is obtained by cartesian product composition of the multisets returned by
the tuple elements. There are three types of basic functions: the projection
function, the successor function, and the diffusion/synchronisation function.

The syntax used for the projection function is x where x is one of the
transition parameters. The syntax for the successor function is !x where x is
again one of the transition parameters. It applies only to ordered classes and
returns the successor of the colour assigned to x in the transition binding.

1 The basic predicates allowed are: x = y, x =!y, d(x) = Cj
i , d(x) = d(y) where x

and y are transition parameters of the same type, !y denotes the successor of y,
and d(x) denotes the static subclass to which x belongs.
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Finally, the syntax for the diffusion/synchronisation function is SCi
(or SCj

i

).

It is a constant function that returns the set of colours of class Ci (or of static
subclass Cj

i ⊂ Ci).
We illustrate different features of a well-formed net using the exam-

ple in Figure 14.17. In this model, a set of processes (basic colour class
Proc = {p1, . . . , pn}) may access a set of resources (basic colour class
Res = {r1, . . . , rm}). To access a resource r, an idle process p sends a request
(firing of t1). We assume that a request is represented by the association of a
process and the resource it tries to access. If several processes have requested
the same resource, a selection must be done to determine which process will
actually access it. This selection is performed by a (possibly repeated) firing
of t5. We do not care at this step what algorithm is used for the selection.
However, the selection cannot be completed if there are still requests in tran-
sit, and it may take some time for all the processes to become aware of the
request sent by p. This delay is represented by transition t2. Hence, it is
worth noticing that transition t3, which models the actual access of a process
to the resource, becomes enabled for 〈p, r〉 only once all the other requests
for resource r have been discarded. In other words, there is no tuple 〈−, r〉 in
RQ , nor in GS with the exception of 〈p, r〉, meaning that p is the only process
whose request for r is still valid. Place PR is actually used to ensure that this
condition is satisfied. It initially contains the set of all possible requests. Each
time a process sends a request, the corresponding token is removed from PR.
Each time a request is discarded, the corresponding token is added to PR.
Note that t3 can fire only if all the possible requests for r except 〈p, r〉 are in
PR.

<SProc,r>

<SProc-p,r>

<q>

<q,r>

<p,r> <p,r> <p+q,r>

<p>

<p,r><p,r><p,r><p,r><p,r><p,r><p>

t 5 

 

t 4 t 3 t 1  t 2 

P R 

C S G S RQ ID 

Fig. 14.17. WN model of a distributed critical section

For this model, we give the colour domain definition for some places and
transitions. The colour domain of a transition is defined as a pair 〈transition
parameter type, guard〉.
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• cd(ID) = Proc
• cd(PR) = Proc ×Res
• cd(t5 ) = 〈〈p, q, r〉 ∈ Proc × Proc ×Res, true〉

The function 〈SProc − p, r〉 on the arc between PR and t3, which can also
be denoted by 〈SProc , r〉 − 〈p, r〉, represents the sum of all tokens 〈q, r〉 for
q ∈ Proc except one token 〈p, r〉 whose actual identity is given by the binding
of variables p and r.

The features of a well-formed net can be summarised in the following
definition.

Definition 14.4.1 (Well-Formed Net). A well-formed net (WN) is de-
fined by a tuple N = 〈P, T,Pre,Post, Inh,pri, C, cd〉 where

• P and T are the sets of places and transitions.
• Pre,Post, Inh are arc functions.
• pri : T → IN is a vector that associates with each transition t a priority.

By default, we assume that ∀t ∈ T,pri[t] = 0.
• C = {C1, . . . , Cn} is the set of basic colour classes. Basic colour classes

are finite and disjoint, and every class Ci is possibly partitioned into static
subclasses: Ci = C1

i ∪ . . . ∪ C
ni

i . An index h is defined such that colour
classes with index i, h < i ≤ n, are ordered, whereas those with index
i, 0 < i ≤ h, are not.

• cd is a mapping that associates with every place and transition of the net
a colour domain defined by composition through the cartesian product op-
erator of basic colour classes. The colour domain of a transition can be
restricted by a guard.

The use of C1, . . . , Cn for denoting basic colour classes is a formal notation
used in definitions and proofs. But most often, classes are denoted by more
significant names, such as Proc for the class of processes in our example.

Since WNs are coloured nets, the dynamics of the model need not be
redefined. The following section shows how WNs can be used to directly
build a reduced reachability graph.

Symmetries, Symbolic Marking, and Firing. We consider again the
WN model of the distributed critical section, in the particular case of two
processes and two resources. From an initial marking where all the processes
are idle and the resources free, the following marking can be reached:

m1 = ID(p3) + GS (〈p1 + p2, r1〉+ 〈p4, r2〉)

+ PR(〈p3 + p4, r1〉+ 〈p1 + p2 + p3, r2〉)

In this state one process is idle, two have requested the same resource, and the
last one has requested the other resource. It is easy to check that by taking
an arbitrary permutation of the objects in basic colour classes Proc and Res,
we obtain another legal state of the model with the same characteristics, for
example, m2 = ID(p1) + GS (〈p2 + p4, r2〉 + 〈p3, r1〉) + PR(〈p1 + p3, r2〉 +
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〈p1 + p2 + p4, r1〉). This transformation can be formalised with the following
definitions.

Definition 14.4.2 (Colour Permutation). Let h be such that 0 ≤ h ≤ n
and let ξ = {s = 〈s1, . . . , sn〉} be a subgroup of the permutations on
C1, . . . , Cn such that:

• ∀0 < i ≤ h, si is a permutation on Ci such that ∀Cj
i , si(C

j
i ) = Cj

i ;

• ∀h < i ≤ n, si is a rotation on Ci such that ∀Cj
i , si(C

j
i ) = Cj

i . Note that
this condition implies that if the number ni of static subclasses of Ci is
greater than 1 then the only allowed rotation si is the identity.

Let 〈c1, . . . , ck〉 be an element of a colour domain, i.e. a tuple of basic colours,
and let s ∈ ξ. Then s(〈c1, . . . , ck〉) is an element of the same colour domain
defined by:

s(〈c1, . . . , ck〉) = 〈s(1)(c1), . . . , s(k)(ck)〉

where s(i) is the permutation associated with the ith colour class in the colour
domain.

In our example, by setting C1 = Proc and C2 = Res, we have s1(p1) =
p2, s1(p2) = p4, s1(p3) = p1, s1(p4) = p3, and s2(r1) = r2, s2(r2) = r1.

Definition 14.4.3 (Marking Permutation). Let m be a marking and s ∈
ξ a permutation. Then s.m is a marking defined by:

∀p ∈ P, ∀c ∈ cd(p), s.m[p, s(c)] = m[p, c]

A very important property of the model is that the firing property is
preserved by applying a permutation both on the markings and the transition
binding. In other words, for two markings m and m′, for a transition t and
a colour c ∈ cd(t), if the firing of 〈t, c〉 leads from m to m′ then the firing of
〈t, s(c)〉 leads from s.m to s.m′, where s is any permutation in ξ.

Definition 14.4.4 (Symbolic Marking). Let Eq be the equivalence rela-
tion defined by:

mEqm′ ⇔ ∃s ∈ ξ,m′ = s.m

An equivalence class of Eq is called a symbolic marking, denoted with m̂.

We can now define a well-formed system S = 〈N , m̂0〉, which is a WN
whose initial marking is a symbolic marking, i.e. a class of markings. If any
permutation s ∈ ξ leaves the initial marking invariant, the class is reduced
to one element and the well-formed system is a net system. Otherwise the
well-formed system defines a set of net systems.

Since a symbolic marking represents an equivalence class on the state
space of the well-formed system, where the equivalence is in terms of possi-
ble basic colour permutations that yield the same behaviour, we can use it
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to derive directly and automatically a reduced representation of the reach-
ability graph. The construction of this reduced graph, namely the Symbolic
Reachability Graph, requires that we define a unique representation for every
symbolic marking, and a firing rule that applies directly to this representa-
tion. To achieve the first goal, we must choose an appropriate data structure
to represent equivalence classes. From our example, it appears that for mark-
ings belonging to the same symbolic marking, what is relevant is not the
actual identity of object but rather the distribution of objects in places. Our
first abstraction thus consists of substituting object identifiers with variables.
With each static subclass, we associate a set of variables. In the example, we
can associate variables {x1, . . . , x4} with class Proc and {y1, y2} with class
Res . A possible representation of the symbolic marking would thus be

m̂ = ID(x1) + GS (〈x2 + x3, y1〉+ 〈x4, y2〉)

+ PR(〈x1 + x4, y1〉+ 〈x1 + x2 + x3, y2〉)

To define the semantics of this representation, we need the definition of a
valid assignment. An assignment of objects from a static subclass to the
associated set of variables is said to be valid if the following three conditions
are verified: 1) every variable is assigned an object; 2) the same object is not
assigned to more than one variable; 3) if the class is ordered, adjacent objects
are assigned to subsequently numbered variables. The symbolic marking m̂
could thus represent the set of all ordinary markings that can be obtained
from valid assignments of objects to the variables xi and yi. For instance, m1

and m2 are obtained from m̂ by valid assignments.
Starting from this representation of a symbolic marking, it is rather natu-

ral to define a symbolic firing rule since the variables play the same role that
objects play in ordinary markings. Hence from marking m̂ it is possible to
fire the symbolic firing instance 〈t5, 〈x2, x3, y1〉〉 from which the new symbolic
marking m̂′ = ID(x1 +x3)+GS(〈x2, y1〉+〈x4, y2〉)+PR(〈x1 + x3 + x4, y1〉+
〈x1 + x2 + x3, y2〉) is reached. The symbolic firing instance stands for all the
ordinary instances that can be obtained by valid assignments of objects to
variables. There is, however, a further step we can take to better exploit the
grouping induced by the symbolic firing. Actually, by firing the symbolic in-
stance 〈t5, 〈x3, x2, y1〉〉, we would have reached the same new symbolic mark-
ing (provided we use a unique representation for symbolic markings). It is
possible to recognise in advance such a situation: all those variables that have
the same distribution of tokens in the places can be used interchangeably in a
transition instance. In our example, x2 appears only in GS associated with y1

and in PR associated with y2. This is the same for x3, hence interchanging
them in the firing instance will not modify the symbolic marking, reached
although we will obtain two different representations in which x2 and x3 are
interchanged.

We now introduce the concept of dynamic subclasses, representing sets
of objects that are not identified individually but that are known to be per-
mutable with each other in any firing instance to produce markings that
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belong to the same equivalence class. A dynamic subclass is characterised by
its cardinality (i.e. the number of different objects represented by the dynamic
subclass) and by the static subclass to which the represented objects belong
(i.e. we can group only variables belonging to the same static subclass). In
case of ordered basic classes, only contiguous objects can be represented by
the same dynamic subclass, and the ordering relation among objects is re-
flected by the ordering of the indexes of the dynamic subclasses. In marking
m̂, the two variables x2 and x3 have the same distribution of tokens in the
places, so they can be grouped in the dynamic subclass Z1

Proc of cardinality 2.
To preserve the homogeneity of the representation, we create a dynamic sub-
class of cardinality 1 for all the other variables. The new symbolic marking
representation can thus be written as:

m̂ = ID(Z2
Proc) + GS (〈Z1

Proc , Z
1
Res〉+ 〈Z

3
Proc, Z

2
Res〉)

+ PR(〈Z2
Proc + Z3

Proc, Z
1
Res〉+ 〈Z

2
Proc + Z1

Proc, Z
2
Res〉)

where |Z1
Proc| = 2 and all the other dynamic subclasses have cardinality 1.

The basic idea of the symbolic marking representation, i.e. using dynamic
subclasses to represent sets of objects with the same marking, is not suffi-
cient to ensure the uniqueness of the representation: we must add some con-
straints. Actually, we need to decide how to partition the static subclasses
into dynamic subclasses of a given cardinality and how to properly name the
dynamic subclasses. The detailed algorithm for computing a unique represen-
tation can be found in [CDFH93] and we will present here only the intuitive
idea. The so-called canonical representation of a symbolic marking must be
minimal and ordered. The minimality criterion requires that objects with the
same marking be represented by a unique dynamic subclass. A representation
of m̂ with two dynamic subclasses Z1

Proc and Z4
Proc, each with cardinality 1,

instead of Z1
Proc with cardinality 2, would not be minimal. The ordering crite-

rion consists of readjusting the dynamic subclass indexes in the minimal rep-
resentation to obtain a minimum element in the lexicographic order defined
on the markings. Without going into detail, it is clear that another possible
representation for m̂ could be ID(Z3

Proc)+GS (〈Z2
Proc , Z

1
Res〉+〈Z

1
Proc, Z

2
Res〉)+

PR(〈Z1
Proc + Z3

Proc, Z
1
Res〉+ 〈Z

2
Proc + Z3

Proc, Z
2
Res〉) with |Z2

Proc| = 2. The or-
dering algorithm defines in a unique way which representation to choose.
Actually, this last representation is ordered.

In order to build the SRG directly starting from an initial marking m̂0

(i.e. without building the RG and then grouping markings into equivalence
classes, which would be much easier but too costly), we now define a sym-
bolic firing rule on the symbolic marking representations. In a symbolic firing
instance, dynamic subclasses rather than objects are assigned to the transi-
tion parameters. This means that any object in the subclass can be assigned
to the parameter. For every basic colour class Ci, we define a function λi,
where λi(x) gives the index of the dynamic subclass which is assigned to the
xth occurrence of a Ci parameter in the transition colour domain. Coming
back to the example of the firing of t5 from m̂, both p and q can be assigned



248 14. State-Space-Based Methods and Model Checking

Z1
Proc. We thus have λProc(1) = 1 and λProc(2) = 1. When, for a transition,

several parameters are assigned the same dynamic subclass, we also need to
specify whether the parameters are instanced to the same object or to differ-
ent objects of the dynamic subclass. Since Z1

Proc represents two objects, we
still have to specify whether or not p and q are assigned the same object. For
this, we use a function µi. We set µi(x) = 1 if the xth Ci parameter is the

first to be assigned Z
λi(x)
i . If the yth parameter is the next to be assigned

the same subclass, we set µi(y) = µi(x) if it is assigned the same object as
the xth parameter. We set µi(y) = 2 if it is assigned another object, and so
on: for every dynamic subclass, µi is incremented each time we select in the
subclass an object that has not been instanced yet. Hence, µProc(1) = 1 and
µProc(2) = 1 if p and q are assigned the same object in Z1

Proc, whereas if they
are assigned different objects, we get µProc(1) = 1 and µProc(2) = 2. If λ and
µ are the collections of functions λi and µi respectively for each class Ci, a
symbolic instance of t is defined by the pair 〈λ, µ〉.

The notion of valid assignment can be extended to symbolic firings. Let

us consider the symbolic firing m̂
〈t,λ,µ〉
−→ . Given a valid assignment of m̂, the

jth parameter of t to be assigned in Ci is assigned an object belonging to the

assignment of Z
λi(j)
i for m̂. For j and k such that λi(j) = λi(k), if µi(j) =

µi(k), the jth and the kth parameters to be assigned in Ci are assigned the

same object of Z
λi(j)
i , whereas they are assigned different objects if µi(j) 6=

µi(k). It is worth noticing that for one assignment of m̂ there may be several
assignments of 〈λ, µ〉, which actually correspond to the different firings that
are grouped within the symbolic firing.

Unfortunately, we cannot directly define a symbolic firing rule where dy-
namic subclasses play the same role that objects play in ordinary markings.
In our example, t5 is enabled from m1 if p and q are assigned p1 and p2

respectively. But it is not enabled from m̂ if p and q are both assigned Z1
Proc:

the evaluation of the colour function would require two tokens 〈Z1
Proc, Z

1
Res〉

in GS . We thus need to introduce the notion of split symbolic marking. The
idea behind the splitting is to isolate in new dynamic subclasses the (arbi-
trarily chosen) objects that will be selected for the firing. Let us consider the
case of a dynamic subclass Zj

i of class Ci such that at least one object of Zj
i

is selected in the symbolic instance, i.e. ∃x, λi(x) = j. If Ci is ordered, Zj
i

is split into as many subclasses of cardinality 1 as the number of objects it
represents. If not, a new subclass Zj,k

i of cardinality 1 is created for every

pair (j, k) such that ∃x, 〈λi(x), µi(x)〉 = 〈j, k〉. The objects of Zj
i that are

not selected for the firing are put in a subclass Zj,0
i whose cardinality is the

cardinality of Zj
i minus the number of new subclasses. Zj

i is then removed.

split(Zj
i ) =

{
{Zj,k

i , 0 < k ≤ |Zj
i |} Ci is ordered

{Zj,0
i } ∪ {Z

j,k
i , ∃x : 〈λi(x), µi(x)〉 = 〈j, k〉} Ci is not ordered
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For the symbolic firing we are considering in our example, where t5 is
instanced by two different processes and one resource, the split representa-
tion of m̂ would be ID(Z2

Proc)+GS(〈Z1,1
Proc + Z1,2

Proc, Z
1,1
Res〉+ 〈Z

3
Proc, Z

2
Res〉)+

PR(〈Z2
Proc + Z3

Proc, Z
1,1
Res〉+ 〈Z

2
Proc + Z1,1

Proc + Z1,2
Proc, Z

2
Res〉). In this represen-

tation, all the dynamic subclasses have cardinality 1. We do not have a sub-
class Z1,0

Proc because once two objects have been selected in Z1
Proc, there are

no objects left in this subclass. The same is true for Z1,0
Res .

Now, using the split representation of a symbolic marking, dynamic sub-
classes can substitute objects into the transition enabling and firing. The
evaluation of arc expressions and predicates does not change when dynamic
subclasses of cardinality 1 replace objects in variable assignments. The sym-
bolic firing is thus a three-step operation which is performed according to the
following procedure:

Three-Step Symbolic Firing. The canonical representation of the sym-

bolic marking m̂′ obtained by firing 〈t, λ, µ〉 in m̂ (i.e. m̂
〈t,λ,µ〉
−→ m̂′) is computed

in three steps:

1. Split m̂ with respect to 〈λ, µ〉. Let m̂s be the representation of m̂ ob-
tained after the splitting.

2. Actually fire m̂
〈t,λ,µ〉
−→ m̂′. Obtain a (possibly) non-canonical representa-

tion m̂′
nc of m̂′ by applying the incidence functions on m̂s.

3. Compute the canonical representation of m̂′. Group dynamic subclasses
of m̂′

nc to obtain a minimal representation, and order the subclasses to
obtain the canonical representation of m̂′.

Let us perform steps 2 and 3 on our example. By applying the
incidence functions on the split marking, we obtain a new mark-
ing m̂′

nc = ID(Z2
Proc + Z1,2

Proc) + GS (〈Z1,1
Proc, Z

1,1
Res〉 + 〈Z3

Proc, Z
2
Res〉) +

PR(〈Z2
Proc + Z3

Proc + Z1,2
Proc, Z

1,1
Res〉 + 〈Z2

Proc + Z1,1
Proc + Z1,2

Proc, Z
2
Res〉). In this

marking, dynamic subclasses Z2
Proc and Z1,2

Proc have the same distribution in
places and can be grouped to form a single dynamic subclass of cardinality
2. After renaming the dynamic subclasses, we would obtain the following
representation:

m̂′ = ID(Z3
Proc) + GS (〈Z1

Proc, Z
2
Res〉+ 〈Z

2
Proc, Z

1
Res〉) + 〈Z2

Proc, Z
1
Res〉)

+ PR(〈Z1
Proc + Z3

Proc, Z
1
Res〉+ 〈Z

2
Proc + Z3

Proc, Z
2
Res〉)

with |Z3
Proc| = 2 and a cardinality of 1 for all the other dynamic subclasses.

Although this representation looks very similar to the representation of m̂,
we can easily see that it cannot represent the same set of markings because
the cardinalities of the dynamic subclasses are different. The space reduction
obtained by using symbolic markings and firings is shown in Figure 14.18. The
label associated with the symbolic firing of transition t5 actually represents
functions λ and µ in the following way: 〈t5, 〈λ1, λ2〉, 〈µ1, µ2〉〉.

The algorithm for the symbolic reachability graph construction is then
the same as for the ordinary reachability graph, except that we start from
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m

m'

m1 m24...

m'1 m'12...m'2

〈t5, 〈p2, p1, r1〉〉

〈t5, 〈p1, p2, r1〉〉 〈t5, 〈{1,1},{1}〉, 
         〈{1,2},{1}〉〉➠

Fig. 14.18. Ordinary vs symbolic firing

the canonical symbolic representation of the initial marking and we apply
the symbolic firing rule instead of the ordinary firing rule. Of course, the
construction is effective only in the case of a finite graph.

Properties of the Symbolic Reachability Graph. We present now some
interesting properties of the symbolic reachability graph that can be exploited
for a qualitative analysis of WN models. Other properties can be shown that
are used for performance evaluation of WN models. These properties are
presented in [Sil98]. We assume here a symmetric initial marking, i.e. the
well-formed system defines a single net system. In this case, we have the
following set of equivalences:

1. RS(N ,m0) = SRS(N , m̂0) (if we identify an equivalence class with the
set of its elements).

2. RS(N ,m0) is infinite ⇔ SRS(N , m̂0) is infinite (remember that we
consider only finite colour sets).

3. {m ∈ m̂} is a home space for RG(N ,m0) ⇔ m̂ is a home state for
SRG(N , m̂0).

4. {m ∈ m̂} is an unavoidable home space for RG(N ,m0) ⇔ m̂ is an
unavoidable home state for SRG(N , m̂0).

5. RG(N ,m0) is deadlock-free ⇔ SRG(N , m̂0) is deadlock-free.

Property 14.4.5 (Quasi-liveness). The following two propositions hold true.

i) m
〈t,c〉
−→ in RG(N ,m0) =⇒ m̂

〈t,λ,µ〉
−→ in SRG(N , m̂0) where m̂ is the sym-

bolic marking to which m belongs and 〈λ, µ〉 is such that c is a valid
assignment of 〈λ, µ〉 in m.

ii) m̂
〈t,λ,µ〉
−→ in SRG(N , m̂0) =⇒ ∀m a valid assignment of m̂, ∀c a valid

assignment of 〈λ, µ〉 in m, m
〈t,c〉
−→ in RG(N ,m0).

Property 14.4.6 (Liveness). 〈t, λ, µ〉 is quasi-live in SRG(N , m̂0) and m̂0 is
a home state =⇒ 〈t, c〉 is live in RG(N ,m0), where c is any valid assignment
of 〈λ, µ〉 in any valid assignment of m̂.
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Complexity of the Symbolic Approach. The efficiency of the symbolic
approach for the construction of the reachability graph strongly depends
on the intrinsic symmetry of the model: the more objects with equivalent
behaviours, the more markings in an equivalence class, and so the higher
the reduction ratio compared with the ordinary reachability graph. However,
the value of the ratio is difficult to estimate because for a single model, the
cardinality of equivalence classes is highly variable: it is one when all similar
objects have the same marking, and the largest classes are obtained when
all similar objects have different markings. There are examples [CDFH93] of
“strongly symmetric” systems where the SRG is several orders of magnitude
smaller than the RG.

The state-space reduction obtained with the SRG implies an increased
computation cost but for reachability analysis, time is usually less critical
than space. Compared with the RG construction, the most expensive step is
the computation of a unique representative for each class of markings. It can
be performed in a time of the same order of magnitude as the application of
a symmetry. Hence, if the system is not symmetric, the time complexity for
the SRG construction is the same order as that for the RG construction.

Symmetries and Model Checking. Emerson et al. are the first who have
taken advantage of the symmetries of the system in order to improve the
model checking of temporal formula.

The basic idea is that the verification process of a property is sometimes
composed of a set of parsings over the state space, which are symmetric
up to some permutation on atomic propositions. This implies that a graph
of equivalence classes of markings could be used instead of the reachability
graph.

At first glance, the symmetries existing within a verification process are
reflected by permutations on atomic propositions which leave the expression
of the property invariant. In formula [trueU (p1 ∨p2)] (p1 and p2 are indexed
atomic propositions), there are two such permutations: The identity, and per-
mutation π such that π(1) = 2 and π(2) = 1. Because atomic propositions
are defined from the colours of the system, one can derive easily the permuta-
tions of colours that can be considered when building the graph of equivalent
markings. Such permutations must define symmetries with respect to both
the state space and the formula to be checked.

It is worth noticing that the syntactical analysis of a formula does not
necessarily yield all the symmetries that can be exploited. In the general
case, this technique is efficient for very specific state properties containing
propositional subformulae invariant by permutations. For instance, a formula
such as f = F

∨
i∈I pi, where i is an index of atomic propositions, allows all

permutations on I.
In the context of SRG, the fact that all the colours of a static subclass can

give the same behaviour in the system implies a useful property: each colour
can be taken as a representative of any other colour of its static subclass. This
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has been exploited in [IA97] to follow some colours over the graph. A typical
example is path formula P3 presented in section 14.1: each process that asks
for a critical section will obtain it. Roughly speaking, the solution consists of
building a WN in which one of the processes is isolated from the others by
the definitions of distinct static subclasses, then the formula is simplified in
order to check if the property is verified for the isolated process alone.

Actually, the automata theoretic approach can be used to find the ad-
missible symmetries related to a formula. In the context of LTL properties,
they are defined from groups of permutations of atomic properties which
leave the Büchi automaton invariant. Nevertheless, one must be aware of
the cost of such detection which is exponential in the general case. There-
fore, researchers have investigated towards interesting subgroups/subsets of
permutations [AHI98].

Extending the SRG to Partial Symmetries. The SRG approach can be
applied efficiently only when the system exhibits a high degree of symmetry.
However, even in this case, it often happens that the symmetry between
objects is lost at some point in the behaviour of the system. For instance,
let us consider again the example of the distributed critical section in Figure
14.17. We add the following information to the system: when several processes
ask for the same resource, the process with the highest identity is selected
for the access. This is done by adding to transition t5 a guard p < q. Hence,
we need to introduce an order among objects of the class Proc. However,
the guard is meaningless if we use a circular order. Now, if we define a total
order, the process with the highest identity should be isolated in a different
static subclass. Actually, its behaviour is different from that of other processes
in the sense that it has no successor. For a similar reason, the process with
the highest identity among remaining processes should be isolated because its
successor belongs to a subclass different from the successor of other processes.
By an iterated reasoning, we conclude that there should be one static subclass
per process. By the condition given in Definition 14.4.2, the only admissible
rotation on class Proc is thus the identity function.

Such a situation is very penalising because two processes can never be
grouped within the same dynamic subclass. Hence the grouping of mark-
ings into symbolic markings can be done only with respect to the resources.
In this case, the SRG does not provide a drastic reduction compared with
the reachability graph. Unfortunately, this drawback is common to all the
techniques based on symmetries ([HJJJ84], [CDFH91]). The system that we
consider is however partially symmetrical in the sense that all processes have
symmetrical behaviours, except when transition t5 becomes enabled. It is
usually the case that the symmetrical part of a system is much larger than
the “asymmetrical” part. We present in this section a technique which ex-
tends the SRG by distinguishing the asymmetrical part from the remainder
of the net. Compared with the SRG, the modifications that we propose for
building an extended symbolic reachability graph (ESRG) are the following:
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• Add to symbolic markings the relevant information in order to handle the
firing of asymmetrical transitions. Information is added only when neces-
sary.

• Redefine the symbolic firing rule for the asymmetrical part of the net.

The presentation of the method is organised into three steps: 1) the par-
titioning of transitions into a symmetrical and an asymmetrical part; 2) the
representation of extended symbolic markings; 3) the building of the extended
symbolic reachability graph. We will also present the major properties that
can be checked directly on such graphs.

Partitioning of Transitions. The use of the operators “<”, “≤”, “>”, and
“≥” causes asymmetrical behaviour, since they need to distinguish among the
objects of the tested classes. In terms of well-formed nets, such operators are
expressed with membership tests, according to static subclasses. So the asym-
metrical property of well-formed nets can be indicated by the specification of
expressions, namely asymmetrical expressions, having membership tests. In
the following, only one distinguished class is considered since the extension
to several of these classes does not present any theoretical difficulty. More-
over, we assume that the distinguished class is partitioned into as many static
subclasses as the number of objects in the class.

Definition 14.4.7 (Asymmetrical Variable). Let Cd be the distinguished
class. A variable X defined on Cd is said to be asymmetrical if and only if
there exists a predicate function or a guard such that one of the following two
conditions holds:

i) The belonging of X to any static subclass of Cd is tested;
ii) X is in relation with an asymmetrical variable, by means of one of the

following well-formed net operators: =, 6=, !.

In the following, such a predicate function or guard is said to be asymmetrical.

In WN, the instances of variables are local to transitions, therefore we
use the term asymmetrical variable with respect to a transition. This means
that the variable considered is used in an asymmetrical expression, either in
predicate functions associated with the arcs adjacent to the transition or in
the transition’s guard. Such a transition is called an asymmetrical transition.
A transition which is not asymmetrical is called a symmetrical transition.

Definition 14.4.8 (Asymmetrical and Symmetrical Transitions). Let
t be a transition of a well-formed net. Then t is said to be asymmetrical if
and only if one of the following three conditions holds:

i) There is a place p of P such that there is an asymmetrical predicate
function in Pre[p, t] or in Post[p, t];

ii) The guard of t is asymmetrical;
iii) There is a place p of P such that there is a synchronisation/diffusion

function in Pre[p, t] or in Post[p, t], defined on the distinguished class.

t is said to be symmetrical if and only if t is not asymmetrical.
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Example of Transition Partition. In the net of Figure 14.17, C1 is a dis-
tinguished class. Actually, p and q are defined on class C1 and are asymmetri-
cal with respect to the guard of t5 and its “<” operator. So, t5 is asymmetrical
while the remaining transitions t1, t2, t3, and t4 are symmetrical.

Extended Symbolic Markings. An extended symbolic marking (ESM)
may be viewed as a set of nodes: a standard symbolic marking, optionally
associated with some eventualities. Such eventualities are the set of possi-
ble partial instances of the standard symbolic marking, with respect to the
distinguished class. Hence, one has the ability to represent the behaviour of
partially symmetrical systems.
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Fig. 14.19. Examples of extended symbolic markings and firings

Example. Figure 14.19a represents an example of an extended symbolic
marking, which corresponds to the WN of Figure 14.17.

• The grey part corresponds to the classical representation of a standard
symbolic marking. Class C1 is split into two dynamic subclasses, Z1

1 and
Z2

1 , of cardinality 1 and 2 respectively, while class C2 has one element
represented by Z1

2 .
• The white part of the extended symbolic marking corresponds to the three

associated eventualities: E1, E2, and E3. The Z1
1 and Z2

1 dynamic sub-
classes are instantiated, since the distinguished class is C1.

It is worth noting that eventualities are not markings, but partial in-
stances of ESM. However, one of our aims is to represent them only when
neccessary. In fact, the need to represent them is driven by the fact that two
cases may occur with respect to an extended symbolic marking: (1) some
asymmetrical transitions are enabled from at least one of the eventualities;
(2) some of the eventualities are not reachable.
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In order to decide on the construction of eventualities, we now define the
notions of saturation and uniformity which are checked during the construc-
tion of each ESM:

Definition 14.4.9 (Saturation and Uniformity). An ESM is said to be
saturated if and only if all of its eventualities are reachable; it is said to be
uniform if and only if the objects of the distinguished class have the same
distribution in places.

The following property highlights two cases for which the eventuality rep-
resentation of ESMs can be useless. In this chapter, for reasons of clarity, the
initial ESM is assumed to be uniform.

Property 14.4.10 (Reduction of Representation).
An ESM can be represented by its underlying standard symbolic marking

if one of the two following conditions holds:

i) The ESM is saturated and there is no asymmetrical transition enabled
from it;

ii) The ESM is uniform.

Effectively, in the first case the whole set of eventualities of the ESM
are reachable and enabled by the same symbolic instances of (symmetrical)
transitions; hence, the underlying standard symbolic marking represents the
ESM completely. In the second case, all the elements of the distinguished
class are gathered in the same dynamic subclass, leading to the reduction of
the set of eventualities to only one item.

Extended Symbolic Firing Rules. As for standard symbolic markings,
the construction of an extended symbolic marking can be performed with-
out computing the underlying reachable marking. The condition is that the
extended symbolic firing rule takes an ESM into account, in order to build
the resulting ESM representations directly. Our method to define a suitable
symbolic firing rule is based on the idea that the static subclasses of the
distinguished class must be introduced only to deal with asymmetrical tran-
sitions. Thus, we choose to build the standard symbolic marking of an ESM
without considering the decomposition of the distinguished class into static
subclasses; however, when necessary, another standard symbolic representa-
tion can be computed from it by considering any given eventuality. Hence,
the enabling test can always be performed from a standard symbolic repre-
sentation of ESM.

Three types of rules are defined (see [HITZ95] for a formal presentation):

i) The generic symmetrical firing occurs for symmetrical transitions, if the
relevant extended symbolic marking is saturated. This case arises directly
from the standard symbolic firing where the source and the target are
standard symbolic markings.
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ii) The instantiated symmetrical firing occurs also for symmetrical transi-
tions, but in the absence of saturation. In this case, the source is a reach-
able eventuality, while the target is either an eventuality or a standard
symbolic marking, depending on the ability to make the eventualities
absent or not. Because of the symmetrical property of the transition,
any reachable eventuality has the same ability of firings and reaches the
same extended symbolic markings. Hence, the enabling test of transition
is directly performed on the source standard symbolic marking, then the
reached eventualities are deduced according to the values of the consid-
ered source eventualities;

iii) The (instantiated) asymmetrical firing occurs for asymmetrical transi-
tions; here again, the source is a reachable eventuality, while the target
is either an eventuality or a standard symbolic marking. Because of the
asymmetrical property of the transition, the eventualities of an ESM may
not have the same ability of firings (mixed existence of dead and live even-
tualities, target nodes may be different. . . ). To take the static subclasses
into account, the dynamic subclasses of Cd must be refined first, which
means defining one dynamic subclass for each colour of Cd. However,
the asymmetrical firing stages are similar to those of the instantiated
symmetrical firing.

Table 14.1 summarises the types of firings according to types of transitions
and marking conditions.

type of transitions symmetrical asymmetrical
marking conditions
saturated generic (instantiated)

symmetrical asymmetrical
not saturated instantiated (instantiated)

symmetrical asymmetrical

Table 14.1. Use of Firing Types

Example. Figure 14.19b presents examples of generic and instantiated fir-
ings. The extended symbolic markings m̂e4, m̂e5, and m̂e10 are assumed to
be reachable ESMs of the net of Figure 14.17. Note that m̂e4 and m̂e5 are
assumed to be saturated, therefore their eventualities are not represented.

From m̂e4, the t2 symmetrical transition is enabled. Since there is no
asymmetrical transition enabled from m̂e4, a generic symmetrical firing can
occur by t2. Hence, the firing of t2 takes into account one item of Z1

1 for vari-
able p, isolated in the Z1

1 , 1 dynamic subclass, and the item of Z1
2 for variable

r. From m̂e5, transition t5 can be fired. Note that t5 is asymmetrical, there-
fore the eventualities of m̂e5 must be considered. Each of these eventualities
is the source of a firing of t5: from E1: p = 〈1〉, q = 〈2〉, and r = 〈Z1

2 〉; from
E2: p = 〈1〉, q = 〈3〉, and r = 〈Z1

2 〉; from E3: p = 〈2〉, q = 〈3〉, and r = 〈Z1
2 〉.
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Extended Symbolic Reachability Graph. The definitions of extended
symbolic markings and extended symbolic firing rules allow us to build a
graph called the extended symbolic reachability graph (ESRG). An efficient
algorithm is proposed in [HITZ95], which is an adaptation of the standard
one. It is fundamentally based on the following two points:

• A canonical expression can be defined for any ESM since there is a canoni-
cal expression for the underlying symbolic marking. This allows easy com-
parisons of ESMs.

• Generic symmetrical firings must be privileged with respect to other kinds
of firings. This prevents processing an instantiated symmetrical firing be-
fore having the ability to produce a generic symmetrical firing, covering
it.

Moreover the following property, which is directly inherited from SRG
theory, can be used to check saturation rapidly.

Property 14.4.11 (Propagation of Saturation). An ESM which is reached
from a saturated ESM by means of a symmetrical transition firing is also
saturated.

Example of ESRG. Figure 14.20 represents the ESRG for three processes
sharing one resource. Two types of arcs must be distinguished: symbolic arcs
(shown in bold) corresponds to generic symmetrical firings and link two un-
derlying standard symbolic markings, while instantiated arcs (not in bold)
correspond to the other firing types and link an eventuality to another node
(eventuality or standard symbolic marking).

There are 11 ESMs in this graph whereas the corresponding symbolic
reachability graph contains 30 standard symbolic markings. In this graph,
all the extended symbolic markings are saturated and eventualities must be
developed for only two ESMs. Effectively, each one is the target of a satu-
rated symbolic node. However, the m̂e5, m̂e6, and m̂e7 extended symbolic
markings make the t5 transition firable, therefore all the arcs are symbolic,
except m̂e5 to m̂e10, m̂e6 to m̂e7, and m̂e7 to m̂e8, which are instantiated
arcs. Moreover, one can note that m̂e0, m̂e3, and m̂e6 are uniform. Since
this is the case for m̂e6, only the eventualities of m̂e5 and m̂e7 have to be
represented.

Properties of the Extended Symbolic Reachability Graph. From a
graph point of view, standard symbolic marking and eventualities of ESM
must be considered as different nodes. Fortunately, the inclusion of eventu-
alities according to some standard symbolic marking implies the existence of
implicit arcs which can be taken into account together with explicit ones.

Notation: let t be a transition and let S and S ′ be two nodes of the ESRG.
S t,ĉ
−→S′ represents an extended symbolic arc reaching S ′ from S, labelled by

(t, ĉ). S φ
−→S′ represents an extended symbolic path, φ, reaching S ′ from S.
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Fig. 14.20. ESRG Example

M ∈ S means that M is an ordinary marking and it is represented by node
S in the ESRG. m̂eo is the initial extended symbolic marking.

Property 14.4.12 (Preservation of Firing Sequences).
Let m and m′ be two markings of RG(N ,m0).

∃σ | m σ
−→m′ =⇒ ∃S Φ

−→S′, with m ∈ S and m′ ∈ S′.

Property 14.4.13 (Relationship Between Arc and Ordinary Firing).

Let S t,ĉ
−→S′ be an arc of ESRG(N , m̂eo), then:

∀m ∈ S, ∃m′ ∈ S′, ∃c ∈ cd(t) | m
〈t,c〉
−→m′.

The first property expresses the fact that any ordinary firing sequence
is represented by an extended symbolic path. The second states that any
extended symbolic arc represents at least one ordinary firing. As important
consequences of the former properties, we can deduce that reachability and
deadlock free problems can be directly checked on the ESRG. For the latter,
the notion of dead marking must be re-expressed in order to take eventualities
into account.

Property 14.4.14 (Reachability Equivalence).
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An ordinary marking is reachable from m0 if and only if it is represented
by a node of ESRG(N , m̂eo).

Property 14.4.15 (Dead Marking).
A marking m of RG(N ,m0) is said to be dead if and only if there is

no output arc from the eventuality or the standard symbolic marking which
represents it in ESRG(N , m̂eo).

However, in contrast to SRG, the knowledge of an extended symbolic firing
sequence in an ESRG does not allow us to find the equivalent ordinary firing
sequences. In fact, the ability to preserve firing sequences concerns transitions,
but not their instances. This is because of our desire for concisceness in the
representation of ESRG and our focusing on the preservation of the major
property which is the reachability property. This leads us to define only a
sufficient condition for detecting home spaces of markings, and to define
liveness properties in terms of transitions, forgetting colours.

Property 14.4.16 (Home Space of Markings).
Let S ∈ ESRG(N , m̂eo) and letM(S) denote the set of ordinary markings

represented by S.
M(S) is a home space if, for all S ′ of ESRG(N , m̂eo), the following path
belongs to ESRG(N , m̂eo) :

(S′ = S1)
φg

−→Sm, S′m
φi
−→(Sn = S)

with φg i a path, the arcs of which correspond to generic symmetrical firings;
and φi a path, any arc of which corresponds to an instantiated firing, either
symmetrical or asymmetrical. Optionally, φg or φi may not exist.

Property 14.4.17 (Quasi-liveness).
Let t be a transition. Then t is quasi-live if there is an arc the label of

which contains t.

Property 14.4.18 (Liveness).
Let t be a transition. Then t is live if the three following points hold:

(1) t is quasi-live; (2) m̂eo is uniform; (3) m̂eo represents a home space of
markings.

14.4.2 Symmetries in Nets

The notion of symmetry was first introduced for coloured Petri nets by Jensen
et al. [HJJJ84], but it has since been extended to other classes of nets. Ac-
tually, the similarities of behaviours are related to a system and not to the
model used to represent it. Hence symmetries can be defined for very general
classes of nets ([Sta91], [Sch95]), even if they have to be computed and cannot
be obtained automatically as in the case for well-formed nets.

The general framework for computing symmetries in nets is the following.
Let N = 〈P, T, F 〉 be a net (we use the algebraic representation given in
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Definition 2.2.1) where we denote by I the (arbitrary) set of possible inscrip-
tions on places, transitions, or arcs and χ the function P ∪ T ∪ F → I that
assigns inscriptions to the elements of the net. Symmetries, as they have been
defined in [Sta91], are bijections on the set P ∪ T that respect the node type
and the arc relation. Usually, it is also required that they preserve the firing
property. This can be done by defining an adequate equivalence relation on
the arc inscriptions and requiring that a bijection maps an inscription onto an
equivalent inscription. For models such as place/transition nets, the equiva-
lence relation is trivial, namely the equality on natural numbers, but for more
complex models it may be rather tricky to define. There is, to our knowledge,
no automatic way to design such relations. Hence, for non-classical models,
it relies on the skill of the designer.

The usual reason for using symmetries is to reduce the size of the reach-
ability graph. However, the cost of testing whether or not a new marking m′

should be included in this graph may be high. Actually, the reason for not
including m′ is that there is already a marking m in the graph such that
m′Eqm, i.e. there exists a symmetry s such that m′ = s.m. There are two
strategies for deciding this property: either first compute and store the whole
set of symmetries, and then test if there is one that satisfies the condition; or
go through the set of already constructed markings, compare each with the
new marking, and re-compute the set of symmetries at each comparison.

The first strategy is usually faster but expensive in storage space since
the number of symmetries may be exponential with respect to the number
of places in the net. Hence, taking into account that space is often the crit-
ical factor in the construction of the reachability graph, the second strategy
should be preferred.

14.4.3 Parametrised Reachability Graph

The approach presented in this section also aims to build a reduced reacha-
bility graph by grouping states into classes. However, it strongly differs from
the approach based on symmetries because:

• It applies to parametrised models, e.g. the number of processes involved in
the distributed critical section is not known.

• The grouping of states depends on whether some condition is satisfied, e.g.
there is at least one process waiting for the critical resource, and not on the
number of processes that satisfy the condition as is the case for symmetries.

Actually, many parallel programs are described with a parameter, the
number of processes, and are instantiated, i.e. the number of processes to be
executed is fixed. It is usually impossible to extend to all the instantiated
programs the results of the analysis of a particular one. With the classical
property-verification algorithms, it is necessary to study all the instances of
a parametrised program to be sure that the expected properties are verified
whatever the value of the parameters. Of course, this is prohibitive since the
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number of possible values is infinite. Therefore new verification methods and
algorithms are needed to study parametrised programs. It has been proved
that the verification of properties without fixing the value of the parameters
of the program is undecidable [AK86, Suz88]. Therefore, the methods that
are proposed can only solve part of the problem. We present model checking
algorithms.

The model checking algorithms described in Section 14.1 of this chap-
ter works on a representation of the state graph of the model. To build
this graph, the number of each component of the parallel program must
be known. Graph computation algorithms cannot be applied to the study of
parametrised programs. Formal methods exist for checking temporal prop-
erties of parametrised programs when the number of processes is unknown.
These all work on symmetrical parallel programs. Processes have symmetri-
cal behaviour if they have identical possible executions that are independent
of their identity [Bou88]. Symmetric algorithms such as termination detec-
tion [DS80], mutual exclusion [Dij65, Lam74], or reaching agreement algo-
rithms [PSL80], compose an important subclass of the parallel algorithms.
They may be categorised according to two criteria [Ray86]: the knowledge
that a process has of its environment, and the influence of a process on the be-
haviour of the others. In the works presented, processes do not know about
their identity and the number of other processes. They are however aware
of the presence of other processes. Processes communicate through shared
variables or directly. All the papers on parametrised programs assume the
same hypothesis. The parametrised version of the example from Figure 14.1
in Section 14.1 respects this hypothesis. The number of processes that want
to access the critical section is not defined. As the identity of processes is
unknown, we cannot develop an algorithm which ensures that accesses are
executed in the same order as requests. To make the parametrised approach
more clear, we slightly modify the algorithm: a process enters the critical
section only if no process is in it and no other process is waiting for it. The
Petri net in Figure 14.21 represents the parametrised version of this algo-
rithm. The value 2 on the inhibitor arc that links place Wait and transition
Enter ensures that the process which enters the critical section is the only
one that is waiting.

We present two classes of parametrised verification methods. The ap-
proach of the methods of the first class is to find an unparametrised program
that satisfies the same properties as the instantiated programs. This par-
ticular program is called a representative program. Properties are verified
on the representation of its behaviour. The methods differ in the choice of
the representative programs and in the sets of properties that are preserved.
The approach of the methods of the second class is to symbolically represent
the behaviour of the parametrised program and to verify properties on this
symbolic representation.
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Fig. 14.21. Parametrised mutual exclusion algorithm

Representative Program. In [WL89, KM89] the representative program
is supposed to be an “abstraction”, with no parameter, of the behaviour of
the parametrised program. The authors give the principle of the method. Its
application depends on the model that is chosen to represent the programs.
In [WL89], TCSP [Hoa85] is used while in [KM89] it is CCS [Mil89].

The same specification language is used to model the program and the ex-
pected properties. A property is viewed as a program whose executions are all
the possible ones that satisfy the property. The language may be compatible
with the definition of an order between specifications. A specification Spec1
is less than or equal to a specification Spec2 means that all the possible be-
haviours of Spec1 are behaviours of Spec2. Spec2 may have more behaviours
than Spec1. A specification satisfies a property if it is less than or equal to
the program associated with the property.

The user must specify a program supposed to be representative one. The
verification of the representativeness of the program and of the properties
on this program is a succession of comparisons with respect to the difined
order. If the representative program does not satisfy the property, we cannot
draw conclusion about the instantiated programs. The unsatisfaction may
be due to a behaviour of the representative program that is not a behaviour
of the instantiated ones. If the comparison can be performed by an algorithm,
the verification is automatic once the representative program is defined. The
existence of a representative program is undecidable.

In [RS93] the authors define sufficient conditions to ensure the existence
of a representative program. Furthermore, the verification of the conditions
gives this program if it exists. In [BSV94] the authors present a class of
systems for which a representative program is the union of the behaviours
of successive instances of the parametrised program. Their solution is to test
the representativeness of the successive unions. If a representative program
exists it will be found otherwise the verification will not stop.

The following methods are less general than the previous ones since they
are restricted by the possible representative programs. These must be pro-
grams instantiated with n processes. The possible values of n depend on the
methods.

In the methods proposed in [CG87, LSY94], the user has to provide the
value of n. Algorithms are proposed to verify the equivalence between the rep-
resentative program and the other instances. In [CG87] the user has to follow
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the verification algorithm, i.e. the algorithm will require some information
from the user. In contrast, in [LSY94], once n is defined the user has nothing
else to do. Since the language of temporal properties and the representation
of the programs are not the same in the two methods, the verification pro-
cedures are different. In both cases the existence of a representative program
is undecidable.

In the method proposed in [SG89, CGJ95] the representative program
is the one instantiated with the smallest possible number of processes. The
equivalence is defined with respect to a set of properties and not a logical
language. If the set of properties is modified, the work has to be done again.
If the parametrised program is specified for at least n1 processes and if the
instantiated programs have similar behaviour if they involve at least n2 pro-
cesses, either the equivalence can be proved only if n1 ≥ n2. In compensation,
the user has nothing to do during the verification of the equivalence. Two
results are possible, the equivalence is proved or the verification algorithm
fails, i.e. it detects that it cannot solve the problem and stops.

Symbolic Representation of Behaviour. In [GS92] the authors are in-
terested in linear time temporal logic. The behaviour of the parametrised
program is studied through the behaviour of one of the identical processes.
The other processes are represented only by their communications with the
studied process. The behaviour of the process studied is represented by an
automaton. The algorithm defined in Section 14.1.1 is used to verify the prop-
erties. An algorithm that builds the automaton, from the specification of the
parametrised program, is given. There are some restrictions on the proper-
ties that can be verified: they must not refer to the immediate successors of
a state and they must concern the behaviour of a single process, i.e. they
cannot refer to the states where the other processes are.

In [Ver96] a parametrised state graph that represents all the reachable
states and executions of all the instantiated programs is defined. Its compu-
tation is automatic, and the specification of the program is a Petri net. The
markings are parametrised. Two kinds of information are possible: the num-
ber of tokens in a place is known (the marking is given as usual by an integer),
or the number of tokens in a place is unknown and it depends on the value of
the parameter (the marking gives the smallest number of tokens that can be
in the place). For example, the parametrised marking (p ≥ 2, q = 1, r ≥ 1)
represents the markings in which there are at least two tokens in place p,
exactly one token in place q, at least one token in place r and no token in
any other places . The number of tokens that are in the places corresponding
to the states of the identical processes is a constant (the number of identical
processes). In the previous example, if p, q, and r are states of processes, then
the number of processes dispatched among the three places is a constant for
each instantiated program. Therefore if we consider the program instantiated
with 6 processes, the parametrised marking corresponds to the following set of
markings {(p = 2, q = 1, r = 3), (p = 3, q = 1, r = 2), (p = 4, q = 1, r = 1)}.
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A parametrised marking represents an infinite set of markings since it is the
union of sets of markings for an infinite number of instantiated programs. Two
partial relations are defined for parametrised markings: an inclusion and a su-
periority relation. A parametrised marking pm is included in a parametrised
marking pm′ if and only if the set of markings represented by pm is included
in the one represented by pm′. A parametrised marking pm is larger than
or equal to pm′ if and only if with each marking represented by pm′ is as-
sociated a greater or equal marking represented by pm, and vice versa. The
initial parametrised marking of the Petri net of Figure 14.21 is (Idle ≥ 1),
i.e. all processes – of which there exists at least one – are in place Idle .

In [Ver94a] the firing rule for building the symbolic graph is defined. A
tree is first built. The computation of a branch ends when a parametrised
marking included in one of its ancestors is computed. The possible execu-
tions from the new parametrised marking will be computed anyway. All the
markings, represented by the same parametrised one, enable the same transi-
tions. The set of enabled transitions is computed as usual with respect to the
integer associated with each place. In one step, for each enabled transition,
the set of successor markings is computed. Rules are defined to avoid the
computation of infinite branches; these can be applied if certain precise con-
ditions are satisfied. When the computation of an infinite branch is detected,
the conditions are tested and if they are not satisfied the algorithm fails. It
cannot compute a finite graph that represents the reachable markings and
executions of all the instantiated programs.

The firing rule is divided into three steps:

1. The computation of the new values associated with each place. This is
performed as usual. For each place, its associated integer is increased by
the sum of the valuation of the arcs linking the fired transition to that
place and decreased by the sum of the valuation of the arcs linking the
transition to the fired transition.

2. The division of the parametrised marking obtained, if necessary. This is
performed when the parametrised marking represents markings that do
not enable the same transitions. A procedure to divide it into disjoint
sets of markings is used.

3. For each parametrised marking obtained that is greater than one of its
predecessors, we have to apply the procedure to avoid infinite branches.
If the application conditions are not satisfied, the graph computation
algorithm fails.

The parametrised reachability graph of the Petri net from Figure 14.21
is given in Figure 14.22. This graph has 13 vertices and 21 edges. The reach-
ability graph of a program instantiated with n processes is 3× n edges and
vertices. The parametrised graph is a symbolic representation of the reach-
able markings and executions of all the instantiated programs with 1, 2, . . .,
1000, . . . processes. The black vertex is the parametrised initial marking.
A process can request entry into the critical section. The new parametrised
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marking is (Idle ≥ 0,Wait = 1). It is divided into (Idle = 0,Wait = 1) and
(Idle ≥ 1,Wait = 1). The former represents a marking of the program instan-
tiated with exactly one process, and enables transition Enter. It is reached
when exactly one process is in place Idle . The firing of transition Req in
these conditions is represented by the arcs labelled with Req′. The latter rep-
resents markings of the program instantiated with at least two processes and
enables transitions Req and Enter. From this parametrised marking, when
transition Req is fired the parametrised marking (Idle ≥ 1,Wait = 2) is
reached. It is greater than the previous one and if we continue, we will com-
pute an infinite branch. We can observe that this branch will be composed
of (Idle ≥ 1,Wait = 2), (Idle ≥ 1,Wait = 3), . . . All these sets of mark-
ings can be represented by the parametrised marking (Idle ≥ 1,Wait ≥ 2).
This modification does not change the set of reachable markings and execu-
tions computed. We could not apply this modification previously since the
value of place Wait is compared to the value 2. We have to distinguish the
markings with less than 2 processes in place Wait from the others. From
(Idle ≥ 1,Wait ≥ 2), when transition Req is fired, the parametrised mark-
ing (Idle ≥ 1,Wait ≥ 3) is reached. It is included in (Idle ≥ 1,Wait ≥ 2).
Therefore, we have a loop in the parametrised reachability graph.

If the number of tokens that each place contains is known exactly, the
parametrised marking is a marking associated with an instantiated program.
In the graph of Figure 14.22 this is the case for markings (Wait = 1) for
the program with one process; and (Wait = 2) and (Wait = 1, CS = 1)
for the program with two processes. If the number of tokens is not known
exactly in at least one place, the parametrised marking represents markings
of almost all the instantiated programs. If the program is instantiated with
fewer processes than the sum of the integers associated with places that
represent states of the identical processes, then the parametrised marking
represents none of its reachable markings. The maximum of these sums is
a bound below which the instantiated programs have particular behaviour.
In the graph of Figure 14.22, this maximum is 4. The parametrised marking
(Wait ≥ 3, CS = 1) represents markings of programs instantiated with at
least 4 processes.

Apart from the failure cases, this small example allows us to illustrate all
the possible cases. The firing rule and the procedure to avoid infinite branches
and failure cases are given in detail in [Ver96].

Once the graph is built, it can be used to check the satisfaction of prop-
erties. Properties verified by inspection of the set of reachable markings in-
dependently of their links are easily checked (i.e. deadlocks, state invariants,
etc.). We consider the set of reachable parametrised markings that corre-
sponds to the set of reachable markings of all the instantiated programs. We
can check that the Petri net is not deadlock free when it is instantiated with
at least two processes. When all the processes are in place Wait no more
transitions are enabled (parametrised markings (Wait = 2) and (Wait ≥ 3)).
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Fig. 14.22. Parametrised reachability graph

Model checking algorithms have been adapted for the parametrised sym-
bolic graph. The main difficulty is that circuits of the symbolic graph may
not represent “circuits” of the reachability graph of the instantiated pro-
grams. This is because of the procedure to avoid infinite branches. This is
the case for the loop over parametrised markings (Idle ≥ 1,Wait ≥ 2) and
(Idle ≥ 1,Wait ≥ 2, CS = 1). During the evaluation of a temporal property,
it is necessary to distinguish “false” from “true” circuits. The verification al-
gorithm for CTL formulas is presented in [Ver94b, Ver95]. Properties do not
refer to the immediate successor of a state. The cases where the verification
cannot be done in a finite time are detected and the algorithm fails on these
cases.

Conclusion. Symmetry and parametrised approaches yield interesting so-
lutions for the model checking problem. In particular, large systems having
either a large or unknown number of similar components can be analysed.
Several problems are still open; in particular, the extensions that have been
proposed to deal with partial symmetry do not support the verification of
the temporal property. Concerning parametrised approaches, none of the so-
lutions presented can be used to study programs with several parameters. The
main difficulty is that the satisfaction of some properties will be dependent
on the relation between the values of the parameters. The fact that processes
are not aware of their identity does not allow us to study problems such as
the “philosophers’ problem” where philosophers are on a ring and explicitly
know the identity of their neighbours and the state where they are located.

14.5 Implementation Issues

This section presents three major implementation techniques which aim to
restrain the amount of memory used during the construction of a reachability
graph. The first two techniques are respectively named state-space caching
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and hashing compaction. They can be applied during the depth-first searches
(DFS) that can be performed over the state space and thus in on-the-fly
model checking (see Section 14.2 for an introduction). The last technique
presented is based on a particular boolean representation called binary deci-
sion diagrams [Bry92]. Currently, it is primarily used in different views of
temporal logic (LTL, CTL∗) in order to reach high data compression.

It is worth noting that the three techniques presented are not specific to
Petri nets and have been used for a large variety of system design formalisms.

14.5.1 State-Space Caching

During the reachability graph exploration, the cost of detecting whether or
not a marking is new is very high since each time it requires comparisons
against all the already visited markings. A depth-first search, such as the
ones defined for on-the-fly model checking, uses the following two structures:

• A stack of visited markings is used to store a current path while performing
a model checking.

• A heap stores some markings which are already visited but are not in the
current path, thus explorations from already visited states can be avoided.

Since memory is rather small with respect to any usual reachability graph,
one may consider discarding the visited markings that are surely explored
only once: such markings do not have to be kept in memory. As we saw in
Section 14.3, stubborn set and sleep set techniques can serialise independent
transition firings, so can limit the number of times a (target) marking is
visited. Such techniques can be seen as a way to restrain the number of
markings to be stored in memory. Unfortunately, it is not possible to decide
which markings are visited only once in the general case. In other words, they
cannot capture all cases.

Another way to limit the total amount of memory consists in accepting
the loss of some information about the visited markings. When only a few
nodes are reached several times, such an approach appears possible because
the likelihood of reaching a visited marking again is low. It is worth noticing
that the stack must not be limited, since this would violate a requirement of
the model checking procedure.

The state-space caching technique proposed in [Hol85, JJ91, HGP92] fol-
lows this approach. It consists of using a fixed size cache to store not only
the stack of the DFS but also as many other visited markings as possible.
When the cache is full, all the markings which do not belong to the stack
are eliminated. If the size of the cache is bigger than the maximal size of the
stack during the search, the exploration will surely terminate. According to
this limit, the larger is the cache size, the faster the search procedure, since
this decreases the risk of having several parsings for the same paths. However,
it is not necessary to consider the size of the graph; rather, a compromise is
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reached between a maximal size for the cache and the higher computing and
searching times.

14.5.2 Hashing Compaction

The hashing compaction technique also aims to reduce the amount of memory
to be used. Unlike state-space caching, the hashing compaction technique
does not reduce the number of states kept in memory. Rather, it focuses on
the reduction of the size of the stored markings, to the extent of representing
each of them with a single bit (cf. compression techniques). This method was
first presented by Holzmann in [Hol88]. He uses the idea that, at the price of
possibly missing part of the state space, the amount of memory required by
the searches could be substantially reduced. This method is fundamentally
based on the use of hashing without collision detection.

In the basic algorithm, a static bit-array is used. The scheme is the fol-
lowing. Initially, the bit-array is set to off. When a new state is visited, its
name is hashed to yield an index into the array; if the corresponding bit is
on, then the state is considered to have already been visited; in the opposite
case, the bit is set to on and the state is pushed onto the stack associated
with the depth-first search. Because there is no detection of collision, the
search can be partial and there is always a risk of missing a state. Hence,
when this method is used, model checking appears more like an intelligent
debugger than like a verifier. However, the author claims that in general,
one can choose the size of the array to be large enough, and proposes hash
function politics so that the number of collision remains arbitrarily small. For
example, Holzmann recommends using a bit-array associated with two differ-
ent hash functions. Hence, a state is considered to be visited whenever both
the corresponding bits are set to on. A generalisation to several-bit arrays
and to several hash functions can be found in [WL93]. Moreover, as proposed
in [CVWY92], another way is to take a probabilistic point of view to dimin-
ish collision. The reader can find an efficient model checking procedure using
hashing compaction in [CVWY92].

14.5.3 Boolean Manipulation

Other verification techniques are based on a work of Bryant which proposes
an operational data structure for managing sets of boolean functions effi-
ciently in a very compact structure, namely ordered reduced binary decision
diagrams (ORBDDs) [Bry86, Bry92]. This section addresses more specifically
the model checking problem as introduced in [CES86] by Clarke et al. How-
ever, the reader may refer to other interesting works concerning the reacha-
bility analysis [PRCB94] or structural properties [GVC95]).

After a short presentation of ORBDD, this section highlights the way to
take advantage of this structure in order to perform a model checking of a
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(finite) place/transition net. A more detailed synthesis of ORBDD can be
found in [Bry92].

Ordered Binary Decision Diagrams. Fundamentally, an ORBDD is a
binary decision diagram (BDD), that is a rooted directed acyclic graph used
to code any boolean function according to its variables. Such a graph ends
with two leaf nodes (labelled 0 and 1) which encode the truth values of the
boolean function. Moreover, any assignment of the encoded function corre-
sponds to the definition of a path from the root to one of the leaf nodes.
The following coding procedure is followed according to the variables of a
function: Each non-terminal node n is followed by exactly two successors (re-
spectively lo(n) and hi(n)) and is labelled by a boolean variable (var(n)). If
the assignment of var(n) is considered to be 1 then the successor is hi(n),
else it is lo(n). Hence, a specific value of a function is given by considering for
any variable a value and then a specific successor. For instance, both BDDs
of Figure 14.23 encode the f boolean function defined by f(a, b, c) =!ab+a!c.
As an illustration, the coding of f(0, 1, 0) has been highlighted with bold
edges. The fact that this assignment yields a TRUE value for the function is
shown by the last edge, which reaches the 1 node. Observe that the other pos-
sible assignments for f are also represented, hence the function is completely
described.
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Fig. 14.23. An expanded BDD and the same reduced

Bryant has shown that BDD can always be reformulated in a canonical
form, called ordered reduced BDD (ORBDD). Canonicity is useful for at least
three reasons:

• Equivalence tests between functions are easily computable in terms of
equality relations.

• With this canonical form, boolean binary operations can be calculated in
polynomial time in the size of the ORBDDs involved.
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• Moreover, some interesting problems such as satisfiability and tautology
can be solved in constant time.

A BDD is said to be ordered when it is defined according to a total
ordering of the variables, in other words, for any two non-terminal nodes,
say u and v, the fact that v is a direct successor of u implies that inequality
var(u) < var(v) holds. For instance, both BDDs of Figure 14.23 are ordered
according to the same order of variables: a < b < c.

Taking into account a given set of variables and an associated order,
the canonical form derives from factorisations of isomorphic subgraphs. Two
reduction rules are applied inductively:

• If a node n is such that lo(n) = hi(n) then suppress n and redirect its
incoming arcs to hi(n).

• If two nodes n1 and n2 are such that var(n1) = var(n2), lo(n1) = lo(n2),
and hi(n1) = hi(n2) then suppress n1 and redirect its incoming arcs to n2.

For instance, the BDD depicted on the right-hand side of Figure 14.23 is
ordered and reduced, while this is not the case for the other. Hence, only the
right-hand BDD is in a canonical form.

Experiments show that the shape and size of the ORBDD depend on the
variable ordering. The size can be exponential in the number of variables,
however many useful boolean functions have a very compact BDD represen-
tation. A useful and efficient package implementing ORBDD operations has
been developed by D.E. Long (see [BCL+94]).

State-Space Building Under Boolean Manipulations. The use of BDD
coding to optimise the model checking problem has been intensively studied
in the area of speed independent circuits. Mainly, it consists in a reformula-
tion of the state-space information: not only are the states reconsidered but
also the transition relation which symbolically represents the changes among
states. One of the interesting features of Petri nets is that the transition re-
lation is directly enhanced by the links between places and transitions. For
higher specification languages which introduce objects more complex than
Petri nets, different solutions exist which differ in the ways to code the tran-
sition relation. See [Enc95] for example.

In this section, we focus on the algorithm of Burch et al. [BCL+94] and
apply it in the context of Petri nets. The required operations are the following:

• The existential quantification over boolean variables: ∃v ;
• The substitution of a variable by another; and
• The classical logical operations: ∨, ∧ and ¬.

Also, the proposed solution uses the algorithm of Bryant which directly com-
putes an ORBDD from a formula of the form f |v=0 or f |v=1 (i.e. f where
variable v is set to either 0 or 1). This algorithm allows the computation of
the ORBDD for ∃v[f ] as (f |v=0 ∨ f |v=1) (i.e. evaluate to true if there exists
a value of v such that f is verified). The substitution of a variable w by a
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variable v in a formula f is denoted by f〈v ← w〉 and can be carried out by
using the existential quantifier: ∃v[(v ⇔ w) ∧ f ].

Let us now apply this approach to represent the state-space information
of a place/transition net. For the sake of clarity, a safe place/transition net
is considered because the markings of any such net can be simply coded by
boolean variables. The generalisation to k-bounded nets (k being known) can
be found in [PRCB94].

A marking of a net is coded by introducing as many variables as the num-
ber of places in the net. Any marked place with name p will be represented by
a positive literal (boolean variable) of the same name, while empty places are
represented in a similar way but with a complementary literal. The boolean
representation of a safe marking is deduced from such notations by using
logical conjunctions over such variable representations. In particular the case
of the initial marking is (S0)(P):

(S0)(P) = (
∧

p∈P,m0(p)=1

p) ∧ (
∧

p∈P,m0(p)=0

¬p)

Observe that disjunctions over such formulas can be used to represent a set
of markings. Therefore, in the following, (S)(P) will denote a set of markings
coded with the variables of P .

In the BDD approach, the building of the state space is performed induc-
tively in the following way: from the set of already visited markings, a set of
enabled transitions are concurrently fired and yield another set of computed
markings. Then, the resulting markings are added to the markings previously
visited to perform the next induction.

More precisely, two sets of boolean variables, denoted in the following P
and P ′, are needed in order to model such two sets of markings. Moreover, a
boolean function ft(P ,P ′) is defined for each t transition of the net to express
the firing conditions of t, from markings coded with P to those coded with
P ′.

ft(P ,P
′) = (

∧

p∈ •t

p) ∧ (
∧

p∈ •t\t•

¬p′) ∧ (
∧

p∈t•

p′) ∧ (
∧

p/∈ •t∪t•

p⇔ p′)

So, pure input places are emptied while output places receive a token and
other places are unchanged.

Hence, the global transition relation of a net N is defined as follows:

N(P ,P ′) =
∨

t∈T

ft(P ,P
′)

From this coding, one can compute the next set of visited firings, that is
F (S):

F (S) = S ∪ {s′ | ∃s ∈ S, (s, s′) ∈ N}

Or, in terms of boolean expressions:
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(F (S))(P ′) = (S)(P ′) ∨ ∃p∈P [(S)(P) ∧N(P ,P ′)]

Due to the ∃p∈P operator, there remain only variables of P ′. Finally,
an induction over F (S) is easy to implement by applying a straightforward
variable substitution to obtain the same expression but coded with variables
of P .

Thus, by noting
(F (Si))(P

′) = (Si+1)(P
′)

one can compute successively S0, S1 = F (S0), S2 = F 2 = F (F (S0)), etc.
Clearly, this sequence converges to the least fixed point of F , which exactly
corresponds to all the reachable states. Of course, such a technique must be
adapted to fire at each step only a subset of the enabled transitions, in case,
for instance, of a synchronisation caused by a model checking procedure.
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Fig. 14.24. A Petri net and its reachability graph

Let us evaluate the BDD method on the net of Figure 14.24 with p1 + p4

as the initial marking.
The corresponding transition relation can be expressed as follows:

ft1 (P,P ′) = (p1) ∧ (¬p′1) ∧ (p′2) ∧

[(p3 ⇔ p′3) ∧ (p4 ⇔ p′4) ∧ (p5 ⇔ p′5) ∧ (p6 ⇔ p′6) ∧ (p7 ⇔ p′7)]

ft2 (P,P ′) = (p2) ∧ (¬p′2) ∧ (p′3) ∧

[(p1 ⇔ p′1) ∧ (p4 ⇔ p′4) ∧ (p5 ⇔ p′5) ∧ (p6 ⇔ p′6) ∧ (p7 ⇔ p′7)]

ft3 (P,P ′) = [(p3) ∧ (p4)] ∧ [(¬p′3) ∧ (¬p′4)] ∧ (p′7) ∧

[(p1 ⇔ p′1) ∧ (p2 ⇔ p′2) ∧ (p5 ⇔ p′5) ∧ (p6 ⇔ p′6)]

ft4 (P,P ′) = (p4) ∧ (¬p′4) ∧ (p′5) ∧

[(p1 ⇔ p′1) ∧ (p2 ⇔ p′2) ∧ (p3 ⇔ p′3) ∧ (p6 ⇔ p′6) ∧ (p7 ⇔ p′7)]

ft5 (P,P ′) = (p5) ∧ (¬p′5) ∧ (p′6) ∧

[(p1 ⇔ p′1) ∧ (p2 ⇔ p′2) ∧ (p3 ⇔ p′3) ∧ (p4 ⇔ p′4) ∧ (p7 ⇔ p′7)]

ft6 (P,P ′) = [(p1) ∧ (p6)] ∧ [(¬p′1) ∧ (¬p′6)] ∧ (p′7) ∧

[(p2 ⇔ p′2) ∧ (p3 ⇔ p′3) ∧ (p4 ⇔ p′4) ∧ (p5 ⇔ p′5)]
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ft7 (P,P ′) = (p7) ∧ (¬p′7) ∧ [(p′1) ∧ (p′4)] ∧

[(p2 ⇔ p′2) ∧ (p3 ⇔ p′3) ∧ (p5 ⇔ p′5) ∧ (p6 ⇔ p′6)]

The initial marking is coded by the predicate (S0)(P) = p1 ∧ p4 ∧ ¬p2 ∧
¬p3 ∧ ¬p5 ∧ ¬p6 ∧ ¬p7. The application of the predicate transformer F on
S0 leads to the following set of states {p1p4, p2p4, p1p5}. The iteration of F
is depicted in Figure 14.24 by concentric curves that become successively
larger. It is worth noting that all the reachable markings are visited in four
iterations.

14.5.4 Symbolic Model Checking

Temporal model checkers based on the BDD representation have been imple-
mented to check real systems. BDD model checkers are called symbolic model
checkers since the transition relations are described using variables. In fact,
the classical algorithms of model checking are not changed, but predicate
transformers must be introduced to match/synchronise the representation of
the formula against the symbolic expression of the transition relation. More
detail can be found in [BCL+94].

14.5.5 Concluding Remarks on Implementation Issues

By means of techniques such as state-space caching, hashing compaction, or
ORBDDs, the memory used for the building of state spaces can be drastically
reduced. Such approaches are very promising since representations up to 1020

states have already been analysed using standard memory. Some systems that
are unmanagable with standard approaches of model checking have been
either verified or systematically debugged.

State-space caching is based on the depth-first search procedure, there-
fore it can be used to optimise on-the-fly model checking, specifically for
linear temporal formulae (see Section 14.2). The only requirement is that the
memory must be able to contain the maximal path of the search.

Hashing compaction corresponds to an abstraction of states, therefore one
can miss some states in the case of imperfect hash functions or an insuffi-
ciently large hash table. By focusing on accepting states, it is demonstrated
that some errors can be missed but the algorithms will never falsely claim
that the system is incorrect [CVWY92]. Therefore, model checking algorithms
under hashing compaction should be viewed more as an intelligent validation
tool able to perform several automated simulations with respect to a property,
rather than as a verification tool.

For the sake of efficiency, state-space caching and hashing compaction
techniques must be used in conjunction with any other compatible technique
that can reduce the number of states matching, such as the sleep sets or stub-
born sets. The SPIN tool [Hol97] of the AT&T Bell Laboratory implements
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such a combined approach and also allows the combination of state-space
caching and hashing compaction in order to increase the scope of automated
validation with respect to an LTL property.

The use of ORBDD is a rather different approach which represents the
entire state space but factorises components of states in order to save a large
amount of memory. Both LTL and CTL algorithms have been implemented,
however the ORBDD approach appears to be better suited to CTL rather
than LTL. Effectively, the firing mechanism is more efficient than the largest
uniform progression throughout the state space is chosen, in other words,
the cost to process firings from either one or several markings might be the
same. Different tools implement verification using ORBDDs, among them
PROD [VHHP95] and COSPAN [HHK96].

It is worth noticing that BDD approaches might not solve the combina-
torial problem, so can fail to check some systems. Effectively, their efficiency
is strongly related to the number of variables and above all to the selected
choice of variable ordering. Hence, intermediate BDD representations yielded
during the firing process can be very large, although the final representation
could be sufficiently reduced. A factor of ten or even more is common. Finally,
the use of two sets of variables to code the transition relation has a negative
effect on performance when the system description becomes large.

Given this problem, approaches other than BDD are of interest ([CK97a],
[CVWY92]). Moreover, one may consider combining techniques such as BDDs
with stubborn set construction and symmetry detection [Tiu94, ABH+97].

14.6 Synthesis and General Concluding Remarks

Throughout this chapter, we have shown that model checking is a general
and totally automatic solution for verifying system properties. The price to
pay is formalisations of both system and properties. In this context, temporal
logic appears expressive enough for the modelling of a large class of properties
while being sufficiently intuitive to be accepted by engineers.

The model checking problem has become a reality for systems engineering,
given techniques which can reduce the state-space representation. The family
of techniques that we have presented exploit orthogonal concepts which can
be viewed as complementary approaches for reducing the size of the problem:

• Partial-order techniques provide efficient algorithms based on a system
semantics which is much more economic and realistic than that of the
interleaving of transition firings.

• Symmetry and parametrisation techniques cope with replications of objects
in the system, and are particularly appropriate for checking fault tolerance
problems, or protocol specifications of agent groups, etc.

• Efficient implementation techniques such as BDD compression and the on-
the-fly approach provide a general framework for efficient model checking.
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All these techniques can be used for example in the LTL model checker.
However, in practice, it is very difficult to know which one yields the best rate
of reduction. Honest comparisons such as [CP96], compare systems models
and demonstrate the relative efficiency of each technique. Therefore, several
verification tools, such as PEP [BG96], PROD [VHHP95], SPIN [Hol97], and
CPN-AMI [MT94], propose combining several approaches.

Currently, model checking is being extensively researched, and studies
include:

• Extensions of the expressiveness of system models, by adding (real) time
concepts [DT98], by considering unbounded or infinite colour domains, or
by taking infinite state space into account ([CC99], [MN95]).

• Extensions to more powerful logics which consider interesting new op-
erators [KMM+97], including a time operator for dealing with real
clocks [DT98] or a probabilistic operator for a better understanding of
the truth value of a property.

• Improvements of state-space reduction techniques which relate to, for ex-
ample, alternatives to BDDs [NM94], a better exploitation of symme-
tries [AHI98], or elaborate combinations of reduction techniques.

• Integration of model checkers within theorem provers in order to automate
some stages in the verification of complex proofs [Spr98].

For a general ( and not Petri-net-related) discussion of algorithms for
state-space seach the reader is referred to [Zha99].
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Verification methods based on the state space have a major drawback: the
reachability graph must be computed in advance. The construction of this
reachability graph is computationally a very hard problem. This is because
the size of the state space may grow more than exponentially with respect
to the size of the Petri net model (measured, for example, by the number of
places). This problem is usually known as the state-space explosion problem.
In [Val92a] the reader can find a discussion of the size of the reachability graph
obtained from a Petri net and the role of the concurrency in the state-space
explosion problem.

Although these analysis techniques have the drawback mentioned above,
for bounded net systems they are the more general methods and, in some
cases, are the only way to verify a given property.

A successful way to cope with this problem has been so-called structure
theory. The idea is to get useful information about the behaviour of the
system from the structure of the net model (avoiding the construction of the
reachability graph). Structure theory investigates the relationship between
the behaviour of a net system and its structure, i.e. the linear algebraic and
graph theoretic objects and properties associated with the net and the initial
marking. The study of this relationship usually leads to a deep understanding
of the system. The ultimate goals of structure theory are usually termed
the analysis problem, i.e. the problem of alleviating state-space explosion by
developing analysis methods that do not require the construction of the state
space; and the synthesis problem, i.e. the problem of designing refinement and
composition operators that are known to preserve the properties of interest. In
this chapter we concentrate on the analysis problem within structure theory.

When general concurrent systems are considered, typical structural tech-
niques give necessary or sufficient conditions on the properties studied. Nev-
ertheless, the most satisfactory results are obtained when the scope is limited
to restricted classes of systems and particular properties. The behaviour of
general concurrent systems is of course richer, but sensible limitations lead to
useful subclasses, able both to model certain practical systems and to give in-
sight into the relationships between behaviour and structure in more general
systems. The typical restrictions that are imposed aim to limit the interplay
∗ Authors: J. M. Colom, E. Teruel, M. Silva, and S. Haddad
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between synchronisations and conflicts. On the one hand, these restrictions
facilitate the analysis. On the other, some modelling capabilities are lost. The
designer must find a compromise between modelling power and availability
of powerful analysis tools, while one of the theoretician’s goals is to obtain
better results for increasingly larger subclasses.

In this chapter two intimately related families of structural analysis tech-
niques will be considered:

• Graph Theory. Objects such as paths, circuits, handles, bridges, siphons,
and traps, and their relationships, are investigated. Typically, only ordi-
nary nets are considered, and the main results apply to specific proper-
ties, mainly boundedness, liveness, and reversibility [BT87, CHEP71, ES91,
Hac72, TV84].

• Linear Algebra and Convex Geometry. These are techniques based on the
state equation and/or the flows and semiflows. The semiflows can be used to
prove properties such as boundedness, mutual exclusion, and liveness. More
generally, the state equation can be used as a basic description of the system
in order to prove or disprove the existence of markings or firing sequences
fulfilling certain given conditions, eventually expressed as logic formulas
[Col89, Esp94, Sil85]. Typically, results for general P/T net systems are ob-
tained [Col89, CCS90, Lau87, Mem78, MR80, SC88, TCS93], some of which
may become especially powerful when applied to restricted subclasses to-
gether with graph-theory-based arguments [Esp92b, Esp94, ES90, TS93].

To facilitate the analysis, a large and complex system can be transformed
(typically reduced) while preserving the properties to be analysed. Transfor-
mation rules preserve the behaviour and are often supported by structural
arguments such as simple, efficient sufficient conditions. Net system reduc-
tions are presented on the next section with special emphasis in the implicit
place concept.

15.1 Net System Reductions

In order to alleviate the state-space explosion problem, several techniques
for obtaining reduced state spaces have been introduced. As an example we
can cite the stubborn set method [Val90c, Val92a]. These techniques are used
directly in the construction phase of the reachability graph for the original
net model. In this section we review a different kind of reduction techniques
named net system reductions. These reductions proceed by transforming the
net structure and, sometimes, the initial marking.

From an operational point of view, the approach is based on the defini-
tion of a kit or catalogue of reduction rules, each one preserving a subset of
properties (liveness, boundedness, reversibility, etc) for analysis. A reduction
rule characterises a type of sub-net system (locality principle) which can be
substituted by another (simpler) sub-net system.
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The pre-conditions to be fulfilled have a behavioural and/or a structural
formulation. Behavioural pre-conditions can be more powerful for a given
initial marking, but their verification is usually much more complex. Thus
the pre-conditions presented here are based on structural considerations and
properties of the initial marking (i.e. the initial marking is considered as a
parameter).

The design of a catalogue of reduction rules is based on a tradeoff between
completeness (i.e. transformation capabilities) and usefulness (i.e. applicabil-
ity).

Given a catalogue of reduction rules, analysis by reduction (the transfor-
mation procedure) is iterative in nature: Given the property (or properties)
to be analysed, the subset of rules that preserve it (them) is applied until the
system becomes irreducible. The irreducible system may be so simple that
the property under study can be trivially checked (see Figure 15.2d). In other
cases, the irreducible net is just “simpler” to analyse using another analysis
technique (e.g. we can obtain a reduced state space in which it is possible to
analyse the property that has been preserved in the reduction process). In
other words, techniques for analysing net system models are complementary,
not exclusive.

Reduction rules are transformation rules used for net analysis. When
considered in the reverse sense they become expansion rules, used for net
synthesis: i.e. for a stepwise refinement (or top-down) approach. Examples
of this approach can be found in the context of the synthesis of live and
bounded free-choice systems [ES90] or in the definition of subclasses of nets
by the recursive application of classical expansion rules as in the case of
macroplace/macrotransition systems [DJS92]. Using this approach, with ad-
equate expansion rules, the model will verify the specification by construction.
This is interesting when compared with the more classical approach based
on the iteration of the design and analysis phases until the specification is
satisfied. The iterative process has two basic disadvantages:

1)The lack of general criteria for modifying (correcting) a model which does
not meet the requirements;

2)The operational difficulty inherent to the validation phase.

Nevertheless, since no kit of reduction rules is complete (i.e. able to fully
reduce any system), it is not possible to synthesise an arbitrary system by
such stepwise refinements.

A very basic kit of reduction rules is presented. Additional details are
given only for the rule of implicit places; these places are redundancies in the
net system model: if an implicit place is removed, then (illusory) synchroni-
sations disappear and other reduction rules can be applied.
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RA1. Fusion of series places RA2. Fusion of series transitions

RB1. Elimination of identical place RB2. Elimination of identical transition

RC1. Elimination of self-loop place RC2. Elimination of self-loop transition

Fig. 15.1. A basic reduction kit

15.1.1 A Basic Kit of Reduction Rules

Figure 15.1 presents graphically the structural and marking conditions for a
kit of very specific reduction rules. It is not difficult to observe that these rules
preserve properties such as liveness and the bound of places (thus bounded-
ness):

• RA1 is a particular case of the macroplace rule [Sil81].
• RA2 is a particular case of the transition fusion rule [Ber87].
• RB1 and RC1 are particular cases of the implicit place rule [Sil85, SC88] (to

be considered later in more detail). Observe that RC1 can be trivially gen-
eralised by considering several self-loops in which the place always appears.
Liveness, the bound of places, and reversibility are preserved. Moreover if
the place contains several tokens, liveness, boundedness (in general not the
bound of the net system), and reversibility are preserved.

• RB2 and RC2 are particular cases of identical and identity transition rules
[Ber87] respectively.
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Fig. 15.2. The reduction process shows (see (d)) that the net system in Figure
5.8b) is live, 7-bounded, and reversible.

An interesting remark is the analogy between rules in the same row in
Figure 15.1: Basically rules RX2 are obtained from rules RX1 by changing the
role of places and transitions (duality) and reversing the arrows (important
only for the RA rules).

Example 15.1.1. Let us now consider the net system in Figure 5.8b. The
sub-net defined by op1− t3−wait dep. verifies the pre-condition of rule RA1.
Thus it can be reduced to a place, p3 (Figure 15.2a). The same holds for
op2 − t6 − wait free which is reduced to p6 (Figure 15.2a). The sub-nets
t1− load− t2, t4−deposit− t5, t7−unload− t8, and t9−withdrawal− t10 can
be reduced according to RA2 (see t12, t45, t78, and t910 in Figure 15.2a). Place
R in Figure 15.2a is implicit (one of the trivial generalisations mentioned for
RC1). Thus it can be removed, and wait raw− t12−p3 and t910−p6− t78 can
be reduced to p12 and t78910 respectively (see Figure 15.2b). Places p12 and
wait with. are implicit (RC1) in Figure 15.2b, thus the net system in Figure
15.2c is obtained. Playing the token game, a place (e.g. object) can became
empty in Figure 15.2c and t45 − object − t78910 can be reduced (RA2) to a
single transition (Figure 15.2d). Therefore, the original net system is live,
7-bounded, and reversible.

15.1.2 Implicit Places

A place in a net system is a constraint on the firing of its output transi-
tions. If the removal of a place does not change the behaviour of the original
net system, that place represents a redundancy in the system and can be
removed. A place whose removal preserves the behaviour of the system is
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called an implicit place. Two notions of behaviour equivalence are used to
define implicit places. The first considers that the two net systems have the
same behaviour if they present the same fireable sequences. That is, this
place can be removed without changing the sequential observation of the be-
haviour of the net system (i.e. the set of fireable sequences). Implicit places
under this equivalence notion are called sequential implicit places (SIP). The
second notion of equivalence requires that the two net systems must have the
same sequences of steps. In this case the implicit places are called concurrent
implicit places (CIP) and their removal does not change the possibility of
simultaneous occurrences of transitions in the original net system. Implicit
places model false synchronisations on their output transitions.

Definition 15.1.2. Let S = 〈N ,m0〉 be a net system and S ′ = 〈N ′,m0
′〉

the net system resulting from removing place p from S. The place p is a

1. Sequential implicit place (SIP) iff L(N ,m0) = L(N ′,m0
′), i.e. the re-

moving of place p preserves all firing sequences of the original net.
2. Concurrent implicit place (CIP) iff LS(N ,m0) = LS(N ′,m0

′), i.e. the
removing of place p preserves all sequences of steps of the original net.

It is easy to see that if a place p is a CIP then it is also an SIP (since the
preservation of the sequences of steps implies the preservation of the firing
sequences). Nevertheless, the contrary is not true in general. Let us consider,
for example, the net in Figure 5.2. The place p6 is an SIP since its removal
does not change the set of firing sequences (the reachability graphs of the
original net system and the net system without place p6 are the same). But
the place p6 is not a CIP because after its removal transitions b and c can oc-
cur simultaneously whereas in the original net system they are sequentialised
(i.e. the steps are not preserved). In order for a SIP with self-loops to be a
CIP, more tokens may be needed in its initial marking (in our example p6

requires two tokens in the initial marking in order to be a CIP). In [Col89]
it is proved that a self-loop-free SIP is also a CIP.

Let p be a CIP of the net system S, and S ′ the net system S without
the CIP p. Let σ be a fireable sequence of steps in S such that m0

σ
−→m.

The sequence σ is also fireable in the net system S ′, i.e. m0
′ σ
−→m′. This

is because the removal of a CIP preserves the fireable sequences of steps of
the net system. A trivial consequence of this is that the reached markings
in S and S ′, firing the same sequence σ, are strongly related: ∀q ∈ P \ {p},
m[q] = m′[q]. Moreover, if s is a step enabled at m′ then the following holds:
m′ ≥ Pre′ ·s =⇒m[p] ≥

∑
t∈(p•∩||s||) s[t]·Pre[p, t]. If p is an SIP the previous

property can be written in the following way: ∀t ∈ p•, m′ ≥ Pre′[P ′, t] =⇒
m[p] ≥ Pre[p, t].

The elimination of a CIP or an SIP preserves deadlock-freeness, liveness,
and marking mutual exclusion properties; but it does not preserve bounded-
ness or reversibility. Moreover, the elimination of a CIP preserves the firing
mutual exclusion property, but this is not true for SIPs.
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Fig. 15.3. a) Place p4 is firing implicit but not marking implicit. After the re-
moval of p4 the “false” synchronisation in t4 disappears. b) The places in the set
{pθ1, pθ2, pθ3} (or {p2, p3, p5}) are CIPs.

Example 15.1.3. The net system in Figure 15.3.a is unbounded (p4 is the
unique unbounded place) and non-reversible (also because of p4). Place p4 is
a CIP. After the removal of p4 the system becomes bounded and reversible!
On the other hand, place p6 in Figure 5.2 imposes firing mutual exclusion
between b and c. Since p6 is a SIP, the reduction rule does not preserve
firing mutual exclusion. According to the definition, fireable sequences are
preserved.

Sometimes it is practical to impose an additional condition on the def-
inition of implicit places, requiring that their marking be redundant (com-
putable) with respect to the markings of the other places in the net (i.e.
a marking redundancy property). Let us consider the CIP pθ1 of the net
system S depicted in Figure 15.3b. This place is a CIP and its marking
can be computed from the markings of places p1, p2, and p5: ∀m ∈ RS(S),
m[pθ1] = m[p1]+m[p2]+m[p5]−1. Such places will be called marking implicit
places. Nevertheless, the marking of some implicit places cannot be computed
only from the markings of the other places in the net. These places will be
called firing implicit places. As an example consider the CIP p4 in Figure
15.3a: ∀m ∈ RS(S) such that m0

σ
−→m, m[p4] = m[p3] + σ[t1]). The classi-

fication of the implicit places into marking implicit places and firing implicit
places can be applied to the two previously defined classes, CIP and SIP. Be-
cause of the additional condition, marking implicit places preserve the state
space (i.e. the reachability graphs of the net system with and without p are
isomorphic), therefore they also preserve boundedness and reversibility.

So far, implicit places have been presented in a behavioural setting. In
order to do the verification we must resort to algorithms based on the reach-
ability graph with its inherent limitations and high associated complexity.
The structural formulation of the implicit place reduction rule requires the
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statement of a structure-based condition to be satisfied by the implicit place,
and the characteristics of its initial marking. Places satisfying the structure-
based condition will be called structurally implicit places; these are places
that become implicit provided they are marked with enough tokens.

Definition 15.1.4. Let N be a net. A place p of N is a structurally implicit
place iff there exists a subset Ip ⊆ P \ {p} such that C[p, T ] ≥

∑
q∈Ip

yq ·

C[q, T ], where yq is a non-negative rational number (i.e. ∃y ≥ 0, y[p] = 0
such that y ·C ≤ C[p, T ] and Ip = ||y||.

Obviously, the above structural condition can be checked in polynomial
time. The next property gives the initial marking conditions which must be
satisfied by a structurally implicit place if it is to be an SIP or a CIP. This
condition is based on the solution of a linear programming problem (LPP
15.1 beow). The linear program computes an upper bound on the minimal
initial marking of a structurally implicit place which must be satisfied in
order for the place to be an SIP or a CIP in the net system 〈N ,m0〉. Because
LPPs are of polynomial time complexity [NRKT89], the evaluation of this
condition also has this complexity.

Property 15.1.5. Let 〈N ,m0〉 be a net system. A structurally implicit place
p of N , with initial marking m0[p], is an SIP (CIP) if m0[p] ≥ z, where z
is the optimal value of the LPP 15.1 with α = 1 (α = max{

∑
t∈p• s[t]|s ∈

LS(N ,m0)}).

z = min. y ·m0 + α · µ
s.t. y ·C ≤ C[p, T ]

y ·Pre[P, t] + µ ≥ Pre[p, t] ∀t ∈ p•

y ≥ 0,y[p] = 0

(15.1)

If the optimal solution of the LPP 15.1, for a structurally implicit place
p, verifies that y · C = C[p, T ], then p is a marking implicit place and the
following holds: ∀m ∈ RS(N ,m0), m[p] = y ·m + α · µ.

Observe that a structurally implicit place can become implicit for any
initial marking of places P \{p} if we have the freedom to select an adequate
initial marking for it. This property is not true for CIPs (or SIPs) that are
not structurally implicit places.

Example 15.1.6. Solving the LPP 15.1 for the place p9 in Figure 15.4a with
α = 1 we obtain z = 0, for the optimal solution: y = [0, 0, 1, 1, 1, 0, 1, 0, 0]
and µ = −1. Moreover, C[p9, T ] = C[p3, T ]+ C[p4, T ]+ C[p5, T ]+ C[p7, T ].
Because m0[p] ≥ z = 0, p9 is an SIP (since p9 is a self-loop-free place it is
also a CIP) and can be removed. Since p9 is a marking implicit place we can
write: ∀m ∈ RS(N ,m0), m[p9] = m[p3] + m[p4] + m[p5] + m[p7]− 1.

Once p9 is removed, a similar computation can be done for p2 and p2 is
also shown to be a CIP. Figure 15.4b shows a reduced net system. It can be
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Fig. 15.4. Places p9 and p2 (or p2 and p7) are implicit.

obtained by reducing p3 − b − p4 into a place (say p34) (RA1) and finally
p8 − f − p1 − a − p34 into Π4. Using the kit in Figure 15.1 together with
the implicit place rule we can perform no more reductions: the net system is
irreducible with respect to that kit of reduction rules. The rule RA1 allows
us to fuse Π4 and p5. The new place is implicit, so it can be removed. Then
a cycle with p6− d− p7− e− p6 remains. This can be reduced to a basic net,
p6 − tde − p6, with one token. Therefore the original net system is live and
bounded. It is also reversible, but we cannot guarantee this because of the
fusion of p3 − b− p4 into p34.

15.2 Linear Algebraic Techniques

Analysis techniques based on linear algebra allow the verification of proper-
ties of a general net system. The key idea is simple, and has already been
introduced: Let S be a net system with incidence matrix C. If m is reach-
able from m0 by firing sequence σ, then m = m0 + C · σ. Therefore the
set of natural solutions (m,σ) of this state equation defines a linearisation
of the reachability set RS(S), denoted LRSSE(S). This set can be used to
analyse properties such as marking and submarking reachability and cover-
ability, firing concurrency, conflict situations, deadlock-freeness, mutual ex-
clusion, k-boundedness, the existence of frozen tokens, and synchronic re-
lations. To do so, the properties are expressed as formulas of a first order
logic having linear inequalities as atoms, where the reachability or fireability
conditions are relaxed by satisfiability of the state equation. These formu-
lae are verified by checking the existence of solutions to systems of linear
equations that are automatically obtained from the formulae [Col89]. For
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instance, if ∀m ∈ RS(S) .m[p] = 0 ∨ m[p′] = 0; then places p and p′ are
in mutual exclusion. This is verified by checking the absence of (natural)
solutions to {m = m0 + C · σ ∧m[p] > 0 ∧m[p′] > 0}. Integer linear pro-
gramming problems [NW88] in which the state equation is included in the
set of constraints can be formulated for optimisation problems such as the
computation of marking bounds, synchronic measures, etc. [Col89, SC88].
This approach is a generalisation of classical reasoning using linear invari-
ants [Lau87, MR80], and it bridges the domains of net theory and convex
geometry, resulting in a unified framework for understanding and enhancing
structural techniques [Col89] (see Section 5.2.2).

Unfortunately, it usually leads only to semidecision algorithms (i.e.
only necessary or only sufficient conditions) because in general RS(S) ⊂
LRSSE(S). The undesirable solutions are called spurious.

Example 15.2.1 (Existence of spurious solutions and their consequences in
the analysis). Let us consider the net system depicted in Figure 15.3b without
the places pθ1, pθ2, and pθ3. The corresponding net state equation has the
following marking spurious solutions: m1 = 2 · p4, m2 = 2 · p2, m3 = 2 · p3,
m4 = 2 · p5, m5 = p2 + p4, m6 = p3 + p4. The first four solutions allow us
to conclude that p2, p3, p4, and p5 are 2-bounded, whereas they are actually
1-bounded (check it). The solutions m2, m3, and m4 are total deadlocks.
Thus using the state equation we cannot conclude that this net system is
deadlock-free.

Spurious solutions can be removed using certain structural techniques,
consequently improving the quality of the linear description of the system
[CS90b]. For example, it is clear that by adding implicit places, a new system
model with identical behaviour is obtained. For some net systems, if the
implicit places are chosen carefully, the state equation of the new system
may have no integer spurious solution preventing a conclusion about the
bound of a place or the deadlock-freeness of the system.

Example 15.2.2 (Elimination of spurious solutions). The net system in Fig-
ure 15.3b is that considered in the previous example but containing three
additional implicit places: pθ1, pθ2, and pθ3. The above mentioned spurious
solutions mi, i = 1 . . . 6, are not solutions of the new state equation. More-
over, we can conclude now that the new net system and therefore also the
original are 1-bounded and deadlock-free!

The algorithms based on linear algebra do decide in many situations,
and they are relatively efficient, especially if the integrality of the variables
is disregarded. This further relaxation may lower the quality, although in
many cases it does not [DE93, SC88]. Moreover, these techniques allow in an
easy way an initial-marking parametric analysis (e.g. changing the number of
customers, the size of resources, or the initial distribution of customers and/or
resources). The application of these techniques to the analysis of boundedness
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and deadlock-freeness properties is illustrated in Sections 15.2.1 and 15.2.2
respectively.

In temporal logic terms, the approach outlined above is well suited for
safety properties (“some bad thing never happens”), but not as well for live-
ness properties (“some good thing will eventually happen”). For instance, the
formula expressing reversibility would be ∀m ∈ LRSSE(S) : ∃σ′≥\ 0 : m0 =
m+C·σ′, but this is neither necessary nor sufficient for reversibility. The gen-
eral approach for linearly verifying these liveness properties is based on the
verification of safety properties that are necessary for them to hold, together
with some inductive reasoning [Joh88]. For instance, deadlock-freeness is nec-
essary for transition liveness, and the existence of some decreasing potential
function proves reversibility [Sil89] (see Section 15.2.4).

Another important contribution of linear techniques to liveness analysis
has been the derivation of ad hoc simple and efficient semidecision condi-
tions. In Section 15.2.3, we present one of these conditions based on a rank
upper bound of the incidence matrix, which was originally conceived when
computing the visit ratios in certain subclasses of net models [CCS91].

The following subsections study marking bounds and boundedness,
deadlock-freeness, structural liveness and liveness, and reversibility.

15.2.1 Bounds and Boundedness

The study of the bound of a place p, b(p), through linear algebraic techniques
requires the linearisation of the reachability set in the definition of b(p) by
means of the state equation of the net. In this subsection we assume that
m ∈ IRn and σ ∈ IRm. This linearisation of the definition of b(p) leads to a
new quantity called the structural bound of p, sb(p):

sb(p) = sup{m(p)|m = m0 + C ·σ ≥ 0,σ ≥ 0} (15.2)

Let ep be the characteristic vector of p: ep[q] := if q = p then 1 else 0.
The structural bound of p, sb(p), can be obtained as the optimal solution of
the following linear programming problem (LPP):

sb(p) = max. ep ·m
s.t. m = m0 + C · σ ≥ 0

σ ≥ 0

(15.3)

Therefore sb(p) can be computed in polynomial time. In sparse-matrix
problems (matrix C is usually sparse), good implementations of the classical
simplex method lead to quasi-linear time complexities.

Because RS(S) ⊂ LRSSE(S) in general, we have that sb(p) ≥ b(p) (recall
example 15.2.1). Therefore, if we are investigating the k-boundedness of a
place (i.e. m[p] ≤ k), we have a sufficient condition in polynomial time: if
sb(p) ≤ k then b(p) ≤ k (i.e. p is k-bounded).
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In what follows we argue from classical results in linear programming
and convex geometry theories. We assume that the reader is aware of these
theories (see, for example, [Mur83, NRKT89]); otherwise all the arguments
needed are compiled and adapted in [SC88]. The important point here is to
convey the idea that other theories are helpful for understanding in a general
framework many sparse results on the behavior of net systems. The dual
linear programming problem of 15.3 is the following (see any text on linear
programming to check it):

sb(p)′ = min. y ·m0

s.t. y ·C ≤ 0
y ≥ ep

(15.4)

The LPP 15.3 always has a feasible solution (m = m0, σ = 0). Using
duality and boundedness theorems from linear programming theory, both
LPPs 15.3 and 15.4 are bounded (thus p is structurally bounded) and sb(p) =
sb(p)′ iff there exists a feasible solution for the LPP 15.4: y ≥ ep such that
y ·C ≤ 0.

The reader can easily check that LPP 15.4 makes, in polynomial time,
an “implicit search” for the structural bound of p on a set of structural
objects including all the p-semiflows. In this sense, we can say that analysis
methods based on the state equation are more general than those based
on linear invariants. That is, the dual LPPs of those based on the state
equation consider not only the p-semiflows but also other structural objects
with y ≥ 0 such that y · C≤/ 0. On the other hand we must say that the
computational effort needed when using the linear invariants is greater than
that required when using the state equation, since the computation of the
minimal p-semiflows (in some cases, an exponential number!) must be done
prior to the study of the property.

From the above discussion and using the alternatives theorem (an alge-
braic form of the Minkowski-Farkas lemma) the following properties can be
proved:

Property 15.2.3. The following three statements are equivalent:

1. p is structurally bounded, i.e. p is bounded for any m0.
2. There exists y ≥ ep such that y ·C ≤ 0 (place-based characterisation).
3. For all x ≥ 0 such that C · x ≥ 0, C[p, T ] · x = 0 (transition-based

characterisation).

Property 15.2.4. The following three statements are equivalent:

1. N is structurally bounded, i.e. N is bounded for any m0.
2. There exists y ≥ 1 such that y ·C ≤ 0 (place-based characterisation).
3. For all x ≥ 0 such that C · x ≥ 0, C · x = 0; i.e. ∃/ x ≥ 0 s.t. C · x≥\ 0

(transition-based characterisation).
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15.2.2 Deadlock-Freeness and Liveness

Deadlock-freeness concerns the existence of some activity from any reachable
state of the system. It is a necessary condition for liveness, although in gen-
eral not sufficient. When no part of the system can evolve, it is said that the
system has reached a state of total deadlock (or deadlock for short). In net sys-
tem terms, a deadlock corresponds to a marking from which no transition is
fireable. In order to study deadlock-freeness with linear algebraic techniques,
the property must be expressed as a formula of a first-order logic having lin-
ear inequalities as atoms, in which the reachability or fireability conditions
are relaxed by satisfiability of the state equation. The formula to express that
a marking is a deadlock consists of a condition for every transition indicating
that it is disabled at such a marking. This condition consists of several in-
equalities, one per input place of the transition (indicating that the marking
of that place is less than the corresponding weight) linked by the “∨” opera-
tor (because a lack of tokens in a single input place disables the transition).
We give below a basic general sufficient condition for deadlock-freeness based
on the absence of solutions satisfying simultaneously the net state equation
and the formula expressing the total deadlock condition mentioned above.

Proposition 15.2.5. Let 〈N ,m0〉 be a net system. If there exists no solution
(m,σ) for the system

m = m0 + C · σ
m ≥ 0,σ ≥ 0∨

p∈ •t m[p] < Pre[p, t]; ∀t ∈ T

(15.5)

then 〈N ,m0〉 is deadlock-free.

Obviously, the deadlock conditions are non-linear, because they are ex-
pressed using the “∨” operator. However, we can express the above condition
by means of a set of linear systems as follows. Let α : T → P be a mapping
that assigns to each transition one of its input places. If there exists no α
such that the system

m = m0 + C · σ
m ≥ 0,σ ≥ 0
m[α(t)] < Pre[α(t), t]; ∀t ∈ T

(15.6)

has a solution, then 〈N ,m0〉 is deadlock-free. The problem is that we have
to check it for every mapping α of input places to transitions so we have
to check

∏
t∈T |

•t| systems of linear inequalities. If every transition has ex-
actly one input place (e.g. state machines) then only one system needs to be
checked, but in general the number might be large. Nevertheless it is possible
to reduce the number of systems to be checked, while preserving the set of
integer solutions. For this purpose, the work [TCS93] presents four simplifica-
tion rules of the deadlock condition using information obtained from the net
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system, and a simple net transformation leading to an equivalent net with
respect to the deadlock-freeness property in which the enabling conditions of
transitions can be expressed linearly. As a result, deadlock-freeness of a wide
variety of net systems can be proved by verifying the absence of solutions
to a single system of linear inequalities. Even more, in some subclasses it
is known that there are no spurious solutions which are deadlocks, so the
method decides on deadlock-freeness [TS93]. The following example presents
the deadlock-freeness analysis of the net system in Figure 5.8b using this
technique.

Example 15.2.6 (Deadlock-freeness analysis and simplification rules). Let us
consider the net system in Figure 5.8b. The direct application of the method
described in proposition 15.2.5 requires us to check

∏
t∈T |

•t| = 36 linear
systems of the form presented in Equation 15.6. Nevertheless, we show below
that we can reduce the deadlock-freeness analysis on this net to the checking
of a unique linear system by applying the simplification rules presented in
[TCS93]. Solving the LPP 15.3 for the places of the net system we obtain
the following: sb(p) = 1 for all p ∈ P \ {empty, object}; and sb(empty) =
sb(object) = 7 (the same can be obtained from the linear invariants in Equa-
tions 5.1–5.4). The transitions t1, t4, t7, and t9 are those presenting complex
conditions giving rise to a large number of linear systems. The simplification
of these conditions is as follows:

a)The non-fireability condition of t1 is (m[wait raw] = 0) ∨ (m[R] = 0).
Taking into account the fact that sb(wait raw) = sb(R) = 1, we can apply
a particularisation of rule 3 in [TCS93] to replace the complex condition by
a unique linear inequality: Let t be a transition such that each input place
verifies that its structural bound is equal to the weight of the output arc
joining it to t. The non-fireability condition for transition t at a marking
m is

∑
p∈ •t m[p] ≤

∑
p∈P Pre[p, t] − 1. That is, the number of tokens in

the input places of t is less than needed. Therefore, for the transition t1
this linear condition is: m[wait raw] + m[R] ≤ 1.

b)The non-fireability condition of t7 is (m[wait free] = 0) ∨ (m[R] = 0). In
a similar way to the case of transition t1, we replace this condition by
m[wait free] + m[R] ≤ 1, since sb(wait free) = sb(R) = 1 and rule 3 in
[TCS93] can be applied.

c) The non-fireability condition of t4 is (m[wait dep.] = 0) ∨ (m[R] = 0) ∨
(m[empty] = 0). Since sb(wait dep.) = sb(R) = 1 and sb(empty) = 7 (i.e.
only one input place of t7 has an sb greater than the weight of the arc),
rule 4 of [TCS93] can be applied. Then, the complex condition is replaced
by the following linear condition:

sb(empty) · (m[wait dep.] + m[R]) + m[empty] ≤

sb(empty) · (Pre[wait dep., T ] + Pre[R, T ]) + Pre[empty, T ]− 1
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i.e. 7(m[wait dep.]+ m[R]) + m[empty] ≤ 14.
d)The non-fireability condition of t9 can be reduced to the following linear

condition similarly to the case of transition t4: 7(m[wait with.]+ m[R]) +
m[object] ≤ 14.

Applying the previously stated simplifications, the deadlock-freeness anal-
ysis for the net system in Figure 5.8b is reduced to verifying that there exists
no solution (m,σ) for the following single linear system (the reader can check
that the system has no solutions):

m = m0 + C · σ
m ≥ 0,σ ≥ 0
m[wait raw] + m[R] ≤ 1; for t1
m[load] = 0; for t2
m[op1] = 0; for t3
7(m[wait dep.] + m[R]) + m[empty] ≤ 14; for t4
m[deposit] = 0; for t5
m[op2] = 0; for t6
m[wait free] + m[R] ≤ 1; for t7
m[unload] = 0; for t8
7(m[wait with.] + m[R]) + m[object] ≤ 14; for t9
m[withdrawal] = 0; for t10

(15.7)

Linear invariants may also be used to prove deadlock-freeness. Using the
linear invariants in Equations (5.1–5.4), we shall prove that our net system
in Figure 5.8.b is deadlock-free.

If there exists a deadlock, no transition can be fired. Let us try to construct
a marking in which no transition is fireable. When a unique input place of
a transition exists, that place must be unmarked. So m[load] = m[op1] =
m[deposit] = m[op2] = m[unload] = m[withdrawal] = 0, and the linear
invariants in Equations (5.1–5.4) reduce to:

m[wait raw] + m[wait dep.] = 1 (15.8)

m[wait free] + m[wait with.] = 1 (15.9)

m[empty] + m[object] = 7 (15.10)

m[R] = 1 (15.11)

Since R should always be marked at the present stage, to prevent the
firing of t1 and t7 places wait raw and wait free should be unmarked. The
linear invariants are reduced once more, leading to:

m[wait dep.] = 1 (15.12)

m[wait with.] = 1 (15.13)

m[empty] + m[object] = 7 (15.14)

m[R] = 1 (15.15)
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Since m[wait dep.] = m[wait with.] = 1, to avoid the firing of t4 and t9
m[empty] + m[object] = 0 is needed. This contradicts Equation (15.14), so
the net system is deadlock-free. A more compact, algorithmic presentation of
the above deadlock-freeness proof is:

if m[load] + m[op1] + m[deposit] + m[op2] + m[unload] + m[withdrawal] ≥ 1
then one of t2,t3,t5,t6,t8, or t10 is fireable
else if m[wait raw] + m[wait free] ≥ 1

then one of t1 or t7 is fireable
else one of t4 or t9 is fireable

As a final remark, we want to point out that liveness can be proved for the
net system in Figure 5.8b. Liveness implies deadlock-freeness, but the reverse
is not true in general. Nevertheless, if the net is consistent and has only one
minimal t-semiflow, as in the example where the unique minimal t-semiflow
is 1; then any infinite behaviour must contain all transitions with relative
firings given by the t-semiflow. Thus deadlock-freeness implies, in this case,
liveness.

15.2.3 Structural Liveness and Liveness

A necessary condition for a transition t to be live in a system 〈N ,m0〉 is its
eventual infinite fireability, i.e. the existence of a firing repetitive sequence
σR containing t: ∃σR ∈ L(N ,m0) such that m0

σR−→m ≥m0 and σR[t] > 0.
Using the state equation as a linearisation of the reachability set, an

upper bound on the number of times t can be fired in 〈N ,m0〉 is given by the
following LPP (et[u] := if u = t then 1 else 0):

sr(t) = max. et · σ
s.t. m = m0 + C · σ ≥ 0

σ ≥ 0

(15.16)

The dual of the LPP 15.16 is:

sr(t)′ = min. y ·m0

s.t. y ·C ≤ −et

y ≥ 0

(15.17)

We are interested in characterising the cases where sr(t) goes to infinity.
The LPP 15.16 has m = m0 and σ = 0 as a feasible solution. Using first
duality and unboundedness theorems from linear programming and later the
alternatives theorem, the following properties can be stated:

Property 15.2.7. The following three statements are equivalent:

1. t is structurally repetitive (i.e. there exists a “large enough” m0 such
that t can be fired infinitely often).
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2. There does not exist y≥0 such that y·C≤−et (place-based perspective).
3. There exists x ≥ et such that C · x ≥ 0 (transition-based perspective).

Property 15.2.8. The following three statements are equivalent:

1. N is structurally repetitive (i.e. all transitions are structurally repetitive).
2. There does not exist y ≥ 0 such that y ·C≤/ 0
3. There exists x ≥ 1 such that C · x ≥ 0

a) b)
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Fig. 15.5. Two conservative and consistent, structurally non-live nets: (a)
rank(C) = 4, |EQS| = 3, thus N is not structurally live; (b) rank(C) = 4,
|EQS| = 4, |CCS| = 3, thus no answer.

Additionally, the following classical results can be stated [MR80, Bra83,
Sil85]:

Property 15.2.9. Let N be a net and C its incidence matrix.

1. if N is structurally live then N is structurally repetitive.
2. if N is structurally live and structurally bounded then N is conservative

(∃y ≥ 1 such that y ·C = 0) and consistent (∃x ≥ 1 such that C ·x = 0).
3. if N is connected, consistent, and conservative then it is strongly con-

nected.
4. if N is live and bounded then N is strongly connected and consistent.

The net structures in Figure 15.5 are consistent and conservative, but
there does not exist a live marking for them. A more careful analysis allows
us to improve the above result with a rank condition on the incidence matrix
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C of N . Before the introduction of this improved result we need to introduce
certain structural objects related to conflicts.

(d)

t t' t"

(c)

t t'

(b)

2

t t'

(a)

t t'

t t'
w

w'w
w'

(e)

w'w

(f)

t t'

Fig. 15.6. Conflicts and structural conflicts

Conflicts in sequential systems are clearly situations in which two actions
are enabled so one must be chosen to occur. For instance, Figure 15.6 (a)
shows a conflict between t and t′. The situation becomes more complicated
in the case of concurrent systems, where the fact that two transitions are
enabled does not necessarily imply that we must choose one. Sometimes the
“sequential” definition — there is a conflict when two transitions are enabled
and the occurrence of one disables the other — is suitable, namely in 1-
bounded systems. But in other cases a new definition is needed. Consider
now the marking that puts two tokens into the place of Figure 15.6 (a).
The occurrence of t does not disable t′ and vice versa, but the firing of one
decreases the enabling degree of the other: i.e. each token must decide which
way to go. Formally, there is a conflict situation when the enabling vector is
not an enabled step. In Figure 15.6 (b), the occurrence of t or t′ does not
disable the other, but the firing of t′ decreases the enabling degree of t from
three to one. The enabling vector is 3t+ t′, whereas the (maximal) enabled
steps are 3t and t+ t′. By the way, this example shows that conflict does not
imply the absence of concurrency : t and t′ are involved in a conflict, but they
could occur concurrently, as in t+ t′.

The basic net construct used to model conflicts is a place with more
than one output transition, i.e. a distributor place. In fact, distributor places
are needed to model conflicts, but the converse is not true. Because of the
regulation circuit in Figure 15.6 (c), t and t′ are never in effective conflict
although they share an input place. The output transitions of a distributor
place are said to be in structural conflict relation (〈ti, tj〉 ∈ SC) when •ti ∩
•tj 6= ∅. This relation is reflexive and symmetric, but not transitive. Its
transitive closure is named the coupled conflict relation, and it partitions the
transitions of a net into coupled conflict sets (CCS(t) denotes the coupled
conflict set containing t). In Figure 15.6 (d) t and t′′ are not in structural
conflict relation but they are in coupled conflict relation, through t′.
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In the literature, structural conflicts are often simply called “conflicts”,
but we prefer to add the adjective “structural” to better distinguish from the
behavioural, thus dynamical, notion of (effective) conflict, which depends on
the marking. As we have noted, a structural conflict makes possible the exis-
tence of an effective conflict, but does not guarantee it, e.g. Figure 15.6 (d),
except in the case of equal conflicts, where all the transitions in structural
conflict have the same pre-condition. Transitions t and t′ are said to be in
equal conflict relation, 〈t, t′〉 ∈ EQ, when t = t′ or Pre[P, t] = Pre[P, t′] 6= 0.
This equivalence relation partitions the transitions into equal conflict sets.
The equal conflict set containing t is denoted by EQS(t). Figure 15.6 (e)
shows an equal conflict set.

Relating the rank of the incidence matrix to the number of (coupled or
equal) structural conflicts in a net improves the previous conditions on struc-
tural liveness:

Property 15.2.10. Let N be a net and C its incidence matrix.

1. if N is live and bounded then N is strongly connected, consistent, and
rank(C) ≤ |SEQS| − 1.

2. if N is conservative, consistent, and rank(C) = |SCCS| − 1, then N is
structurally live and structurally bounded.

The condition in property 15.2.10.1 has been proved to be sufficient for
some subclasses of nets [Des92, TS94, TS96]. Observe that even for struc-
turally bounded nets, we do not have a complete characterisation of structural
liveness. Since |SCCS| ≤ |SEQS|, there is still a range of nets which satisfy
neither the necessary nor the sufficient condition for being structurally live
and structurally bounded! The added rank condition allows us to state that
the net in Figure 15.5a is structurally non-live. Nevertheless, nothing can be
said about structural liveness of the net in Figure 15.5b.

Property 15.2.10 is purely structural (i.e. the initial marking is not consid-
ered at all). Nevertheless, it is clear that an overly small initial marking (e.g.
the empty marking) makes any net structure non-live. A less trivial lower
bound for the initial marking based on marking linear invariants is based
on fireability of every transition. If t ∈ T is fireable at least once, for any
p-semiflow y, then y ·m0 ≥ y ·Pre[P, t]. Therefore:

Property 15.2.11. If 〈N ,m0〉 is a live system, then ∀y ≥ 0 such that y·C = 0,
y ·m0 ≥ maxt∈T (y ·Pre[P, t]) ≥ 1.

Unfortunately no characterisation of liveness exists in linear algebraic
terms. The net system in Figure 5.1.b with a token in p5 is consistent, con-
servative, fulfils the rank condition, and has all p-semiflows marked, but it is
non-live.
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15.2.4 Reversibility and Liveness

Let us use now a Liapunov-stability-like technique to prove that the net sys-
tem in Figure 5.8b is reversible. This serves to illustrate the use of marking
linear invariants, and inductive reasoning for the analysis of liveness proper-
ties.

As a preliminary consideration that simplifies the remainder of the proof,
the following simple property will be used: Let 〈N ,m1〉 be a reversible system
and m0 reachable from m1 (i.e. ∃σ ∈ L(N ,m1) such that m1

σ
−→m0). Then

〈N ,m0〉 is reversible.
Assume m1 is like m0 (Figure 5.8b), but with: m1[wait raw] =

m1[empty]=0, m1[wait dep.] = 1 and m1[object] = 7.
Let us prove first that 〈N ,m1〉 is reversible. Let w be a non-negative place

weighted such that w[pi] = 0 iff pi is marked in m1. Therefore, w[wait dep.] =
w[R] = w[object] = w[wait with.] = 0, and w[pj ] > 0 for all the other places.
The function v(m) = w · m has the following properties: v(m) ≥ 0 and
v(m1) = 0

For the system in Figure 5.8b a stronger property holds: v(m) = 0 ⇐⇒
m = m1. This can be clearly seen because w ·m = 0 ⇐⇒ m[wait raw] =
m[load] = m[op1] = m[deposit] = m[empty] = m[op2] = m[wait free] =
m[unload] = m[withdrawal] = 0. Furthermore, it is easy to check the follow-
ing: m1 is the present marking ⇐⇒ t9 is the unique fireable transition.

If there exists (warning: in Liapunov-stability criteria the universal quan-
tifier is used!) a finite firing sequence (i.e. a finite trajectory) per reachable
marking mi such that mi

σk−→mi+1 and v(mi) > v(mi+1), then in a finite
number of transition firings v(m) = 0 is reached. Because v(m) = 0 ⇐⇒
m = m1, a proof that m1 is reachable from any marking has been obtained
(i.e. 〈N ,m1〉 is reversible).

Premultiplying the net state equation by w we obtain the following con-
dition: if σk = tj then [w ·mi+1 < w ·mi] ⇐⇒ w ·C[P, tj ] < 0

Now, removing from Figure 5.8 the places marked at m1 (i.e. wait dep., R,
object, wait with.) and fireable transitions (i.e. t9) an acyclic net is obtained,
so there exists a w such that w ·C[P, tj ] < 0, ∀j 6= 9.

For example, taking as weights the levels in the acyclic graph we have:

w[op1] = w[unload] = 1 (15.18)

w[load] = w[wait free] = 2 (15.19)

w[wait raw] = w[op2] = 3 (15.20)

w[deposit] = w[withdrawal] = 4 (15.21)

w[empty] = 5 (15.22)

and w · C = [−1,−1,−1,−1,−1,−1,−1,−1,+4,−1]. In other words, the
firing of any transition, except t9, decreases v(m) = w ·m.
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Using the algorithmic deadlock-freeness explanation from previous sec-
tions, the reversibility of 〈N ,m1〉 is proved (observe that the p-invariants in
Equations (5.1–5.4) persist for m1):

if m[load] + m[op1] + m[deposit] + m[op2] + m[unload] + m[withdrawal] ≥ 1
then v(m) can decrease firing t2,t3,t5,t6,t8, or t10
else if m[wait raw] + m[wait free] ≥ 1

then v(m) can decrease firing t1 or t7
else v(m) can decrease firing t4, or t9 is unique fireable transition

(iff m1 is the present marking)

Because m0 is reachable from m1 (e.g. by firing σ = (t9t10t6t7t8)
5t4t5),

〈N ,m0〉 is a reversible system.
Once again liveness of the system in Figure 5.8b can be proved,

because the complete sequence (i.e. containing all transitions) σ =
t1t2t3t4t5t9t10t6t7t8 can be fired. Since the system is reversible, no transi-
tion loses the possibility of firing (i.e. all transitions are live).

a) b)

p1

p4

p3p2

p5

t1 t2

t4t3

p1

p4p3p2 p5

p6 p7

t1 t2

t7

t6t5t4t3

Fig. 15.7. Two consistent and conservative free-choice nets: (a) Structurally live,
rank(C) = 5, |EQS| = 5; (b) Structurally non-live, rank(C) = 3, |EQS| = 2.

15.3 Siphons and Traps

By means of graph-theory-based reasoning it is possible to characterise many
properties of net subclasses. Siphons (also called structural deadlocks, or often
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simply deadlocks) and traps are easily recognisable subsets of places that
generate very particular sub-nets.

Definition 15.3.1. Let N = 〈P, T, F 〉 be an ordinary net.

1. A siphon is a subset of places, Σ, such that the set of its input transitions
is contained in the set of its output transitions: Σ ⊆ P is a siphon ⇐⇒
•Σ ⊆ Σ•.

2. A trap is a subset of places, θ, such that the set of its output transitions is
contained in the set of its input transitions: θ ⊆ P is a trap ⇐⇒ θ• ⊆ •θ.

Σ = {p1, p2, p4, p5, p6} is a siphon for the net in Figure 15.7a: •Σ = {t7,
t1, t2, t3, t5}, while Σ• = •Σ ∪ {t6}. Σ contains a trap, θ = Σ \ {p5}. In
fact θ is also a siphon (it is minimal: no further siphons can be obtained by
removing places).

Siphons and traps are reverse concepts: A subset of places of a net N is a
siphon iff it is a trap on the reverse net, N−1 (i.e. that obtained by reversing
the arcs and its flow relation, F ).

The following property “explains” the names of structural deadlocks or
siphons (think of “soda siphons”) and traps.

Property 15.3.2. Let 〈N ,m0〉 be an ordinary net system.

1. If m ∈ RS(N ,m0) is a deadlock state, then Σ = {p|m[p] = 0} is an
unmarked (empty) siphon.

2. If a siphon is (or becomes) unmarked, it will remain unmarked for any
possible net system evolution. Therefore all its input and output transi-
tions are dead. So the system is non-live (but can be deadlock-free).

3. If a trap is (or becomes) marked, it will remain marked for any possible
net system evolution (i.e. at least one token is “trapped”).

If a trap is not marked at m0 and the system is live, m0 will not be
recoverable from those markings in which the trap is marked. Thus:

Corollary 15.3.3. If a live net system is reversible, then m0 marks all traps.

Remark 15.3.4. For live and bounded free-choice systems a stronger property
holds: Marking all traps is a necessary and sufficient condition for reversibility
[BCDE90]. The net system in Figure 15.7a is reversible. Nevertheless, if m0 =
[0, 1, 0, 0, 1, 0, 0], the new system is live and bounded but not reversible:
The trap θ = {p1, p3, p4, p6, p7} is not marked at m0.

A siphon which contains a marked trap will never become unmarked. So
this more elaborate property can be helpful for some liveness characterisa-
tions.

Definition 15.3.5. Let N be an ordinary net. The system 〈N ,m0〉 has
the marked-siphon-trap property, MST-property, if each siphon contains a
marked trap at m0.
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A siphon (trap) is minimal if it does not contain another siphon (trap).
Thus, siphons in the above statement can be constrained to be minimal with-
out any loss of generality.

The MST-property guarantees that all siphons will be marked. Thus no
dead marking can be reached, according to property 15.3.2.1. Therefore:

Property 15.3.6. If 〈N ,m0〉 has the MST-property, the system is deadlock-
free.

b)a)
b

p4 p3

p2

p1
a

p5

c

d

p3

p2p1

a

b

c

d

Fig. 15.8. For the two nets, the MST-property does not hold, but: (a) the simple
net is live and bounded; (b) the non-simple net is non-live (although deadlock-free)
and bounded.

Figure 15.8 presents some limitations of the MST-property for liveness
characterisation.

Remark 15.3.7. The MST-property is sufficient for liveness in simple net sys-
tems, and necessary and sufficient for free-choice net systems. As a corollary,
the liveness monotonicity result is true for the case of live free-choice systems:
If 〈N ,m0〉 is a live free-choice system, then for all m0

′ ≥m0, 〈N ,m0
′〉 is also

live. The previous result does not apply to simple net systems. The system
in Figure 5.1b is simple, and Σ = {p1, p2, p7} is a siphon ( •Σ = {t3, t4, t1},
Σ• = •Σ ∪ {t2}) that does not contain any trap. If we assume m0[p5] = 1,
t2 can be fired and Σ becomes empty, leading to non-liveness.

15.4 Analysis of Net Subclasses

In this section we briefly overview some of the analytical results for certain
subclasses that we define in Section 15.4.1. We organise the material around
properties instead of describing the results for each subclass, which would
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lead to redundancy. (Of course, properties of large subclasses, such as EQ
systems, are inherited by their subclasses, such as FC or DF systems.)

Our intention is to show how the restrictions imposed in the definitions
of subclasses, at the price of a loss of some modelling capabilities, facilitate
the analysis. The designer must find a compromise between modelling power
and the availability of powerful analysis tools, while one of the theoretician’s
goals is to obtain better results for increasingly larger subclasses.

The general idea behind the structure theory of net subclasses is to inves-
tigate properties that every net system in the subclass possesses, instead of
analysing each particular system. These general properties are useful in two
ways:

• The designer knows that the system (if it belongs to an appropriate sub-
class) behaves “well” (e.g. liveness monotonicity, existence of home states).

• General analysis methods become more applicable or more conclusive (e.g.
model checking for FC, liveness analysis for all the subclasses considered).

The technical development of the results presented, and many other details
that are beyond the scope of this succinct presentation, can be found in
[DE95], [RTS96], [TCS97], [TS96].

15.4.1 Some Syntactical Subclasses

Historically, subclasses of ordinary nets have received special attention be-
cause powerful results were obtained for them early on. In this presentation
some of them appear as subclasses of their weighted generalisations for the
sake of conciseness. Regarding the modelling power, clearly some subclasses
have less than others if the former are properly included in the latter. Also,
the weighted generalisations have more modelling power than their ordinary
counterparts since, in general, the ordinary implementations of weights do
not preserve the (topological) class membership.

Join-Free and State Machines.
A P/T net N is join-free (JF) when no transition is a join, i.e. | •t| ≤ 1 for

every t. With these nets, proper synchronisations cannot be modelled. N is
a weighted P-net when every transition has one input and one output place,
i.e. | •t| = |t•| = 1 for every t. An ordinary weighted P-net is a P-net or state
machine (SM), so called because when marked with only one token each place
represents a possible global state of the (sequential) system. With more than
one token concurrency appears: an SM with k tokens represents k instances of
the same sequential process evolving in parallel. Given an adequate stochastic
interpretation, strongly connected SMs correspond to closed Jackson queuing
networks.

Distributor-free and Marked Graphs. A P/T net N is distributor-free
(DF) when no place is a distributor, i.e. |p•| ≤ 1 for every p. With these
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nets, conflicts cannot be modelled. They are also called structurally persis-
tent because the structure enforces persistency, that is, the property that a
transition can be disabled only by its own firing. N is a weighted T-net when
every place has one input and one output transition, i.e. | •p| = |p•| = 1 for
every p. An ordinary weighted T-net is a T-net or marked graph (MG), the
name due to a representation as a graph in which the nodes are the transitions
and the arcs joining them are marked (that is, places have been eliminated).
For example, MGs can model activity ordering systems, generalising PERT
graphs, job-shop systems with fixed production routing and machine sequenc-
ing, flow lines, and Kanban systems. For instance, the net in Figure 15.9 (a)
is an MG. Given an adequate stochastic interpretation, strongly connected
MGs correspond to fork/join queuing networks with blocking.

Equal Conflict and Free Choice. A P/T net N is equal conflict (EQ)
when every pair of transitions in structural conflict are in equal conflict, i.e.
they have the same pre-incidence function: •t ∩ •t′ 6= ∅ implies Pre[P, t] =
Pre[P, t′]. An ordinary EQ net is an (extended) free-choice net (FC). Free-
choice nets play a central role in the theory of net systems because there are
powerful results for their analysis and synthesis, while they allow the mod-
elling of systems including both conflicts and synchronisations. It is often
said that FCs can be seen as MGs enriched with SM-like conflicts or, equiv-
alently, SMs enriched with MG-like synchronisations. However, they cannot
model mutex semaphores or resource sharing, for instance. The net in Fig-
ure 15.9 (b) is FC. The fundamental property of EQ systems is that when-
ever a marking enables some transition t, then it enables every transition in
EQS(t) = CCS(t). It can be said that the structural and behavioural notions
of conflict coincide. It is also said that conflicts and synchronisations are
neatly separated, because it is easy to transform the net so that no output
of a distributor place is a join: Figure 15.6 (f) is the result of transforming
15.6 (e).

Asymmetric Choice, or Simple. A P/T net N is asymmetric choice
(AC), sometimes called simple, when it is ordinary and p• ∩ p′• 6= ∅ im-
plies p• ⊆ p′

•
or vice versa. In these nets, the conflict relation is transitive.

They generalise FC, and allow the modelling of resource sharing to a certain
extent. The net in Figure 15.9 (c) is AC.

The above subclasses are defined through a global constraint on the topol-
ogy. The relations between them are illustrated in the graph of Figure 15.10,
where a directed arrow connecting two subclasses indicates that the source
properly includes the destination, and the constructs depicted illustrate the
typical situations that distinguish each subclass.

Modular Subclasses. Subclasses can also be defined in a modular way, by
giving some modules and how to interconnect them. Very often the modules
are monomarked SMs, representing sequential systems which run in parallel
communicating in a restricted fashion. A few examples follow.
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(b)

(a)

B1 M1 B2M0 M2

h1 h2

h1 h2

(c)

h1 h2

Fig. 15.9. Modelling a flow line with three machines and two buffers. Each buffer is
modelled with two places, for the parts and “holes” respectively (the latter initially
marked with hi holes). Each machine is modelled with a state machine, initially
idle, where the “working-state” is shaded; they follow a blocking-after-service policy
(they start their work even if there are no holes in the output buffer, so they might
stay blocked before unloading). The different models consider: (a) reliable machines,
(b) machines with operation-dependent failures (may fail only when working), and
(c) machines with time-dependent failures (may fail at any time). Scrapping (the
part is discarded) is possible in the case of unreliable machines.

Superposed automata systems (SA) are composed by monomarked SMs
synchronised by transition merging, that is, via rendezvous. They lead to
general — although structured — bounded systems models. For instance, all
the nets in Figure 15.9 are SA (if the capacities of the buffers are one).

Systems of buffer-cooperating functional entities are modules (depend-
ing on the kind of modules we obtain different subclasses) synchronised by
message-passing through buffers in a restricted fashion. A P/T system S is
in this class when:

• P = B ]
⊎

i Pi, T =
⊎

i Ti. The net systems Si generated by Pi and Ti are
the functional entities or modules, and the places of B are the buffers.
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AC
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EQ

DF

MG

JF

SM

Fig. 15.10. Relations between some basic syntactical subclasses

• For every b ∈ B, there exists i such that b• ∈ Ti, that is, buffers are output
private. Moreover if t, t′ ∈ Ti are in EQ relation in Ni, then Pre[b, t] =
Pre[b, t′], that is, buffers do not modify the EQ relations of the modules.
These restrictions on buffers prevent competition.

If the modules are monomarked SMs we obtain deterministically synchronised
sequential processes (DSSPs). If they are EQ systems we obtain systems of
cooperating EQ systems. These can be buffer-interconnected again, leading to
a hierarchical class of systems, recursively defined, which is called {SC}∗EQS,
standing for systems of cooperating systems of cooperating EQ systems. They
allow the modelling of hierarchically coupled cooperating systems. The net
systems in Figure 15.9 (a) and 15.9 (b) can be seen as (rather trivial) examples
of buffer-cooperating systems, in which the places modelling the buffers are
precisely the buffers, while each machine is modelled by an SM.

Systems of Simple Sequential Processes with Resources (S3PRs) are SMs
synchronised by restricted resource sharing. The restrictions require that
there be a place in each SM which is contained in every cycle and does not
use any resource (an “unavoidable idle state”), and that every other place use
one (possibly shared) resource. They allow the modelling of rather general
flexible manufacturing systems, or similar systems where resource sharing is
essential.

15.4.2 Fairness and Monopolies

In some systems, impartiality (or global fairness, i.e. every transition appears
infinitely often in infinite sequences) can be achieved locally (every solution
of a (local) conflict that is effective infinitely often is taken infinitely often):

Theorem 15.4.1. Let S be a bounded strongly connected EQ system or
DSSP. A sequence σ ∈ L(S) is globally fair iff it is locally fair.
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This property is not true in general. Take for instance the net system in
Figure 15.11. The sequence σ = {t1 t2 t3}ω is locally fair (actually, during

t1

t2 t3t4

Fig. 15.11. A net system where local fairness does not guarantee impartiality, and
which can exhibit monopoly situations.

the occurrence of σ no conflict is effective at all), but not globally fair since
t4 never occurs. Conversely, the sequence σ = {t1 t3 t4 t3 t1 t2 t3}ω is globally
fair but not locally fair since whenever t2 and t4 are in conflict, t4 wins.

The equivalence of local and global fairness has two important conse-
quences. The first one is the equivalence of liveness and deadlock-freeness,
which facilitates the analysis of liveness because it suffices to check the weaker
property of deadlock-freeness:

Theorem 15.4.2. Let S be a bounded strongly connected EQ system or
DSSP. Then S is live iff it is deadlock-free.

The second consequence is relevant for the eventual interpretation of the
model. Assume, for instance, that the system in Figure 15.11 is interpreted
so that transitions occur after a deterministic delay equal to their index.
Then the system repeats the occurrence of t1 t2 t3, never giving a chance
to t4, although it was live in the autonomous model: the interpretation has
destroyed liveness, leading to a monopoly situation (the “resources” needed
by t4 are “monopolised” by t2).

This can never happen to a bounded strongly connected EQ system or
DSSP, assuming that the interpretation allows progress (i.e. a transition that
is continuously enabled eventually occurs). By imposing a fair conflict resolu-
tion policy, which can be done in a distributed fashion provided structurally
conflicting transitions are allocated together, it is guaranteed that no action
in the system becomes permanently disabled if the autonomous model was
live.
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15.4.3 Confluence and Directedness

Persistent systems, which include structurally persistent ones (DFs), possess
a strong confluence property: whenever from a given marking we reach two
different markings by firing two distinct sequences, then we can complete
both sequences, each with the firings remaining with respect to the other,
reaching the same marking in both cases [LR78]. Confluence is closely re-
lated to determinacy [KM66]: interpreting sequences as executions and tran-
sition occurrences as operations, if from a given point two different executions
may occur, then depending on operation times or other external matters,
each operation in one execution will eventually occur in the other (assuming
progress), possibly in a different order and with a different timing.

Moreover, confluence facilitates checking liveness (non-termination) of
persistent systems: it suffices to find a repeatable sequence that contains
every transition. This is because such a repeatable sequence allows us to con-
struct a sequence greater than any given sequence σ fireable from the initial
marking, and this proves that σ can be continued to enable the repeatable
sequence.

For systems which are not persistent, the presence of effective conflicts
may destroy confluence. Directedness is a weaker property which states that
a common successor of arbitrary reachable markings always exists; this prop-
erty holds for some subclasses:

Theorem 15.4.3. Let S be a live EQ system or DSSP. Let ma,mb ∈
RS(S). Then RS(N ,ma) ∩ RS(N ,mb) 6= ∅.

Informally, directedness means that the effect of a particular resolution
of a conflict is not “irreversible”: there is a point where the evolution merges
with that which would have been if another decision had been made. The
existence of home states, i.e. states that can ultimately be reached after any
evolution, follows from directedness and boundedness:

Theorem 15.4.4. Live and bounded EQ systems or DSSPs have home
states.

The system in Figure 5.3.b is an example of a live and 1-bounded system
without home states.

This is an important property for many reasons:

• The system is known to have states to return to, which is often required
in reactive systems. Choosing one such state as the initial one makes the
system reversible, i.e. m0 can always be recovered.

• Model checking is greatly simplified, since there is only one terminal
strongly connected component in the reachability graph.

• Under a Markovian interpretation (e.g. as in generalised stochastic Petri
nets [ABC+95]), ergodicity of the marking process is guaranteed; otherwise,
simulation or computation of steady-state performance indices could be
meaningless.
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15.4.4 Reachability and the State Equation

As was discussed in section 15.2, reachable markings are solutions to the
state equation but, in general, the converse is not true: some solutions of the
state equation may be spurious. This limits the use of the state equation as
a convenient algebraic representation of the state space.

Fortunately, stronger relations between reachable markings and solutions
to the state equation are available for some subclasses:

Theorem 15.4.5. Let S be a P/T system with reachability set RS and lin-
earised reachability set w.r.t. the state equation LRSSE.

1. If S is a live weighted T-system, or a live and consistent source private
DSSP, then RS = LRSSE. Moreover, if it is a live MG, then the integrality
constraints can be disregarded.

2. If S is a bounded, live, and reversible DF system, then m ∈ RS iff m ∈
LRSSE and the unique minimal t-semiflow of the net is fireable at m.

3. If S is a live, bounded, and reversible FC system, then m ∈ RS iff
m ∈ LRSSE (integrality constraints can be disregarded) and every trap
is marked at m.

4. If S is a live EQ system or a live and consistent DSSP, and ma,mb ∈
LRSSE, then RS(N ,ma) ∩ RS(N ,mb) 6= ∅.

We can take advantage of the above statements in a diversity of situa-
tions. For instance, the reachability characterisation for live MGs allows us
to analyse some of their properties through linear programming. Even the
last, and weakest, statement in the above theorem — a directedness result
at the level of the linearised reachability graph — can be very helpful. Since,
in particular, it implies that there are no spurious deadlocks in live EQ sys-
tems, or live and consistent DSSPs, the deadlock-freeness analysis technique
presented in Section 15.2.2 — which in these cases requires a single equation
system — allows us to decide the property.

Figure 5.4.6 shows an example of a live and 1-bounded system with spu-
rious deadlocks.

15.4.5 Analysis of Liveness and Boundedness

One of the properties which supports the claim that “good” behaviour should
be easier to achieve in some subclasses than in general systems is liveness
monotonicity with respect to. the initial marking. This means that liveness,
provided that the net is “syntactically” correct as we shall specify later, is a
matter of having enough tokens in the buffers (customers, resources, initial
data, etc.). In contrast, in general systems the addition of tokens may well
cause deadlocks because of poorly managed competition. For instance, in
the net system of Figure 5.1.b adding a token (in p5) to the initial marking
destroys liveness.
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Theorem 15.4.6. Let 〈N ,m0〉 be a live EQ system or DSSP. The EQ sys-
tem or DSSP 〈N ,m0 +∆m0〉, where ∆m0 ≥ 0, is also live.

Often, a net system is required to be live and bounded. As we saw in
section 5.2.1 the verification of liveness can be difficult, so we want to avoid it
when possible. In some cases we are able to decide using structural methods
alone; in other cases we can characterise the nets that can be lively and
boundedly marked, so the costly enumeration analysis must be used only
when there is a chance of success.

Theorem 15.4.7. Let N be an EQ or DSSP net. A marking m0 exists such
that 〈N ,m0〉 is a live and bounded EQ system or DSSP iff N is strongly
connected, conservative (or consistent), and rank(C) = |SEQS|−1. Moreover,
in EQ systems, liveness of the whole system is equivalent to liveness of each
P-component (the P-sub-nets generated by the minimal p-semiflows).

Particular cases of the above result are well known in net theory. For
instance, in the ordinary case, the P-components of an FC net are strongly
connected SMs, which are live iff they are marked, so the liveness criterion can
be stated as “there are no unmarked p-semiflows”. In the case of MGs, which
are always consistent and have rank(C) = |SEQS|−1 = |T |−1, the existence
of a live and bounded marking is equivalent to strong connectedness. Since
their P-components are their circuits, liveness can be checked by removing
the marked places and verifying that the remaining net is acyclic.

15.5 Invariants and Reductions for Coloured Petri Nets

15.5.1 Invariants

As in ordinary Petri nets, one of the main aspects of the structural verification
of CPNs is the generation of invariants. But before developing techniques for
such a problem, some points must be clarified:

• How can we express an invariant of CPNs and especially a linear invariant?
• How can a family of (linear) invariants be characterised as a generative

family of invariants?
• How can we build a (generative) family of (linear) invariants?

The aim of this section is to answer these three questions concisely.

Presentation of Linear Invariants. The choice of an adequate definition
of invariants should meet the following requirements. Firstly, an invariant of
a high-level Petri net must be a high-level invariant. For instance, if we model
processes by colours, an invariant should express properties of the behaviour
of one particular process but also of the behaviour of any process, or else of
the behaviour of any process except a particular one etc. On the other hand,
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the definition should enable mathematical developments leading to efficient
algorithms for computing invariants.

One can try to use the definition of ordinary invariants, i.e. a invariant
is a weighted sum of the marking of the places left invariant by the firing of
any transition. However such a definition involves two hidden extensions:

• What can the weights on place markings be?
• There are multiple ways to fire a transition (as many as the size of the

colour domain of the transition)

The essential point in the definition below is that the weights are colour
functions. The interpretation is that applying the colour function to the place
marking corresponds to extracting the relevant part of the information con-
tained in this marking for a given invariant. In order to be mathematically
sound, this function must have as its domain the colour domain of the place
and as its codomain a common domain for the weights of the same invariant.
This codomain may be viewed as the interpretation domain of the invariant,
and this requirement ensures that the weighted sum of the marking places is
well-defined.

Definition 15.5.1. A linear invariant v of a coloured Petri net N is defined
by:

• cd(v) the colour domain of the invariant, and

• ∀p ∈ P , v(p) a function from ZZcd(p) to ZZcd(v),

such that: ∀m reachable marking,
∑

p∈P v(p)(m(p)) =
∑

p∈P v(p)(m0(p))

The net of Figure 15.12 models a database with multiple copies. The
access grant of the database is centralised and subject to mutual exclusion.

The database is shared by a set of sites represented by the colour domain
Sites. In order to modify the database, an idle site (in place idle) must get
the grant (a neutral token in place mutex); and once it has modified the
file, it sends messages to the other sites. The entire action is modelled with
transition t1 and the content of the message is not modelled. Then the other
sites update their own databases (transition t3) and send an acknowledgment
(transition t4). Once the active site has received all the acknowledgments, it
releases the grant (transition t2).

In order to simplify the net, accessing and modifying the database is
modelled with a single transition (indivisible step) while the updating of the
other sites is modelled with a place (divisible step).

Initially there is one token per site in place idle and a neutral token in
place mutex.

Let us give an initial example of a linear invariant :

cd(v) = Sites
v = 〈x〉.idle+ 〈x〉.wait + 〈x〉.update
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<X><X><S-X>

Fig. 15.12. A CPN model of a replicated database

This linear invariant describes the behaviour of any site: either the site is
idle, or it waits for the acknowledgments, or it updates its database.

Computation of Linear Invariants. Now we focus on the computation of
a family of linear invariants. Ideally, we want a generative family of invariants,
i.e. any linear invariant should be obtained by a linear combination of the
invariants of the family. Keeping in mind the definition of a linear invariant
of a well-formed net, we allow the coefficients of the combination to be func-
tions with identical requirements on the domain and codomain. It should be
mentioned that this is the only way to control the size of a generative family
and moreover (as we shall see in what follows) to obtain significant flows,
directly as items of the family or by linear combination.

We will not give an algorithm in this subsection but instead we will use the
previous example to show how to compute a generative family of invariants.
Then we will interpret our family of invariants.

The cornerstone of all the algorithms is handling the incidence matrix in
a way similar to Gaussian elimination. However, the elimination rules must
be applied under conditions which ensure that no linear invariant will be
“forgotten”.

We start with the incidence matrix C of our example :
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t1 t2 t3 t4

C =




〈x〉 −〈x〉 0 0
−〈x〉 〈x〉 −〈x〉 〈x〉
〈s− x〉 0 −〈x〉 0
-1 1 0 0
0 0 〈x〉 −〈x〉
0 −〈s−x〉 0 〈x〉




〈x〉.wait
〈x〉.idle
〈x〉.mess
1.mutex
〈x〉.update
〈x〉.ack

On the right, the initial family of invariants is shown, i.e. each place
weighted by the identity function of its colour domain. Now we proceed by
a standard rule: adding to a line another one which has been premultiplied
by a function. The only restriction on this rule is the consistency of domains
and codomains of functions. The result is shown below :

t1 t2 t3 t4


〈x〉 −〈x〉 0 0
0 0 −〈x〉 〈x〉
0 〈s− x〉 −〈x〉 0
0 0 0 0
0 0 〈x〉 −〈x〉
0 −〈s−x〉 0 〈x〉




〈x〉.wait
〈x〉.idle+ 〈x〉.wait
〈x〉.mess− 〈s− x〉.wait
1.mutex+ 1.wait
〈x〉.update
〈x〉.ack

We apply to this new matrix a second rule that eliminates a line for which
one of the coefficients is the only non-null coefficient of its column (here the
first line). We require that this coefficient be an injective mapping.

t1 t2 t3 t4


0 0 −〈x〉 〈x〉
0 〈s− x〉 −〈x〉 0
0 0 0 0
0 0 〈x〉 −〈x〉
0 −〈s−x〉 0 〈x〉




〈x〉.idle+ 〈x〉.wait
〈x〉.mess− 〈s− x〉.wait
1.mutex+ 1.wait
〈x〉.update
〈x〉.ack

The third rule we apply is identical to a Gaussian elimination rule, i.e.
delete a null column (here t1).

t2 t3 t4


0 −〈x〉 〈x〉
〈s− x〉 −〈x〉 0
0 0 0
0 〈x〉 −〈x〉
−〈s−x〉 0 〈x〉




〈x〉.idle+ 〈x〉.wait
〈x〉.mess− 〈s− x〉.wait
1.mutex+ 1.wait
〈x〉.update
〈x〉.ack

We can iterate this process to eliminate the column t2, using the property
that 〈s− x〉 is injective.
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t2 t3 t4


0 −〈x〉 〈x〉
0 −〈x〉 〈x〉
0 0 0
0 〈x〉 −〈x〉




〈x〉.idle+ 〈x〉.wait
〈x〉.mess− 〈s− x〉.wait+ 〈x〉.ack
1.mutex+ 1.wait
〈x〉.update

The elimination of t3 ends the algorithm since it simultaneously eliminates
t4. We obtain the following family of invariants:

• The state of any site: either the site is idle, or it waits for the acknowledg-
ments, or it updates its database.

〈x〉.wait+ 〈x〉.idle+ 〈x〉.update

• The state of the database: either the grant is present or a site is waiting to
complete its transaction.

1.wait+ 1.mutex

• The synchronisation between sites: if a site is waiting then either another
site has a message for the current transaction, or it updates its copy, or it
has sent its acknowledgment.

〈x〉.mess+ 〈x〉.ack + 〈x〉.update− 〈s− x〉.wait

Some other significant linear invariants may be obtained by combining
the previous invariants. For instance, the following invariant says that either
the grant is present and all the sites are idle, or the grant is absent and the
idle sites are exactly those which will receive a message or have sent their
acknowledgment.

〈x〉.idle− 〈s〉.mutex− 〈x〉.mess− 〈x〉.ack

Additional Remarks. The computation of linear invariants as we have
described in the previous section can not be straightforwardly extended to
general coloured nets. We list below the three problems one must address in
order to provide a general algorithm:

• How to combine lines in order to cancel items of the matrix?
• How to ensure that the last coefficient of a column is injective?
• How to handle the previous two operations in a parametrised way, i.e.

independently of the size of the colour domains (in our example, the number
of sites)?

A general algorithm for coloured nets has been proposed in [Cou90]. The
key point of the algorithm is the intensive use of generalised semi-inverses.
Its only restriction is that the size of the colour domains is fixed.
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On the other hand, with restrictions to subclasses of coloured nets, it
is possible to obtain algorithms which handle parameters ([HG86], [HC88]
[MV87]). These algorithms transform the incidence matrix of functions into
a set of matrices with coefficients taken from a ring of polynomials. The
variables correspond to the parameters of the net. At this point, it is enough
to apply a Gaussian-like elimination on these matrices. Each vector solution
is finally transformed (in an inverse way) to a linear invariant.

15.5.2 Reductions

A reduction of a net is defined by some conditions of application and a method
of transformation such that the reduced net has the same behaviour as the
original one with respect to generic properties, if the original net satisfies the
conditions. Reduction theory has been mainly developed by Gérard Berthelot
[Ber87] who has proposed ten reductions covering a wide area of applications.
Introducing a new reduction is interesting if:

• It covers a common behavioural situation (as will be described in the next
subsection);

• The application conditions can be checked in a efficient way (e.g. by ex-
amination of the net structure or by linear invariant computation).

A generalisation to high-level nets has been proposed by different au-
thors ([CMS87], [Gen88], and [Had89]). We will follow the last reference to
introduce some reductions. Then we will illustrate them on the example of
database management and finally we will discuss a methodology for defining
new reductions.

Some Reductions. Two reductions for CPNs (more information may be
found in the previous reference) are enough for our example. The style of
definition will be informal: we will give the general interpretation of the reduc-
tion, the definition of application conditions, and the method of transforma-
tion, with for each item a corresponding interpretation. The set of properties
preserved is essentially the same for both reductions and includes liveness,
boundedness, home state existence, unavoidable state existence, etc.

Implicit place simplification

This reduction deletes a place which never on its own forbids the firing of
a transition. Such a place occurs in two ways: either it is a redundant place
which explicitly model information implicitly contained in the other places,
or the place was not originally implicit but other reductions have transformed
it.

The existence of an implicit place is ensured by a particular invariant.
Such a reduction illustrates an indirect use of invariants for model verification.

Definition 15.5.2. Let N be a coloured Petri net. A place p is implicit iff:

1. There exists a linear invariant v such that:
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• cd(v) = cd(p)
• v(p) is the identity function of Bag(cd(p))
• ∀p′ 6= p, ∀c ∈ cd(p′),−v(p′)(c) ∈ Bag(cd (p′))

2. ∀t ∈ T, ∀c ∈ cd(t),
∑

p′∈P v(p′)(Pre(p′, t)(c)) ≥
∑

p′∈P v(p′)(m0(p′))

Condition 2 ensures that in the initial marking, p will not on its own
forbid the firing of any transition due to the positivity constraints included
in condition 1. The fact that v is a linear invariant ensures that condition 2
is also true for all reachable markings.

The transformation deletes the place and the bordering arcs.

Definition 15.5.3. The reduced net Nr = 〈P ′, T ′,Pre′,Post′, C′, cd ′〉 with
initial marking m0

′ obtained from the net N the simplification of the implicit
place p is defined by :

• P ′ = P − {p}
• T ′ = T
• C′ = C
• ∀t ∈ T ′, ∀p′ ∈ P ′, cd ′(t) = cd(t) and cd ′(p′) = cd(p′)
• ∀t ∈ T ′, ∀p′ ∈ P ′,Pre′(p′, t) = Pre(p′, t) and Post′(p′, t) = Post(p′, t)
• ∀p′ ∈ P ′,m0

′(p′) = m0(p′)

Post-agglomeration of transitions

The principle of post-agglomeration is the following. Suppose we are given
H , a set of transitions which represent global actions and which lead to an
intermediate state represented by a token in the place p. Suppose that the way
to leave this intermediate state is to fire a transition f which represents a local
transition (i.e. without synchronisation). Then the firing of any transition of
H could be immediately followed by the firing of f without modifying the
global behaviour of the net. Hence, the place p may be deleted and the firings
of transition f included in the firing of any transition ofH . However, one must
define carefully the new items of the Pre and Post matrices. For simplicity,
we present here a restricted version of this reduction.

We begin by introducing the concept of a safe colour function; this is
required by the subsequent definition. A safe function produces (or consumes
depending on the arc) at most one token per colour of the place. In a model,
the functions are usually safe functions.

Definition 15.5.4. A colour function from Bag(E) to Bag(F) is safe iff:

∀c ∈ E, ∀c′ ∈ F, f(c)(c′) ≤ 1

Definition 15.5.5. Let N be a coloured Petri net, p a place which has for
output the transition f and for input the set H of transitions with f 6∈ H. One
can post-agglomerate f with H iff:

1. ∀h ∈ H,Post(p, h) is a safe function.
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2. cd(f) = cd(p) and Pre(p, f) is the identity function.
3. Initially p is unmarked.
4. Any firing of f produces tokens.
5. The only input place of f is p.

Condition 1 ensures that for a given colour, a transition of H produces
one token per firing. Condition 2 ensures that such a token can be consumed
by the firing of f with the same colour. Condition 3 could be overcome
by substituting m0 by a set of initial markings after emptying the place p.
Nevertheless the place p is seldom marked. Condition 4 is necessary for pre-
serving boundedness equivalence. The last condition together with condition
2 is crucial since it ensures the immediate firing of f once p is marked.

The transformation deletes the place p and the bordering arcs. Moreover,
any function on output arcs of a transition of H is obtained as the sum of
the previous function and the combined effect of the output of this transition
followed by adequate firings of f (this explains the composition of functions).

Definition 15.5.6. The reduced net Nr = 〈P ′, T ′,Pre′,Post′, C′, cd ′〉 with
initial marking m0

′ obtained from the net N by post-agglomeration of the set
of transitions H and the transition f is defined by:

• P ′ = P − {p}
• T ′ = T − {f}
• C′ = C
• ∀t ∈ T ′, ∀p′ ∈ P ′, cd(t) = cd(t) and cd(p′) = cd(p)
• ∀t ∈ T ′−H, ∀p′ ∈ P ′,Pre′(p′, t) = Pre(p′, t) and Post′(p′, t) = Post(p′, t)
• ∀h ∈ H, ∀p′ ∈ P ′,Pre′(p′, h) = Pre(p′, h) and Post′(p′, h) =

Post(p′, h) + Post(p′, f) ◦Post(p, h)
• ∀p′ ∈ P ′,m0

′(p′) = m0(p′)

Application to the Example. Figure 15.13 shows the reduction process
for the model of database management. We could have reduced the initial net
to a single transition using reductions other than those presented here. Nev-
ertheless the final net presented in the figure is small enough for us to analyse
its behaviour. The net language is the set of prefixes of (

⋃
c∈Sites t1(c).t2(c))∗.

Its interpretation is straightforward: the behaviour of the net is an infinite
sequence of database modifications done in mutual exclusion.

Let us give some explanations of the applications of the reductions:

• The flow associated with the implicit place idle is that obtained by the
combination of the generative family in the Section 15.5.1.

• The flow associated with the implicit place wait is:

1.wait−
1

n− 1
.mess−

1

n− 1
.update−

1

n− 1
.ack

where n is the number of sites.
• During the post-agglomeration around mess, the value on the arc from t1

to ack is obtained by composition of the functions 〈s− x〉 and 〈x〉.
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Simplification of the implicit place idle

mess

ack

mutex wait update

<X>

idle

Simplification of the implicit place wait Post-agglomeration around update

Post-agglomeration around mess

<X>

<X>

<X>

1

<S-X>

<S-X>

<X>

<X> <X>

<X>

<X>

<X>

mess
<S-X>

<S-X>

<X>

<X>

<X>

<X>

<X>

<X>

1

mutex

wait update

ack

mess
<S-X>

<S-X>

<X>

<X>

<X>

<X>

1

mutex

update

ack

mutex
mutex <S-X>

<S-X>

<S-X>

<S-X>

1
1

<X>

<X> ack

ack

mess

Fig. 15.13. The reduction of the CPN model of a replicated database

Methodology for Obtaining High-level Reductions. Here we give the
method that one can use to define sound new reductions for CPNs starting
from a reduction of Petri nets. This methodology includes two steps: the
specification and the validation of a new reduction.

Specification of a high-level reduction

As for the ordinary reduction, one must specify application conditions
and transformation rules. During this specification, the conditions must be
decomposed into two kinds:

• Structural conditions as close as possible to those for the ordinary reduc-
tion.
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• Functional conditions that must be as weak as possible in order to obtain
a good structure for the unfolded Petri net corresponding to the CPN.

The transformation rule must follow these two principles:

• It must not increase the size of the colour domain (since in this case there
is a hidden extension of the net).

• It enables only significant operations for the colour functions (such as for
instance, composition or inverse) in order to keep the new functions man-
ageable.

Validation of a high-level reduction

Once the reduction has been defined, the proof that it is sound must be
done in the following way :

Unfolding: Show that in the unfolded net a set of ordinary reductions fulfils
its conditions.

Reduction sequence: Find an ordering of these reductions such that a reduc-
tion is still applicable after the previous ones have been applied.

Folding: Show that the ordinary reduced net may be folded to give the re-
duced CPN given by the transformation rule.



16. Deductive and Process-Algebra-Based
Methods∗

Five different approaches based on logical reasoning and process algebraic
method swill be presented in this chapter . The sections describe different
methods that may seem unrelated at first sight but have certain connections
that make their presentation worthwhile. Nevertheless the sections of this
chapter are self-contained so there is no preferred order of reading.

The first section entitled “A Rewriting Semantics for Algebraic Nets”
gives an informal introduction to algebraic specifications, rewriting, and a
generalisation of algebraic Petri nets which is useful in practice. It also de-
scribes the close connection between Petri nets and rewriting techniques,
and conveys a unified view from the perspective of rewriting logic. Alge-
braic nets are a form of high-level nets combining the advantages of both
algebraic specifications and ordinary Petri nets. An algebraic net should be
regarded as a specification that has coloured nets as models. In contrast with
standard presentations of algebraic nets, the emphasis of this section is on
executable models and strategy-guided net execution. To reflect the require-
ments of practical modelling problems, we employ an expressive specification
language, namely membership equational logic, that unifies and generalises
existing approaches such as many-sorted and order-sorted algebra.

In the second section of this chapter assertional reasoning for Petri nets
is introduced. The aim is to provide a logic for the specification and verifi-
cation of coloured Petri nets that is intuitive enough to be used for manual
informal reasoning, but also complex enough to allow for a rigorous formal
treatment and its use in connection with computer-aided interactive theorem
proving. To this end we employ a generalisation of the elegant unity ap-
proach introduced by Chandy and Misra in [CM88]; this generalisation deals
with arbitrary labelled transition systems instead of unity programs. In the
context of this book we will restrict our attention to the special case where
the labelled transition system is given in terms of a coloured net. Even though
unity logic contains a fragment of linear time temporal logic, the former is
better regarded as an extension of assertional reasoning with a few simple
temporal operators. After presenting the basic kinds of assertions and a num-
ber of proof rules in a way that avoids known complications and is inspired
∗ Authors: M.-O. Stehr (Sections 1 & 2), B. Farwer (Sections 3 & 4), T. Basten

(Section 5)
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by Misra’s new approach to unity, the use of these rules in the context of
coloured Petri nets is demonstrated by applying them to a simple verification
example.

In Section 16.3 we examine a special temporal logic for representing the
enablement of computations. Using this logic one can, for instance, express
the fact that two computations cannot be executed concurrently by the state-
ment 2¬E(α ‖ β), where α ‖ β denotes the parallel composition of the
computations α and β and E(x) is a predicate stating the enablement of x,
i.e. the formula could be paraphrased: “It will always hold that the parallel
enablement of both α and β is not true at any instance of time”.

The approach described in Section 16.3 is based on the static structure of
nets. It enriches reductions (cf. Chapter 15) with a temporal logic through
which preservation and reflection of different classes of properties is shown
for reductions defined by morphisms in a category of marked P/T nets. The
morphisms define a notion of simulation that allows us to prove properties of
complex nets by showing that they can be simulated by some net for which
that same property has already been proved.

This approach is followed by a section on the connection between linear
logic and Petri nets which in some sense represents the foundation for the
rewriting semantics presented in the first section. Apart from the specification
of net properties and a basic result connecting reachability with derivability
within the fragment of linear logic presented here, we show the possibility
of introducing a new concept of nondeterminism into Petri net theory. This
concept of nondeterministic transition is motivated by yet another fragment
of linear logic incorporating only one additional connective.

The last Section (16.5) of this chapter presents a method utilizing an
ACP-like process algebra for the specification and verification of nets. In
this approach, the desired properties are specified by algebraic expressions
which are then used to construct a suitable net model. Algebraic methods
can be used to check that this model satisfies the initial specification by
using algebraic methods. In this sense the approach gives rise to a unifying
perspective of the two disciplines of process algebra and Petri nets.

The presentation of these advanced concepts requires a formal – some-
times technical – exposition which is essential only for those who want to
directly apply the methods. Readers interested in the basic ideas should not
be put off by these technicalities but should simply skip the passages con-
taining the more formal reasoning. We believe the remaining parts will still
give some insight into the approaches discussed in this chapter.

16.1 A Rewriting Semantics for Algebraic Nets

Since the introduction of predicate/transition nets in [GL79] and [GL81], a
variety of further general high-level net models have been developed, includ-
ing coloured nets ([Jen81] and [Jen92b]) and relation nets ([Rei85b]). Such
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high-level nets reflect the practical need to deal with flow and transformation
of individual data objects rather than indistinguishable tokens. The general
idea is to extend place/transition nets with inscriptions in a language capable
of expressing operations and/or predicates on data objects. Employing a pro-
gramming language for this purpose as favoured in [Jen92b] allows executable
net models , whereas a specification language yields system models which are
more abstract but in general not executable. A minimal requirement for ex-
ecutability is that enablement can be effectively checked given a transition t
together with an occurrence mode β, and that the effect of firing the tran-
sition element (t, β) can be computed. Execution of a net usually involves
some strategy to select or to find transition elements which are enabled and
to initiate their firing if this is desired.

Algebraic specification languages combine the advantages of specification
and programming languages. The theory of algebraic data types and specifi-
cations or more generally universal algebra is well-studied (see e.g. [MG85],
[EM85], or [Wec92]) and is appealing because of its simple model theory and
its operational semantics. The latter can be given in terms of term rewriting
systems which have themselves been the subject of intensive research (see
e.g. [HO80], [DJ90], [Klo92] for a survey).

In addition to the high-level net models mentioned above, a number of dif-
ferent approaches combining Petri nets and algebraic specifications exist (see
e.g. [Vau85], [BCC+86], [Vau87], [RV87], and [Rei91]). In contrast to these
references the following informal introduction to algebraic specifications and
Petri nets will put particular emphasis on the operational point of view. Our
ultimate goal is to obtain an executable formal representation of a system
which can be useful for exploration, validation, or prototyping purposes. In
order to achieve this with minimum effort we show that a deep connection
between term rewriting and algebraic Petri nets can be exploited which is
beyond the use of term rewriting as a means to execute algebraic specifi-
cations. For this purpose, algebraic nets will be equipped with a rewriting
semantics using the framework of rewriting logic introduced in [Mes92] as a
unified model of concurrency.

As far as we know the consideration of executability in the context of
algebraic nets is new. Current research in the context of algebraic nets seems
to be more oriented toward specification and verification without taking into
account a unifying view such as the one we suggest here. Another reason
discouraging execution of algebraic nets may be that the standard many-
sorted algebraic specifications are too restrictive to be useful in practice, and
yet another factor may be the lack of tools, in particular efficient tools. This
situation is quite different from that for coloured Petri nets [Jen92b], where
support for execution is considered to be the main feature of a Petri net
tool. To make the algebraic approach more useful in practice we propose
to replace many-sorted algebra by the more general membership equational
logic [Mes98b, BJM97], a sublogic of rewriting logic. As a tool to execute and
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analyse such nets we use the Maude rewriting engine [CDE+99, CELM96]
which implements an executable sublanguage of rewriting logic.

The objective of the present section is to give a brief introduction to
algebraic specification and rewriting techniques, and to introduce a general
form of algebraic net specifications based on membership equational logic
together with a translation into rewrite specifications. Instead of a formal
treatment, which would require dealing with many technicalities, we try to
convey the main ideas using a running example, namely, a distributed network
algorithm, which can be modelled as an algebraic net and executed in a
controlled way using the Maude language [CDE+99, CELM96]. It should
however be mentioned that the techniques presented here are of a general
nature and do not depend on any particular implementation.

16.1.1 Algebraic Specifications

Algebraic specification languages exist in many flavours. All of them define
sorts of data objects and operations on these objects, specifying their abstract
behaviour using an equation-based language.

Many-sorted equational specifications are a simple and well-studied class
of algebraic specifications. They are given by a many-sorted signature Σ and
a possibly empty set of equations E. A many-sorted signature defines sorts
together with sorted constant symbols and sorted function symbols which
determine the set of sorted terms .

For the purpose of introducing the syntax and semantics of algebraic
specifications we employ specification fragments which will be partly reused
in section 16.1.3, where the main example, an algebraic Petri net specification,
is discussed. The following specification declares constant symbols a,b,c,d,e of
sort Id intended to represent identifiers. It also declares an operation idPair

intended as a constructor for pairs of identifiers. Finally, two operations fst
and snd are declared which are intended to represent the first and the second
projection of a pair, as expressed by the two equations.

sorts Id IdPair .

ops a b c d e : -> Id .

op idPair : Id Id -> IdPair .

vars x x’ y y’ : Id .

op fst : IdPair -> Id .

eq fst(idPair(x,y)) = x .

op snd : IdPair -> Id .

eq snd(idPair(x,y)) = y .
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The syntax we use is typical of algebraic specification languages.1 The
keywords sort and sorts introduce the sorts used in the specification. op
and ops declare constant and function symbols together with their arity (the
sorts of their arguments, if any) and coarity (the sort of their result). var
and vars declare sorted variables. eq introduces a new equation which may
involve some of the variables that have been declared.

Above we discussed the intended meaning of a specification. This should
be made more precise. A specification has a simple algebraic semantics called
the initial algebra semantics :2 Each sort is interpreted as the set of ground
terms , i.e. terms without variables, of this sort with the condition that two el-
ements of a sort are identified , i.e. considered equal, iff they are E-equivalent ,
i.e. if they can be proved to be equal using equations E which are part of the
specification.3 The initial algebra formalises the idea that: (1) a sort contains
only elements that can be built using the constant and function symbols of
the signature, and (2) elements which are not enforced to be equal by the
specification are distinct in the semantics.4

Under certain conditions a specification is executable, i.e. it can be
equipped with an operational semantics based on reduction, the replacement
of a subterm by another one which is known to be equal and simpler in a
certain sense.5 For this purpose we require that all variables used on the
right-hand side appear already on the left-hand side. Applying an equation
u = v to a given term w means finding a subterm of w that matches u and
replacing that subterm by the term determined by v under the given match.
In this way, equations are viewed as directed left-to-right reduction rules in
the operational semantics and it is assumed that the corresponding reduction
relation between terms is confluent and terminating. Confluence means that
if a term t can be reduced to different terms u and v then both of them can be
further reduced to a common term t′. Termination means that every reduc-
tion sequence is finite. These two properties ensure that each term reduces, by
successively applying reduction rules in an arbitrary way, to a unique normal
form representing the value of the original term. An algebraic specification

1 It is actually the syntax of OBJ3 [GWM+92] which has also been employed in
the more recent language Maude [CELM96].

2 See [MG85] for different views of the initial algebra—seealgebra semantics. There
are other possible semantics including the loose algebra semantics which inter-
prets a specification as a class of algebras satisfying all equations. This is used
when a specification is designated as a theory, but it will not be used in this
introduction.

3 The mathematically appropriate way to construct this initial algebra is a quotient
algebra construction [EM85]. Here we leave the interpretation function implicit
by using ground terms both on the syntactic and semantic level (although with
different notions of equality).

4 These two properties are also known under the slogan “no junk and no confu-
sion”. See [EM85] for details.

5 Simplicity can be made mathematically precise using the concept of reduction
ordering.
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is executable iff the equations are of the form explained above and the re-
duction relation is confluent and terminating. Consequently, an executable
algebraic specification can be seen as a first-order functional program, where
every term has a unique value.

The following example is an executable specification of lists over the sort
of identifiers already introduced. emptyIdList and idList are the only con-
structors. emptyIdList represents the empty list and idList(x,l) adds a
new head element x to a list l. The function inIdList(x,l) checks if l

contains an element x.

sort IdList .

vars l l’ : IdList .

op emptyIdList : -> IdList .

op idList : Id IdList -> IdList .

op inIdList : Id IdList -> Bool .

eq inIdList(x,emptyIdList) = false .

eq inIdList(x,idList(x’,l’)) =

if x == x’ then true else inIdList(x,l’) fi .

We assume a predefined sort Bool with constant symbols true and false

as well as a construct if then else fi with the obvious meaning.
From a theoretical point of view every total computable function can be

specified by an executable equational algebraic specification [BT80]. Never-
theless it has been found that many-sorted equational algebra is not expres-
sive enough for practical purposes. This has led to several extensions, e.g.
conditional equations, subsorts, and overloading. Order-sorted algebra is a
generalisation of many-sorted algebra which contains all these features (see
[GD94] for a survey) and has been implemented in the language OBJ3. To
execute our examples we have adopted a more recent development, namely
membership equational logic (introduced in [Mes98b, BJM97]), which sim-
plifies and generalises order-sorted algebra considerably and is the logic of
Maude’s equational sublanguage [CDE+99, CELM96]. However, in the fol-
lowing we will use only its order-sorted fragment.

With some modifications of the list specification we can obtain a specifi-
cation of finite sets: First, we declare Id to be a subsort of a new sort IdSet
intended to represent sets of identifiers. This allows us to conceive every single
identifier as a singleton set.6 Secondly, we generalise our constructor idSet,
casting it into a more symmetric form as shown below.

sort IdSet .

6 An alternative is to define an explicit coercion function singleIdSet from Id to
IdSet.
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subsort Id < IdSet .

vars s s’ s’’ : IdSet .

op emptyIdSet : -> IdSet .

op idSet : IdSet IdSet -> IdSet

[assoc comm] .

eq idSet(s,s) = s .

eq idSet(emptyIdSet,s) = s .

op inIdSet : Id IdSet -> Bool .

eq inIdSet(x,emptyIdSet) = false .

eq inIdSet(x,idSet(x’,s’)) =

if x == x’ then true else inIdSet(x,s’) fi .

emptyIdSet represents the empty set and idSet represents set union.
The annotations in square brackets state that idSet is an associative and
commutative operator. The first two equations express idempotence of idSet
and the fact that emptyIdSet is an identity element of idSet. In analogy to
inIdList the function inIdSet checks containment of an element in a set.

For the algebraic semantics the annotations assoc and comm are tanta-
mount to imposing the following equations:

idSet(idSet(s,s’),s’’) = idSet(s,idSet(s’,s’’))

idSet(s,s’) = idSet(s’,s)

However from an operational point of view we have to avoid non-
terminating reduction sequences which occur if the second equation is seen
as a reduction rule. A well-studied solution is to employ the technique of
reduction modulo structural equations , where the objects to be reduced are
not single terms but (possibly infinite) equivalence classes of terms. For this
purpose the set E of equations is partitioned into two classes ES and ER:
The class of structural equations ES determines the equivalence classes, and
the class of reduction rules ER determines a set of confluent and terminating
rules on these equivalence classes. Syntactically, certain kinds of structural
equations can be introduced together with their associated operator by an-
notations in square brackets, whereas reduction rules are introduced by the
keyword eq. One way to implement the operational semantics is to work
with terms again, now interpreted as representations of equivalence classes.
To perform reduction modulo structural equations automatically, we have
to ensure that a matching algorithm modulo the structural equations ES is
available. This is indeed the case for the equations in our example, stating
associativity and commutativity. The use of a matching algorithm for ES

allows us to identify ES-equivalent terms on a conceptual level. Hence our
specification of finite sets is indeed executable.
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In the context of Petri nets, finite multisets play a central role. Using the
fact that finite multisets can be seen as free commutative monoids we obtain
the following algebraic specification of a finite multiset sort idBag over Id:

sort IdBag .

subsort Id < IdBag .

op emptyIdBag : -> IdBag .

op idBag : IdBag IdBag -> IdBag

[assoc comm id: emptyIdBag] .

emptyIdBag represents the empty multiset and idBag represents multi-
set union. The annotations in square brackets specify that idBag is an as-
sociative, commutative operator with emptyIdBag as an identity element.
Algebraically these annotations are equivalent to the following equations:

idBag(idBag(s,s’),s’’) = idBag(s,idBag(s’,s’’))

idBag(s,s’) = idBag(s’,s)

idBag(emptyIdBag,s) = s

idBag(s,emptyIdBag) = s

Operationally, these are structural equations and a matching algorithm
modulo these equations is used for the evaluation of multiset terms.

For an associative operator f such as idBag we use a convenient syn-
tax f(x1,x2,x3) abbreviating f(f(f(x1,x2),x3)) which is also employed
for more arguments. For instance, idBag(a,b,b,a,d) denotes a multiset of
identifiers which has also been written as 2a+2b+d in the context of coloured
nets.

16.1.2 Rewriting Specifications

An algebraic specification is not equipped with an explicit notion of change.
Its initial semantics is an algebra which is a static entity fully determined
by the specification. A Petri net on the other hand describes state transi-
tions which may occur in a structured state space. In order to capture state
changes in an algebraic framework we employ a generalisation of algebraic
specifications called rewrite theories or rewrite specifications . The underlying
theory of rewriting logic has been developed in [Mes92].

A rewrite specification consists of an algebraic specification (Σ,E) and
rewrite rules R. Ground terms (again, we assume that identifications have
been performed according to equations in E) are interpreted as states, and
rewrite rules are schemes describing possible state transitions. A rewrite rule
of the form u→ v states that a subterm matching u, which describes a part of
a system’s state, can have a local state transition by replacing such a part by
the term obtained by applying the given match to v. As an example consider
the following specification of a binary nondeterministic choice operator.
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op choice : Id Id -> Id .

rl [left] : choice(x,y) => x .

rl [right] : choice(x,y) => y .

A rewrite rule is introduced by rl followed by a label in square brackets.
The above specification gives two possible successor states for a state of the
form choice(x,y), namely x and y. For instance, choice(a,c) may evolve
to a or to c.

An interesting application of rewrite specifications is to provide a rewrit-
ing semantics of place/transition nets using the slogan “Petri nets are
monoids” advocated in [MM90].7

GRANT1 RETURN1

CREDIT1 CLAIM1

RETURN2GRANT2

CLAIM2CREDIT2

BANK

4

3

3
34

4

4 3

5

Fig. 16.1. Banker’s problem with two clients

The instance of the banker’s problem (cf. section 8.2) depicted as a
place/transition net in Figure 16.1 can be immediately translated into the
following rewriting specification. We presuppose a specification of the boolean
conjunction and, and of an equality predicate ==.8

sorts Token Marking .

subsort Token < Marking .

op emptyMarking : -> Marking .

7 It is noteworthy that the categorical semantics presented in that work and also
the relation between place/transition nets and linear logic explained in [MOM91]
inspired the development of rewriting logic.

8 In Maude, and is declared in a predefined module and the equality predicate
== is provided in a built-in way by simplifying both terms in the equality and
comparing their identity under confluence and termination assumptions.
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op marking : Marking Marking -> Marking

[assoc comm id: emptyMarking] .

var m : Marking .

op BANK : -> Token .

op CREDIT1 : -> Token .

op CREDIT2 : -> Token .

op CLAIM1 : -> Token .

op CLAIM2 : -> Token .

rl [GRANT1] : marking(BANK,CLAIM1) => CREDIT1 .

rl [RETURN1] : marking(CREDIT1,CREDIT1,CREDIT1,CREDIT1) =>

marking(BANK,BANK,BANK,BANK,

CLAIM1,CLAIM1,CLAIM1,CLAIM1) .

rl [GRANT2] : marking(BANK,CLAIM2) =>

CREDIT2 .

rl [RETURN2] : marking(CREDIT2,CREDIT2,CREDIT2) =>

marking(BANK,BANK,BANK,

CLAIM2,CLAIM2,CLAIM2) .

Here we applied the translation of place/transition nets into rewriting
logic given in [Mes92]:9 A marking is represented as an element of sort
Marking which is a multiset sort over the sort Token of tokens. marking
is the corresponding multiset union operator. For each place there is a con-
stant, called token constructor, representing a single token residing in that
place. For each transition there is a rule, called transition rule, stating that
its pre-set marking may be replaced by its post-set marking.

The operational semantics extends the operational semantics of the under-
lying algebraic specification: Again, we will identify only those terms which
are forced to be equal by structural equation ES . A rewriting specification is
executable iff the underlying algebraic specification is executable10 and it sat-
isfies a property called coherence [Vir94] formulated between reduction rules
and rewrite rules: Coherence means that if a term u rewrites in a single step
to v and u reduces to u′, then u′ can be further reduced to a term u′′ that
rewrites to a term v′ which is E-equivalent to v in a single step. Coherence

9 This also corresponds closely to a translation of place/transition nets into linear
logic which will be explained in section 16.4.

10 In order-sorted specifications and in membership equational specifications exe-
cutability does not only require confluence and termination but also that equa-
tions are sort-decreasing (cf. [CDE+99]). However, for the examples we use in
the present section there is no need to elaborate on this.
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ensures that rewrite steps are not in conflict with reduction steps. This al-
lows us to use a technique which may be called rewriting modulo a reduction
system: A term is reduced to normal form before a rewrite rule is applied.
By coherence, reduction to normal form does not destroy the applicability
of rewrite rules. It is easy to verify that the specification above is indeed
coherent and therefore executable.

Although rewrite rules describe the dynamics of a concurrent system,
equations are usually an important part of a rewrite specification: Equations
can be used to specify the functional part of a system description which is
preferably executable by viewing these equations as reduction rules. Struc-
tural equations on the other hand can be used for expressing symmetries of
data or state representations. The equations for associativity and commuta-
tivity and the identity laws which have been used to represent a (distributed)
marking are of this kind.

As demonstrated by the example above, there is an important differ-
ence between the reduction rules in executable algebraic specifications and
rewrite rules in executable rewrite specifications: The state transition relation
induced by rewrite rules is in general neither terminating nor confluent, al-
though there may be situations where this is the case.11 In order to execute a
rewrite specification the user typically supplies a strategy which successively
tries to instantiate selected rewrite rules and initiate rewriting steps.

From a more abstract point of view a strategy is very similar to a theorem-
proving tactic which is designed to establish the existence of certain execu-
tions. In applications such as net execution the choice of a strategy will be
guided by the need to explore the behaviour of the system under certain
conditions.

An efficiently executable sublanguage of rewriting logic that supports
rewriting modulo all combinations of associativity, commutativity, and (left
and right) identity laws has been realised in the Maude language [CELM96].
Although details about specifying strategies are beyond the scope of this
introduction, it is interesting to mention that Maude favours the use of a
strategy language based on reflection, i.e. on the capability of representing
a specification as an object in the language itself. Indeed, its reflective ca-
pabilities provide a very flexible way to specify rewrite strategies. In Maude
a rewrite strategy operates on the meta-level of the specification to be ex-
ecuted, i.e. it considers the rewrite specification as a first-class object and
controls its execution. Indeed, strategies are typically formulated in a user-
definable and extensible strategy language which is itself defined in rewriting
logic. In this way a strategy becomes again a rewriting specification and we
do not have to resort to an external strategy language as is usually the case
in tactic-based theorem provers. Details about strategies and the reflection
mechanism of Maude can be found in [Cla98, CDE+99]. A quite different

11 Only terminating systems with a unique final state can be described by termi-
nating and confluent rewrite rules. So this generalisation is a practical necessity.
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approach to rewrite strategies has been implemented in the ELAN language
[BKK97], another implementation of rewriting logic.

16.1.3 Algebraic Nets

Instead of giving a precise formal definition of algebraic nets, which would
also require introducing technicalities of algebraic specification, we try to
convey the main idea common to different variants of algebraic nets. Also
we restrict our attention to the initial algebra semantics introduced earlier.12

From the technical point of view our definition is closer to the one in [KR96]
and [KV98] generalising [Rei91] by so-called flexible arcs which transport
variable multisets of tokens.13

An algebraic net specification consists of an algebraic specification Σ and
an inscribed net (P, T, F ) such that the following conditions are satisfied:

1. Every place p ∈ P is inscribed by a place sort C(p), meaning that each to-
ken residing in this place must be an element of the place sort. We assume
that the specification has a finite multiset sort, denoted by Bag(C(p)),
over each place sort C(p) such that we can represent the tokens residing
in a place as a term of its multiset sort.

2. We assume a set of sorted variables which can be used in the entire net.
Each transition t uses a subset of these variables, called local variables
V (t). Moreover each transition is inscribed by a guard G(t), i.e. a term
of sort Bool over the local variables V (t).

3. Each arc (p, t) ∈ F or (t, p) ∈ F carries an arc inscription which is
a multiset term, denoted W (p, t) or W (t, p), specifying the multiset of
tokens which is transported by the arc in the definition of transition
occurrence below. This term can involve only local variables of t. More-
over, we require that W (p, t) and W (t, p) are terms over the multiset sort
Bag(C(p)).

4. There is a distinguished initial marking m0, where a marking m assigns
to each place p ∈ P a ground term of the multiset place sort Bag(C(p)).

A transition element (t, β) consists of a transition t together with a bind-
ing β of its local variables to ground terms of appropriate sorts. The preset
Pre[•, t](β) of a transition element (t, β) is the marking which assigns to each
place p ∈ P the multiset obtained by interpreting the inscription W (p, t) of
the arc (p, t) under the binding β. Here W (p, t) is defined as the empty mul-
tiset if (p, t) /∈ F . The postset Post[•, t](β) is defined correspondingly using
inscriptions W (t, p).

12 As explained in [Rei91] algebraic nets can represent a whole class of systems
under the loose algebra semantics. We do not exploit this possibility here.

13 A difference is that we use membership equational logic for the underlying alge-
braic specification instead of many-sorted algebra.
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A transition element (t, β) may occur at a marking m1 yielding a marking
m2 iff the guard G(t) is true under the binding β and there is a marking m
such that for all p ∈ P we have

m1(p) = Unionp(m(p),Pre[p, t](β)) and

m2(p) = Unionp(m(p),Post[p, t](β)),

where UnionC(p) is the multiset union operation defined for the multiset
sort Bag(C(p)) in the algebraic specification.

Writing the occurrence rule in this unusual way makes it evident that
the occurrence of a transition element replaces its pre-set by its post-set,
whereas the remainder of the marking, here denoted by m, is not involved
in this process. This is a key observation which will be exploited for the
rewriting semantics.

As an example we will model a distributed network algorithm. It is an
algorithm which solves the gossiping problem: Every agent in the network has
a piece of information which should be communicated to every other agent
in the network. For simplicity we abstract from the exchange of information.
Instead we are only interested in the fact that a synchronised state will be
reached where every agent knows that it has heard about every other agent.
The algorithm we use is a slight modification of the algorithm GOSSIP in
[Tel91] which also appeared in [Tel94]. It is a different presentation of the
re-synchronisation algorithm proposed by Finn in [Fin79]. The algorithm is
appropriate for any non-trivial, directed, strongly connected network assum-
ing that agents (i.e. the nodes of the network) are equipped with unique
identities.

For identifiers and sets of identifiers we will use the specifications of Id
and IdSet already defined. The network is represented as a directed graph.
We represent such a graph as a finite multiset of identifier pairs avoiding
multiple occurrences of pairs (for uniformity reasons we prefer to view a set
as a multiset here).

sort IdPairBag .

subsort IdPair < IdPairBag .

op emptyIdPairBag : -> IdPairBag .

op idPairBag : IdPairBag IdPairBag -> IdPairBag

[assoc comm id: emptyIdPairBag] .

vars p p’ : IdPair .

vars g g’ : IdPairBag .

op inIdPairBag : IdPair IdPairBag -> Bool .

eq inIdPairBag(p,emptyIdPairBag) = false .

eq inIdPairBag(p,IdPairBag(p’,g)) =
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if p == p’ then true else inIdPairBag(p,g) fi .

op network : -> IdPairBag .

eq network = idPairBag(idPair(a,b),idPair(b,c),idPair(c,d),

idPair(d,a),idPair(b,d),idPair(d,b)).

The auxiliary function incoming defined next is used with network as
the first argument. incoming(network,x) denotes the multiset of headers of
messages to be received by x from its input neighbours , i.e. those agents for
which the network has a channel to x.

op incoming : IdPairBag Id -> IdPairBag .

eq incoming(emptyIdPairBag,y’) = emptyIdPairBag .

eq incoming(idPairBag(idPair(x,y),g),y’) =

if y == y’

then idPairBag(idPair(y,x),incoming(g,y’))

else incoming(g,y’)

fi .

For the net inscriptions we need two further variables and additional
sorts Knowledge and Message with the only constructors being knowledge

and message respectively. knowledge(x,s) represents the fact that agent x
knows the set s. message(x,y,ok,ho) represents a message directed to x,
sent out by y, with contents ok and ho.

var ho ho’ ok ok’ : IdSet .

sorts Message Knowledge .

op knowledge : Id IdSet -> Knowledge .

op message : Id Id IdSet IdSet -> Message .

Finally, in addition to IdBag, IdPairBag we add further obligatory mul-
tiset sorts, namely MessageBag and KnowledgeBag, which allow us to specify
markings, in particular the initial one.14

sorts MessageBag KnowledgeBag .

subsort Message < MessageBag .

subsort Knowledge < KnowledgeBag .

op emptyMessageBag : -> MessageBag .

op messageBag : MessageBag MessageBag -> MessageBag

14 The concept of multiset is a typical candidate for a parametrised specification
(cf. [GWM+92]). However, our example is simple enough to get along without
parametrisation.
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[assoc comm id: emptyMessageBag] .

op emptyKnowledgeBag : -> KnowledgeBag .

op knowledgeBag : KnowledgeBag KnowledgeBag -> KnowledgeBag

[assoc comm id: emptyKnowledgeBag] .

The inscribed net of the gossip algorithm is shown in Figure 16.2. Names
of places and transitions are written in bold font. Sorts associated with places
are written in sans serif. Guards are the terms of sort Bool specified close to
their corresponding transitions. In this example only SEND has an explicit
guard. If not specified the guard is simply true.

iOK

iHO

Knowledge

knowledge(x,ok)

knowledge(x,ho)

idPair(x,y)

message(y,x,ok,ho)

Knowledge

OK

HO

RECEIVE

ACCEPT

incoming(network,x)

idSet(ho,hoÕ))

idSet(ok,okÕ))

idSet(ok,x))

inIdPairBag(idPair(x,y),network)

SEND

knowledge(x,ok)

knowledge(x,

knowledge(x,ho)

knowledge(x,

knowledge(x,

knowledge(x,ok)

Message

MESSAGES

IdPair

RECEIVED

message(x,y,okÕ,hoÕ)

Fig. 16.2. Gossip algorithm

The places HO and OK contain the local knowledge of each agent about
other agents. A token knowledge(x,ho) in HO represents the fact that
agent x has directly or indirectly heard of the agents in the set ho. A token
knowledge(x,ok) represents the fact that agent x has heard of all neighbours
of agents in the set ok. For each agent x each of these places will contain pre-
cisely one token of the form knowledge(x,...). So we can write HOx and
OKx to denote the unique sets ho and ok, respectively. In the initial marking
an agent has heard only of itself, i.e. HOx contains only x and OKx is empty.
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That the properties explained above are indeed maintained during the
execution of the algorithm is not completely obvious. One technique to prove
such invariants is using the unity style temporal logic as presented in the
next section. In the present section, however, the focus is on validation of the
algorithm by net execution, not on verification.

For the network networkwe obtain the following initial marking m0 which
is also depicted in Figure 16.2 by multiset terms within places:

m0(MESSAGES) = emptyMessageBag,
m0(RECEIVED) = emptyIdPairBag,

m0(HO) = iHO, m0(OK) = iOK.

Here iHO and iOK are defined by extending the specification as follows:

op iHO : -> KnowledgeBag .

eq iHO = knowledgeBag(knowledge(a,a),knowledge(b,b),

knowledge(c,c),knowledge(d,d)) .

op iOK : -> KnowledgeBag .

eq iOK = knowledgeBag(

knowledge(a,emptyIdSet),knowledge(b,emptyIdSet),

knowledge(c,emptyIdSet),knowledge(d,emptyIdSet)).

Each single agent x can locally check if it has heard of all other agents by
checking if HOx is a subset of OKx. According to the explanation above this
inclusion means that if agent x has heard of agent y, then x has also heard of
all neighbours of y. Using connectivity of the network and the fact that x has
heard of x itself this implies that x has heard of all agents in the network.

Under an appropriate fairness assumption (see below) it can be proved
that the algorithm will eventually reach a synchronised state where HOx =
OKx holds for all agents x.15 To keep the example as simple as possible and
to emphasise the main idea, neither local nor global termination detection
has been built into the net model. Also for simplicity, there is no mechanism
to prevent the agents from sending superfluous messages.

The net contains a place MESSAGES, which serves as a message pool,
and another place RECEIVED, which is locally used by agents to remember
which messages have been received. The message pool makes the Petri net
structure independent of the actual network used. The only place where the
concrete network has to be mentioned is in the equation defining the constant
network.16

Three transitions are sufficient to provide a natural net model of the
algorithm. Each transition can be interpreted as an action that an agent can

15 Notice that this means not only reachability of a synchronised state but also that
such a state will be reached eventually.

16 This way of modelling a network has been employed in [Rei98] in a number of
interesting case studies on modelling and verification using algebraic nets.
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perform. Notice that all transitions are accessing and possibly modifying the
local knowledge of an agent via arcs to HO and OK. We will explain the
role of each of these transitions briefly:

1. Sending a message from an agent x to an agent y is modelled by the
transition SEND, which deposits a message message(y,x,ok,ho) in
the message pool. The message carries the current state of the agent’s
knowledge OKx and HOx in ok and ho respectively. The fact that such a
message can only be sent over an existing channel from x to y is reflected
by the boolean condition inIdSet(idPair(x,y),network).

2. Receipt of a message by an agent x is modelled by transition RECEIVE,
which takes a message message(x,y,ok’,ho’) from the message pool.
At the same time the agent updates its knowledge. This is expressed by
the subterms idSet(ho,ho’) and idSet(ok,ok’) which state that new
knowledge (i.e. ok’ and ho’) is simply added by set union, i.e. without
removing previous knowledge. The fact that x has received a message
from y is recorded in the place RECEIVED.

3. As soon as an agent x has received messages from all its input neigh-
bours the transition ACCEPT is enabled. This is expressed by the
arc inscribed by incoming(network,x). The occurrence of ACCEPT
updates the agent’s knowledge: The fact that x has heard of all
its neighbours is added to the local knowledge OKx via the arc
knowledge(x,idSet(ok,x)).

Observe that the transition SEND is enabled continuously for every chan-
nel directed from x to a neighbour y. For instance, there is a possible exe-
cution sequence sending the same message again and again. To ensure that
a synchronised state is reached eventually we assume an appropriate form of
weak group fairness , i.e. we admit only occurrence sequences satisfying the
condition, that if a weakly fair group of transition elements is continuously
enabled it will occur eventually. Here a group of transition elements is just
a set of transition elements and it is said to be enabled or to occur if one
of its elements is enabled or occurs respectively. In our example we specify
that for each transition and for fixed bindings for x, y, ho’, and ok’ the set
of transition elements obtained by the different bindings for ho and ok is a
weakly fair group. The idea behind this choice is that ho and ok are deter-
mined by a local variable of the agent, and fairness should abstract from the
state of local variables. The importance of weak group fairness in the context
of coloured Petri nets has already been observed in [MV91, Mac91]. It will
be further discussed and incorporated in a unity-style temporal logic in the
next section.

The fairness requirement ensures that SEND occurs eventually and
repeatedly under all possible bindings for x and y. It also ensures that
RECEIVE and ACCEPT will eventually occur after becoming enabled,
regardless of possibly concurrent changes to the local variables HO and OK.
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Observe, however, that it is still possible for an unbounded number of mes-
sages to accumulate in place MESSAGES and also in place RECEIVED.17

For our concrete network network of agents the net will eventually reach
a marking satisfying the stable synchronisation condition HOx = OKx for
all agents x. It is a marking m with

m(HO) = m(OK) = knowledgeBag(knowledge(a, idSet(a, b, c, d)),
knowledge(b, idSet(a, b, c, d)),
knowledge(c, idSet(a, b, c, d)),
knowledge(d, idSet(a, b, c, d)))

16.1.4 Rewriting Semantics

We have already discussed a rewriting semantics for the place/transition net
of the banker’s problem. Using the distributed algorithm of the previous
section we will demonstrate that a rewriting semantics can also be provided
for algebraic net specifications. Our semantics is designed to cope with flexible
arcs, such as the one used in the distributed algorithm between the place
RECEIVED and the transition ACCEPT.

The rewriting semantics will be given as a rewriting specification extend-
ing the specification of the algebraic net. For each place we add a token con-
structor , representing the fact that a particular token resides in that place.
A difference with respect to the place/transition net rewriting semantics is
that tokens carry information, which is reflected in the fact that token con-
structors are functions rather than constants. So the token constructor can
be seen as a function tagging an object with information about the place to
which it belongs.

sort Token Marking .

subsort Token < Marking .

op emptyMarking : -> Marking .

op marking : Marking Marking -> Marking

[assoc comm id: emptyMarking] .

op MESSAGES : Message -> Token .

op RECEIVED : IdPair -> Token .

op HO : Knowledge -> Token .

op OK : Knowledge -> Token .

Each token, i.e. each element of sort Token, can be seen as a sin-
gleton marking because of the subsort declaration above. A marking

17 In practice a more restricted execution strategy (see below) could avoid this
unbounded accumulation of messages, but the correctness of the algorithm does
not depend on the assumption of such a strategy.
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is represented as an element of Marking, a multiset sort over Token.
A token MESSAGES(message(x,y,ok,ho)) represents the fact that a
message(x,y,ok,ho) resides in the place MESSAGES, and a correspond-
ing interpretation holds for the other token constructors RECEIVED, HO, and
OK.

Also, the translation of transitions into rewrite rules can be done in full
analogy with the place/transition net translation: Each transition is repre-
sented as a rewrite rule, also called transition rule, replacing its pre-set mark-
ing by its post-set marking. If the transition has a guard, that guard becomes
a condition of the rewrite rule, and the keyword crl is used to introduce such
a conditional rule.

crl [SEND]: marking(HO(knowledge(x,ho)),

OK(knowledge(x,ok))) =>

marking(HO(knowledge(x,ho)),

OK(knowledge(x,ok)),

MESSAGES(message(y,x,ok,ho)))

if inIdPairBag(idPair(x,y),network) .

rl [RECEIVE]: marking(HO(knowledge(x,ho)),

OK(knowledge(x,ok)),

MESSAGES(message(x,y,ok’,ho’))) =>

marking(HO(knowledge(x,idSet(ho,ho’))),

OK(knowledge(x,idSet(ok,ok’))),

RECEIVED(idPair(x,y))) .

When formulating the transition rule for ACCEPT we are faced with
the problem of how to translate the flexible arc between RECEIVED and
ACCEPT appropriately. Of course we would like to express that the multiset
idPairs(x,in(network,x)) is removed from place RECEIVED, but this
presupposes an interpretation of places, as containers of objects, which is
different from our current one, where tokens are tagged objects “mixed up in
a soup together with other tokens”.

The mathematically most elegant solution which has also the advantage
of preserving the concurrent nature of Petri nets is the linear extension of
RECEIVED to multisets. For this purpose we generalise the token constructor
RECEIVED which has already been declared above and we add two equations
expressing the linearity of RECEIVED, which will also be called place linearity
equations :

op RECEIVED : IdPairBag -> Marking .

eq RECEIVED(emptyIdPairBag) = emptyMarking .

eq RECEIVED(idPairBag(b,b’)) =

marking(RECEIVED(b),RECEIVED(b’)) .

Using these equations the transition rule for ACCEPT can be formulated
naturally and in complete analogy with the rules above:
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rl [ACCEPT]: marking(OK(knowledge(x,ok)),

RECEIVED(incoming(network,x))) =>

OK(knowledge(x,idSet(ok,x))) .

According to our initial explanation a place can be seen as the tag of a
token indicating the place in which the token resides. This is what we call
the tagged-token view. The place linearity equations suggest a complementary
view which is encountered more often in the context of Petri nets: A place is
simply a container of objects. We will call this the place-as-container view.
The place linearity equations express our intention to consider both views as
equivalent. Place linearity equations are needed as soon we exploit the place-
as-container view: This is not only the case if we have places with flexible arcs
but also if we want to specify the initial contents of places by finite multisets.
So for the rewriting semantics we extend all token constructors to multisets
and we add place linearity equations such as the one given for RECEIVED
for each of them.

In order to obtain an executable rewrite specification we first have to
make the algebraic specification executable. There is a possibility of non-
termination due to the second equation for RECEIVED: idPairBag(b,b’)

matches the term emptyIdPairBagwith b and b’ bound to emptyIdPairBag.
This is caused by the fact that emptyIdPairBag is an identity element of the
constructor idPairBag. An easy solution is to add a condition restricting
the variables b and b’ to non-empty multisets. After this modification the
equations, viewed as reduction rules, are terminating and confluent. Hence,
our algebraic specification is executable. Unfortunately, this is not yet true
for the rewrite specification, because it is not coherent: In a state where the
rule ACCEPT is applicable it may happen that the place linearity equations for
RECEIVED are applied as reduction rules so that the rewrite rule ACCEPT loses
its applicability. However, we can carry out a trivial semantics-preserving
translation yielding a rule

var m : Marking .

crl [ACCEPT]: marking(OK(knowledge(x,ok)),m) =>

OK(knowledge(x,idSet(ok,x)))

if m == RECEIVED(incoming(network,x)) .

Now the rewrite specification is coherent and can be executed using a
suitable strategy. Remember that we have assumed weak fairness in order to
guarantee that the algorithm reaches a synchronised state. So every strategy
which produces execution sequences satisfying weak fairness will be useful
for validating the algorithm. For instance, the simple strategy which cycles
through all transitions and their bindings for x and y again and again will
finally lead to a synchronised state. However, with this strategy many super-
fluous messages are produced by the transition SEND. As a variation of this
strategy we could give ACCEPT priority over RECEIVE, and RECEIVE
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over SEND. In this way messages tend to be produced on demand. The
strategy language that we used to specify such strategies is itself defined
in rewriting logic and has constructs similar to languages used to formulate
tactics in theorem provers.

Last but not least, it is worth pointing out that there is a more systematic
way to obtain an executable rewriting semantics of an algebraic net specifi-
cation that is already executable in a suitable sense: Since the place linearity
equations express different ways of looking at the same marking of an alge-
braic net, it would be reasonable to assign them to the class of structural
equations expressing symmetries of the state representation instead of using
them as reduction rules. To execute such a specification directly we would
need a matching algorithm which implements matching modulo associativity,
commutativity, identity, and linearity.18 However, generalising an idea sug-
gested in [Mes98a], matching modulo associativity, commutativity, identity,
and linearity can be simulated by matching modulo associativity, commuta-
tivity, and identity using a simple semantics-preserving translation that uses
the place linearity equations as reduction rules (just as we have used them
in our example) and makes essential use of subsorts and overloading. Unfor-
tunately, further details about this translation are beyond the scope of this
introduction.

16.1.5 Final Remarks

The distance between Petri nets and algebraic specification and rewriting
techniques is smaller than it may appear at first sight. It has been demon-
strated that rewriting techniques can be used for the controlled execution
of algebraic Petri nets in a very natural way. More work is necessary to
develop specialised and general purpose strategies for efficient execution of
Petri nets. We think that a framework based on algebraic specification and
rewriting provides a convenient basis for this.

Despite all these possibilities one should keep in mind that net execu-
tion may be useful for locating flaws in the specification or design phase but
it cannot replace the verification of a system with infinitely many possible
executions. In some cases however, e.g. if the state space is finite, general
strategies performing certain analysis tasks, such as reachability and dead-
lock analysis or, more generally, temporal logic model checking, can be used
for automatic verification of Petri nets. Again a rewriting-based language
provides a convenient environment for developing such analysis strategies.

To verify general systems we propose another application of rewriting se-
mantics: It is a good candidate for providing a symbolic representation of
algebraic Petri nets and also of their processes in theorem-proving environ-
ments which usually rely on or support rewriting techniques. From our point

18 A particular advantage of the Maude engine is that its modular design favours
the extension of its set of matching algorithms.
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of view, Petri net execution is a very special case of automated theorem
proving. An execution engine generates a constructive proof that a particu-
lar finite execution is possible in a given system. Hence in the long term we
propose that an integrated tool for verification and execution of Petri nets
should be embedded into a general purpose tactic-based theorem proving en-
vironment which allows reasoning about Petri nets in an expressive language
with partial automation. From this point of view net execution strategies ap-
pear as very special case of theorem proving tactics. As a logical framework,
i.e. as a language that is convenient and expressive enough to specify deduc-
tive systems of different kinds, rewriting logic is an interesting candidate to
be used as a basis for building theorem proving tools and formal analysis
environments as it has been shown in [Cla98, Dur99, SM99].

In general, rewriting semantics allows us to exploit existing languages and
techniques in order to build tools for the execution and verification of alge-
braic net models. It facilitates integration of Petri nets with other paradigms
which can also be given a rewriting semantics, e.g. object-oriented concurrent
programming [Mes93]. But it can also be useful for theoretical purposes: For
instance, rewriting semantics allows us to specialise the elegant categorical
semantics of rewriting logic, yielding a concurrency semantics for algebraic
Petri nets and extensions that can be expressed within the framework of
rewriting logic.

16.2 Assertional Reasoning

Formal and informal reasoning about concurrent and nondeterministic sys-
tems is often carried out directly at the level of executions. This type of opera-
tional reasoning is prone to errors, since a concurrent system typically admits
a huge variety of possible executions. In informal proofs sometimes certain
representative executions are chosen, but again it is difficult to make sure
that all essential behaviours are covered. Assertional reasoning, on the other
hand, deals with logical statements that hold for all executions of programs.
Typically, this method is based on a logic, and a corresponding deductive
system is used for the reasoning process.

A logic well suited for this purpose is unity logic. It is a temporal logic
which has already been employed in section 10.1 on state-oriented modelling
to illustrate a design methodology for distributed algorithms and systems
using P/T nets. The objective of the present section is to adapt unity logic
to support verification of coloured nets. The idea of combining unity logic
and coloured nets is not new and has already been investigated in [MV91]
and [Mac91]. Also the approach to verifying algebraic nets presented in
[WWV+97] continuing earlier work on elementary net systems ([DGK+92],
[Kin95b]) is inspired by unity logic, although a partial-order semantics is
chosen in these references instead of the interleaving semantics that we will
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consider below. A recent approach which uses separate operators for both of
these semantics is presented in [Rei98].

unity logic was introduced as part of the unity methodology proposed
by Chandy and Misra in [CM88] for reasoning about parallel programs writ-
ten in the unity programming language. unity logic and derivatives have
since been employed in other contexts (see, for instance, [Sha93] in addition
to the references above) and even today the unity approach still attracts
many researchers. One reason is certainly the elegance and simplicity that is
achieved in unity while retaining a level of expressiveness that is sufficiently
high for many purposes. The maturity of unity logic for several applications
has been demonstrated by numerous case studies (see e.g. [CM88], [Sta93],
and [CK97b]). Furthermore, its simplicity has led to the existence of rigor-
ous formalisations of the logic within general proof assistants which support
the interactive development of proofs [APP94, HC96, Ste98b, Pau99]. Con-
tinuing the work started in [Ste98b] the author has recently developed an
embedding of a generalisation of unity, based on arbitrary labelled transi-
tion systems19 and incorporating a notion of group fairness, into the calculus
of inductive constructions [BBC+99], a rich type theory with dependent types
that contains higher-order logic. All the proof rules have been not only math-
ematically but also formally verified in this general setting using the COQ
proof assistant [BBC+99]. The result is the core of a verified temporal logic
library that can be instantiated for specific system models such as coloured
Petri nets and developed further into a concrete model for verification. In the
present section we do not emphasise the formal aspects, but merely present
the use of this approach in the context of coloured Petri nets by means of
informal set theory.

In contrast to [CM88] and [Ste98b], a more semantic presentation is cho-
sen here by defining the main operators, namely invariant and leads to,
directly in operational terms. Instead of introducing a closed language of
temporal logic, the temporal operators above are just abbreviations involv-
ing the reachability relation and occurrence sequences of a given net system.
All other temporal operators are introduced as auxiliary notions intended to
guide the activity of proving assertions involving invariant and leads to.
Proof rules are formulated as theorems. Since we do not propose a closed
system of proof rules completeness is not an issue here.20

After fixing the central notions of state predicate and state function, the
presentation starts with elementary safety and liveness operators co and
transient and defines the operators unless and ensures in terms of these.

19 A labelled transition system consists of a set of states S, a set of events E, and
a transition relation →⊆ S × E × S. The labelled transition relation between
markings of P/T nets and coloured nets gives rise to a labelled transition system
in the obvious way.

20 Actually, there are (relative) completeness results for the original unity logic
[Pac92a, Pac92b, Kna94, Pae95, HC96] which can be seen as an important special
case of the approach presented here.
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Finally, the more complex liveness operator leads to is introduced on top
of ensures.

The operators ensures and transient were introduced in [Cha94] and
proposed as a basis for a new approach to unity in [Mis95]. We follow this
new approach, but a more important aspect and major generalisation over
the original unity logic (possible because of our choice of labelled transition
systems as system models) is that we adopt a fairness notion that takes
enabledness into account, in contrast to the unconditional fairness of unity.
Furthermore, we consider fair groups of events instead of single events giving
rise to the notion of group fairness which is more adequate for coloured
nets. Together with the definitions of temporal operators, simple but useful
proof rules are given. Most of these rules are known from [CM88], but it is
remarkable that they are still valid in the more general setting of labelled
transition systems with group fairness. Finally, a simple example is given to
demonstrate the basic ideas of assertional reasoning about coloured nets.

Although a unity style temporal logic can be developed in the general
framework of labelled transition systems, we assume throughout this section
on assertional reasoning that we are interested in the dynamic behaviour of
a coloured net N = (P, T,Pre,Post, C, cd) with initial marking m0. The
states of the system are the markings, and the transition relation between
markings is defined by the usual firing rule in coloured nets. As an execution
semantics of such a net N we will first consider the set of free occurrence se-

quences FreeOcc(N ) = {m1 (t1, β1) m2 (t2, β2) . . . | mi
ti,βi
−→mi+1}, which

are finite or infinite alternating sequences of markings mi and transition
elements (ti, βi) with βi ∈ cd(ti) (βi is an occurrence mode of ti). Notice
that we do not require them to start in the initial marking m0. Instead
the initial condition will be part of the temporal logic specification of a sys-
tem. Later we will restrict the semantics to admissible occurrence sequences
AdmOcc(N ,WF) ⊆ FreeOcc(N ) satisfying a particular weak fairness re-
quirementWF . According to the usual semantics of coloured nets each tran-
sition t ∈ T will be conceived as the set {(t, β) | β ∈ cd(t)} of transition
elements obtained by unfolding the transition. The coloured net obtained
from N by unfolding all transitions will be denoted by Ñ . T̃ denotes the set
of transitions of Ñ , i.e. the set of all transition elements of N . The coloured
net N can be seen as a structured version of Ñ . Of course, nets can be struc-
tured according to different criteria. Structuring is a means to make complex
net models comprehensible without changing their behaviour.

16.2.1 State Predicates and Functions

State predicates and state functions are introduced in order to argue about
predicates and functions evolving in time.

Definition 16.2.1. A state function f is a function from the set of markings
into some domain. A state predicate p is a particular state function into the
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boolean domain {false, true}. p(m) abbreviates p(m) = true. In this case we
also say that m satisfies p. A family of state predicates P over I associates
a state predicate Pi with every i ∈ I. Subsequently, p, q, r and P , Q, R
are reserved for state predicates and families of state predicates respectively.
Logical connectives, quantifiers, and operators are naturally lifted to the level
of state predicates and state functions. Additionally the everywhere operator
[p] is available on state predicates: [p] holds iff p(m) is true for all markings
m.

As an example let p1 and p2 be places of colour IN. Each place p can be
conceived as a state function by setting p(m) = m[p]. Also p1 + p2 can be
seen as a state function defined by (p1 + p2)(m) = p1(m) + p2(m), where +
denotes multiset union. Moreover, p1 = ∅ ∧ |p1 + p2| = 1 is a state predicate
with (p1 = ∅ ∧ |p1 + p2| = 1)(m)⇔ p1(m) = ∅ ∧ |p1(m) + p2(m)| = 1.

16.2.2 Basic Assertions

The definitions of temporal operators will be based on two kinds of basic
assertions, inspired by Hoare triples. Originally, Hoare triples of the form
{p} s {q} with state predicates p and q were used as assertions about a
program (statement) s [Hoa69]. In the partial correctness interpretation, such
a Hoare triple states that if the execution of s is initiated in a state satisfying
p then either the execution of s does not terminate or it terminates in a state
that satisfies q. In the total correctness interpretation such a Hoare triple
also states that s terminates in every state satisfying p. Subsequently, we will
adopt a similar notation for assertions about transitions of coloured nets.

For a transition t, an occurrence mode β ∈ cd(t), state predicates p and
q, and a subset T̃ ′ ⊆ T̃ of net transitions we define the following kinds of
basic state predicates and assertions:

Definition 16.2.2 (Basic state predicates).

1. Enabled(T̃ ′)(m) holds iff there is a transition element (t, β) ∈ T̃ ′ such
that t is enabled under β at marking m.

2. SI(T̃ ′)(m)21 holds iff m ∈ RS(Ñ ′,m0), where RS(Ñ ′,m0) denotes the
set of markings reachable in Ñ ′ from m0.

Definition 16.2.3 (Basic assertions).

1. {p} T̃ ′ {q} holds iff for each m satisfying p and for each (t, β) ∈ T̃ ′ the

following is true: m t,β
−→m′ implies m′ satisfies q.

21 Strictly speaking, it is not necessary to take this state predicate as a basic notion,
since it can be defined as the strongest invariant using the notion of invariant to
be introduced later.
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2. 〈p〉 T̃ ′ 〈q〉 holds iff for each m satisfying p there is a (t, β) ∈ T̃ ′ enabled

at m and for each (t, β) ∈ T̃ ′ the following is true: m t,β
−→m′ implies m′

satisfies q.

Instead of a singleton set of transition elements {(t, β)} we often write just
(t, β). Observe that if (t, β) is not enabled at p the assertion {p} (t, β) {q}
holds trivially, but the assertion 〈p〉 (t, β) 〈q〉 is not satisfied. We separated
these two kinds of assertions, since temporal safety assertions can be defined
using triples of the first kind, whereas definitions of liveness assertions will
also involve triples of the second kind, since enabledness of certain transitions
is obviously needed to make progress.

Notice that, as in Hoare’s original definition, all conceivable states are
considered in the preceding definition and not only reachable ones. The jus-
tification is that the set of reachable markings is usually complicated and
unknown. More importantly, the set of reachable markings is not robust un-
der composition of nets (cf. [Kin95a]). So for compositional reasoning quan-
tification over all markings is more appropriate, since it depends on fewer
assumptions about the system behaviour.

It is easy to see that the following proof rules are sound and complete for
basic assertions {p} T̃ ′ {q} and 〈p〉 T̃ ′ 〈q〉 respectively.

Theorem 16.2.4 (Proof rules for basic assertions).

∀m . ∀(t, β) ∈ T̃ ′ . p(m + Pre[•, t](β))⇒ q(m + Post[•, t](β))

{p} T̃ ′ {q}

[p⇒ Enabled(T̃ ′)] {p} T̃ ′ {q}

〈p〉 T̃ ′ 〈q〉

16.2.3 Safety Assertions

Once basic state predicates and basic assertions have been defined, unity

logic can be built on top of these concepts. As a first step, safety assertions
are defined. Later, liveness assertions are added. The presentation of unity

logic chosen here is based on elementary operators co and transient instead
of unless and ensures respectively. This is only a minor change compared
to the original presentation of unity in [CM88], but it facilitates the under-
standing of the operators.

Another noteworthy point is that all operators are relative to a subset of
transition elements T̃ ′ ⊆ T̃ specifying a particular view of the net. By Ñ ′ we
denote the net obtained from Ñ by removing all transitions not contained in
T̃ ′. Temporarily adopting a certain view focuses on the changes performed
only by transition elements contained in that view. Firing of other transitions
is excluded under this view. Views can be a useful structuring mechanism for
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managing large models and their verification. At this point one might think
of T̃ ′ as the set of all transitions T̃ representing a full view of the net. Later,
proper subsets of transitions will be used to indicate that certain properties
hold for partial views of the net. Since components can be conceived as special
views, this notation will also be suited for compositional reasoning.

The assertion p co q, which is introduced next, captures the fact that if p
holds at some point then q holds at the next state. p unless q means: p holds
at least until q holds. This includes the possibility that q will never hold after
p and p will remain true forever. In other words, if we want to leave a state
satisfying p but not q then the only possibility is to move directly into a state
still satisfying p or into a state satisfying q. The assertion p stable requires
that once p becomes true it remains true forever. If p is inductively invari-
ant (p ind. invariant) it is additionally required that p holds initially.22 In
contrast to these assertions, which are defined using quantification over all
markings, p invariant means that p holds for all reachable markings.

Definition 16.2.5 (Safety assertions).

1. p co q in T̃ ′ iff {p} T̃ ′ {q}.
2. p unless q in T̃ ′ iff p ∧ ¬q co p ∨ q in T̃ ′.
3. p stable in T̃ ′ iff p co p in T̃ ′.
4. p ind. invariant in T̃ ′ iff p(m0) and p stable in T̃ ′.
5. p invariant in T̃ ′ iff for all m ∈ RS(Ñ ′,m0) we have p(m).

Notice that p invariant in T̃ ′ can also be written as [SI(T̃ ′) ⇒ p] and
hence it is definable in terms of our basic concepts.23

The operators co and unless as well as the properties of being stable and
an inductive invariant can be directly verified for a given coloured net using
the proof rules for basic assertions and the definitions above. Some obvious
proof rules for co are given in the following.

Theorem 16.2.6 (Proof rules for co).

false co p

p co true

[p⇒ p′] p′ co q

p co q
(strengthening)

22 The separation between invariant and inductive properties has already appeared
in [Kel76] where P/T nets with inscriptions are used as models for parallel pro-
grams and, in contrast to the original unity approach, we will maintain this
distinction.

23 Indeed the state predicate SI(T̃ ′) can be used to express assertions relativised
to reachable states, which are important for avoiding unnecessarily strong high-
level specifications. As explained in [Ste98b] there is no need to introduce new
temporal operators to express relativised assertions (cf. [San91]). However, we
will not make use of relativised assertions in this introductory presentation.
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p co q [q ⇒ q′]

p co q′
(weakening)

p co q p′ co q′

p ∧ p′ co q ∧ q′
(conjunction)

p co q p′ co q′

p ∨ p′ co q ∨ q′
(disjunction)

∀i ∈ I : Pi co Qi

(∃i ∈ I : Pi) co (∃i ∈ I : Qi)
(general disjunction)

To illustrate the distinction between invariants and inductive invariants
consider the coloured net in Figure 16.3. The only colour domain we use here
is the set of natural numbers N . Define state predicates p :⇔ (p1 = {0}) ∧
(p2 = {0}) and q :⇔ (p1 = {0}). Both of them are invariants, since they hold
in every reachable marking. p is even an inductive invariant, since it holds
initially and {p} t1 {p} is true. However, q is not an inductive invariant, as
{q} t1 {q} does not hold. Notice that t1 abbreviates {(t1, β) | β ∈ cd(t1)},
i.e. the unfolding of the transition t1 in the given coloured net.

y x

yx

t1

0N p2

0N p1

Fig. 16.3.

y y

xx

t2

0N p2

0N p1

Fig. 16.4.

t3

x 1

0N p1

Fig. 16.5.

In contrast to inductive invariants, invariants are defined using the set of
reachable markings and it is not immediately clear how they may be veri-
fied. Fortunately, all of them can be proved using inductive invariants as the
following simple theorem states; it appeared in [Kin95a] in the more general
setting of transition systems.

All of the following assertions will refer to the same arbitrary but fixed
view T ′ ⊆ T without explicitly mentioning it.

Theorem 16.2.7 (Invariance theorems).

1. If p′ invariant and p′ ⇒ p then p invariant.
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2. If p ind. invariant then p invariant.
3. p invariant iff there is some p′ such that

p′ ⇒ p and p′ ind. invariant.

Proof. The first statement is obvious. For the second, assume an inductive
invariant is given. To prove that it is also an invariant, that is, it holds for all
reachable markings, induction over the length of occurrence sequences start-
ing from the initial marking succeeds. To prove the third statement, consider
SI(T̃ ′), the state predicate that holds exactly for all reachable markings of
N ′. Clearly, SI(T̃ ′) is the strongest invariant in the sense that every other in-
variant is implied by SI(T̃ ′). Moreover, SI(T̃ ′) is an inductive invariant since
SI(T̃ ′)(m0) holds and SI(T̃ ′) stable, since every successor of a reachable
marking is again reachable. Now, for every invariant p there is an induc-
tive invariant p′, namely the strongest invariant SI(T̃ ′), with p′ ⇒ p. The
converse of 3 is proved by 1 and 2.

The first part of the theorem states that invariants are closed under im-
plication, a property which is in general not true for inductive invariants,24

as the previous example demonstrates. The second statement of the theorem
is that inductive invariants are invariants whereas the converse does not hold,
which is again shown by the example. The last part of the theorem can be
interpreted as a completeness result for proving invariants: Every invariant
can be derived using an appropriate inductive invariant.

Next we turn our attention to proof rules involving the operator unless.
The weakening, conjunction, and disjunction rules are particularly useful.
The simple conjunction and disjunction rules are easy consequences.

Theorem 16.2.8 (Proof rules for unless).

false unless p

p unless p (reflexivity)

p unless ¬p (antireflexivity)

p unless q [q ⇒ r]

p unless r
(weakening)

24 Assuming the unity substitution axiom, which allows us to substitute unity
invariants by true and vice versa, in our context would force the class of in-
ductive invariants to be closed under implication giving rise to a contradiction.
So we do not assume this axiom, maintaining a clear separation between the
class of invariants which is closed under implication and the class of inductive
invariants which is in general not closed under implication. Indeed, it is known
that the substitution axiom is unsound [San91] if non-reachable states are also
considered in the definition of the operators as is done here in order to allow for
compositional reasoning.
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p unless q p′ unless q′

(p ∧ p′) unless (p ∧ q′) ∨ (p′ ∧ q) ∨ (q ∧ q′)
(conjunction)

p unless q p′ unless q′

(p ∨ p′) unless (¬p ∧ q′) ∨ (¬p′ ∧ q) ∨ (q ∧ q′)
(disjunction)

p unless q p′ unless q′

(p ∧ p′) unless (q ∨ q′)
(simple conjunction)

p unless q p′ unless q′

(p ∨ p′) unless (q ∨ q′)
(simple disjunction)

Further useful rules are given for the conjunction of stable and inductive
invariant predicates and their conjunction with co and unless assertions.

Theorem 16.2.9 (Proof rules for stable and invariant).

p stable q stable

p ∧ q stable
(stable conjunction)

p ind. invariant q ind. invariant

p ∧ q ind. invariant
(invariant conjunction)

p co q r stable

p ∧ r co q ∧ r
(co/stable conjunction)

p unless q r stable

p ∧ r unless q ∧ r
(unless/stable conjunction)

16.2.4 Liveness Assertions

Whereas safety assertions express that something must not happen, liveness
assertions state that something will happen eventually (cf. [Lam77]).25 We
will use a special class of liveness assertions stating that if some condition
holds at some point then some (other) condition will eventually be reached.
In contrast to safety assertions, (non-trivial) liveness assertions can only be
proved if certain fairness assumptions about the occurrence of transitions are
made. Without such assumptions there is no need for a transition to occur
even if it is enabled, and the system is not forced to make any progress.
Unfortunately, the unity notion of unconditional fairness26 is not appropriate

25 This should not be confused with liveness in Petri nets. A formal definition of
safety and liveness properties is given in [AS85].

26 Every unity statement is selected infinitely often regardless of its guard.
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for coloured nets. Instead we will adopt a generalisation of weak fairness,
explained below.

Let us first recapitulate the requirement of weak fairness (also called pro-
ductivity) for transitions of P/T nets introduced in section 10.1. A transition
t which is designated as weakly fair behaves in the following way: If t is per-
manently enabled then t will occur eventually.27 Weak fairness can be easily
lifted to a transition t of a coloured net as follows: If t is permanently en-
abled under some occurrence mode β then t will occur eventually under this
occurrence mode β. This definition of weak fairness in coloured nets is mo-
tivated by the view of a coloured net transition as an abbreviation for a set
of transition elements obtained by unfolding. Unfortunately, weak fairness in
coloured nets is not sufficient to guarantee progress in the case where a tran-
sition is permanently enabled but in different occurrence modes. A typical
situation is that a transition needs to access the value of a variable (modelled
as a place with a single coloured token) which is permanently modified by
other transitions. Under the assumption of weak fairness, the transition may
not succeed in accessing the variable. This immediately justifies the use of a
more flexible notion of fairness that has already been informally introduced
in the previous section and will be made more precise below.

As in the linear time temporal logic presented in [Fra86] we employ a more
general notion of weak fairness, which is called weak group fairness in what
follows. Instead of a set of weakly fair transition elements a set of weakly fair
groups (i.e. sets) of transition elements can be specified.28 We want to ensure
that if a weakly fair group is permanently enabled then some transition of
the group will eventually occur. This will be made more precise below.

At the beginning of this section we introduced FreeOcc(N ) as the set of
free occurrence sequences which do not need to satisfy any fairness assump-
tions. Now let WF be a weak fairness specification, i.e. a set of subsets of
T̃ . Each T̃ ′ ∈ WF is called a weakly fair group. A set T̃ ′ ⊆ T̃ is said to be
enabled at m iff some (t, β) ∈ T̃ ′ is enabled at m. A free occurrence sequence
m1 (t1, β1) m2 (t2, β2) . . . is said to be weakly fair with respect to a transition
group T̃ ′ ⊆ T̃ iff for each index i such that T̃ ′ is enabled at all mk with indices
k ≥ i, there is an index j with j ≥ i such that (tj , βj) ∈ T̃ ′. In particular, this

excludes the possibility that T̃ ′ is enabled in the last marking of a finite oc-
currence sequence. For the remainder of this section we will consider only the
subset of admissible occurrence sequences AdmOcc(N ,WF) ⊆ FreeOcc(N )
which satisfy the weak fairness specification WF , i.e. they are weakly fair
with respect to all groups in WF . For technical reasons, mainly to obtain
an elegant definition of transient, we assume thatWF always contains the
empty group ∅.

27 Weak fairness is treated in [Fra86] and [MP92]. In the latter reference it is called
justice.

28 Weak group fairness can also capture the original notion of fairness in unity
when unity programs are modelled as coloured Petri nets. This is explained in
[MV91] and [Mac91] where group fairness is called group productivity.
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The reason that we do not require all conceivable (groups of) transition
elements to be weakly fair is that for certain applications, e.g. for modelling
external requests, transitions should not be forced to occur even if they are
permanently enabled.29

The assertion p transient means that p cannot hold permanently, since
it will eventually be falsified due to a single weakly fair group of transitions.
On top of transient the assertion p ensures q is defined, requiring that p
holds until q holds and that p and ¬q cannot hold permanently because of a
single weakly fair group of transitions which falsifies the condition p and ¬q.
This implies that p holds until q holds and q will eventually become true.

Definition 16.2.10 (transient and ensures assertions).

1. p transient in T̃ ′ iff there is a weakly fair group T̃ ′′ ∈ WF
such that T̃ ′′ ⊆ T̃ ′ and 〈p〉 T̃ ′′ 〈¬p〉.

2. p ensures q in T̃ ′ iff p unless q in T̃ ′ and p ∧ ¬q transient in T̃ ′.

Theorem 16.2.11 (Proof rules for transient).

false transient

p transient

p ∧ q transient
(strengthening)

Many of the following rules are similar to those for unless. Notice, how-
ever, that a rule closely corresponding to the (simple) disjunction rule for
unless does not hold for ensures.

Theorem 16.2.12 (Proof rules for ensures).

false ensures p

p ensures p (reflexivity)

[p⇒ q]

p ensures q
(implication)

p ensures q [q ⇒ r]

p ensures r
(weakening)

p ensures false

[¬p]
(impossibility)

p unless q p′ ensures q′

p ∧ p′ ensures (p ∧ q′) ∨ (p′ ∧ q) ∨ (q ∧ q′)
(unless/ensures conj.)

29 The idea that different fairness requirements should be distinguished on the basis
of individual transitions is also present in [MP92], [DGK+92] and [Rei98].
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p unless q p′ ensures q′

(p ∧ p′) ensures (q ∨ q′)
(unless/ensures simple conjunction)

p ensures q

p ∨ r ensures q ∨ r
(simple disjunction)

p ensures q r stable

p ∧ r ensures q ∧ r
(ensures/stable conjunction)

Subsequently, leads to is introduced as the main operator for expressing
liveness assertions. The meaning of p leads to q is that if p holds at some
point q will eventually hold. In contrast to the assertion p ensures q, p does
not necessarily hold until q holds but may become false in the meantime.

Definition 16.2.13 (leads to assertions).
p leads to q in T̃ ′ iff for every occurrence sequence m1 (t1, β1) m2

(t2, β2) . . . ∈ AdmOcc(Ñ ′,WF) the following is true: If p(mi) holds for
some index i then there is an index j ≥ i such that q(mj).

In the following list many rules similar to those of unless and ensures

can be found. Note that in contrast to unless and ensures, weakening and
strengthening rules are available. In addition to these and the first three rules
the cancellation and induction rules are also frequently used.30

Theorem 16.2.14 (Proof rules for leads to).

p ensures q

p leads to q
(basis)

p leads to q q leads to r

p leads to r
(transitivity)

∀i ∈ I : Pi leads to q

(∃i ∈ I : Pi) leads to q
(disjunction)

false leads to p

p leads to p (reflexivity)

[p⇒ q]

p leads to q
(implication)

30 In [CM88] leads to is defined inductively as the smallest operator satisfying the
first three rules below. For the purpose of this introductory presentation we have
chosen a more intuitive operational definition of leads to similar to [Lam77]
but with the essential difference that execution sequences not starting with the
initial marking/state are also considered.
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p leads to false

[¬p]
(impossibility)

[p⇒ p′] p′ leads to q

p leads to q
(strengthening)

p leads to q [q ⇒ q′]

p leads to q′
(weakening)

∀i ∈ I : Pi leads to Qi

(∃i ∈ I : Pi) leads to (∃i ∈ I : Qi)
(general disjunction)

p leads to q ∨ q′ q′ leads to r

p leads to q ∨ r
(cancellation)

p leads to q r stable

p ∧ r leads to q ∧ r
(leads to/stable conjunction)

p leads to q r unless r′

p ∧ r leads to (q ∧ r) ∨ r′
(progress-safety-progress)

For a finite set I:

∀i ∈ I : Pi leads to Qi ∨ r ∀i ∈ I : Qi unless r

(∀i ∈ I : Pi) leads to (∀i ∈ I : Qi) ∨ r
(completion)

For a state function f with domain X and
a well-founded strict partial order (≺) on X:

∀x ∈ X : (p ∧ f = x) leads to (p ∧ f ≺ x) ∨ q

p leads to q
(induction)

The rule of induction can be applied to every well-founded partial order
(i.e. a partial order where all descending chains are finite) such as the usual
order on natural numbers or the inclusion order on finite multisets. The
induction rule can be motivated as follows: If p leads to p ∨ q then there
is a potential repetition of states satisfying p. If f is an appropriate variant
function which is known to decrease for each round (the period between two
states satisfying p) then this repetition cannot continue forever (due to well-
foundedness). Hence, the condition q has to be reached eventually.

16.2.5 Elementary Compositionality

Given two nets with disjoint sets of transitions, their composition is sim-
ply the union of these nets. This definition allows shared places which are
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intended to be used for (asynchronous) communication among the compo-
nents. Since the components are (essentially) determined by their sets of
transitions, the components can also be conceived as particular views on the
composed net. Instead of introducing a formal composition on nets it is more
convenient to assume that the composed net is already given. Then different
views of this single net are considered by specifying subsets of transitions.
The notion of composition employed here is related to place fusion (see sec-
tion 10.2) since different components given by disjoint sets of transitions can
exchange information only via shared places.31

Recall that co, unless, and ensures have been defined using all mark-
ings and not only the reachable ones. This is indeed necessary to make them
compositional as the following example suggests: Clearly, the reachability
graphs (containing markings reachable from the initial one) of the nets in
Figures 16.3 and 16.4 are identical. However, it should also be clear that
under composition of each one with the net in Figure 16.5 the behaviour is
completely different. The reason for this phenomenon is simply that an essen-
tial part of the system structure remains hidden if the reachability relation
and the temporal operators are restricted to the set of reachable markings.32

The following theorems will be useful for combining properties derived for
component views to obtain properties for the joint view. They can be easily
extended to unions of more than two views. Here we assume T̃ ′, T̃ ′′ ⊆ T̃ .

Theorem 16.2.15 (Union theorems).

p co q in T̃ ′ p co q in T̃ ′′

p co q in T̃ ′ ∪ T̃ ′′
(co union)

p unless q in T̃ ′ p unless q in T̃ ′′

p unless q in T̃ ′ ∪ T̃ ′′
(unless union)

p transient in T̃ ′

p transient in T̃ ′ ∪ T̃ ′′
(transient union)

p ensures q in T̃ ′ p unless q in T̃ ′′

p ensures q in T̃ ′ ∪ T̃ ′′
(ensures/unless union)

p stable in T̃ ′ p stable in T̃ ′′

p stable in T̃ ′ ∪ T̃ ′′
(stable union)

31 Another notion of composition, called superposition in unity (also contained in
[CM88]), is related to transition fusion with certain restrictions. This is, however,
beyond the scope of this presentation.

32 An in-depth analysis of this issue is contained in [Kin95a].
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p ind. invariant in T̃ ′ p stable in T̃ ′′

p ind. invariant in T̃ ′ ∪ T̃ ′′
(invariant/stable union)

p unless q in T̃ ′ p stable in T̃ ′′

p unless q in T̃ ′ ∪ T̃ ′′
(unless/stable union)

p ensures q in T̃ ′ p stable in T̃ ′′

p ensures q in T̃ ′ ∪ T̃ ′′
(ensures/stable union)

Unfortunately, a rule similar to those above does not hold for leads to.
Compositional reasoning about liveness can be carried out at the level of
ensures and, finally, leads to properties can be derived on the basis of
the composed net. An interesting possibility offered by unity logic that is
not addressed in this introductory presentation is the possibility conditional
assertions which were introduced in [CM88] to enhance compositional rea-
soning. A conditional assertion is of the form A ⇒ B where A and B are
conjunctions of safety or liveness assertions. The meaning is that the asser-
tions in B hold under the assumption of A. Conditional assertions are useful
for stating specifications in a rely/guarantee style where the correct behaviour
B of a component relies on certain guarantees A maintained by the environ-
ment. For particular approaches to compositionality where A contains only
safety properties we refer the reader to [HC96] and [CK97b].

16.2.6 A Simple Example

The coloured net depicted N in Figure 16.6 computes the square of a nat-
ural number by successive addition of odd numbers.33 The only colour set
used here is the set of natural numbers denoted by N . Moreover, all three
transitions are assumed to be weakly fair, i.e. each transition element forms
a singleton weakly fair group; formally we assume {(t, β)} ∈ WF for each
(t, β) ∈ T̃ . Without this requirement the net is not obliged to show any
progress.34 Initially, the input value iv is stored in place pm and the initial
marking is given by

m0(p1) = {0} ∧ m0(p2) = ∅ ∧ m0(p3) = ∅ ∧
m0(pm) = {iv} ∧m0(pi) = {1} ∧m0(podd) = {1}.

After termination the result is expected in place p3.
33 It is taken from [Val93a] where it was used as an example to demonstrate veri-

fication of non-linear place invariants in coloured nets.
34 In contrast to the gossip algorithm, discussed in the previous section, which pre-

supposed group fairness, the simple example we are going to verify does not
have any variables that are accessed concurrently. Hence weak fairness is suffi-
cient here. Further examples, in particular a verification of the main properties of
the gossip algorithm using the approach we present here can be found in [Ste98a].
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Fig. 16.6. A coloured net calculating the square of a natural number

The following proof will be carried out for an arbitrary but fixed input
value iv. According to the informal specification given above, the initial con-
dition IC(m) is defined by m = m0 and the termination condition TC is
p3 6= ∅. Once this condition holds the result of the computation, i.e. the
square of the input value, should be contained in p3.

In order to convey an elementary idea of compositional reasoning the net
can be partitioned into two components corresponding to the views t1 ∪ t3
and t2. The first component can be seen as a controller which checks for
termination and uses the second component as a server to perform addition
operations if necessary. As an abbreviation those assertions which are not
explicitly restricted to a particular view of the net always refer to the full
view t1 ∪ t2 ∪ t3.

The verification task can be split into two parts, the verification of partial
and of total correctness. Partial correctness is a safety assertion: Once the
termination condition is reached the result is correct. This can easily be
expressed as an invariant assertion:

TC ⇒ Σp3 = iv2 invariant (16.1)
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Total correctness is stronger than partial correctness since it requires an
additional liveness assertion: Eventually the termination condition is reached.
This can be naturally expressed using the leads to operator:

IC leads to TC (16.2)

Both of these assertions will be proved below.
The following state predicates I1, . . . , I6 are inductive invariants as can

be easily verified by applying Definition 16.2.5: Each of them holds for the
initial marking and is preserved by every occurrence of a transition.

I1 :⇔ |p1|+ |p2|+ |p3| = 1
I2 :⇔ |pi| = 1
I3 :⇔ |pm| = 1
I4 :⇔ |podd| = 1
I5 :⇔ Σpm = iv
I6 :⇔ Σpodd = 2Σpi− 1

For a multiset A of integers, |A| is the cardinality and ΣA denotes the
sum of all elements of A taking multiple occurrences into account. In the
present example we deal only with singleton multisets A = {x} so ΣA is
used only to obtain the contents of A, that is x.

Instead of proving invariants directly for the full net they can be es-
tablished in a compositional way. For instance, after verifying that I1 is
an inductive invariant in t1 ∪ t3 and I1 stable in t2 by inspection, the
invariant/stable union rule can be used to obtain that I1 is an inductive
invariant in t1 ∪ t2 ∪ t3. Of course, also a different partition into views may
be used e.g. the finer one consisting of three views t1, t2, and t3.

We now prove that Σp1+Σp2+Σp3 = (Σpi−1)2 is an invariant. Clearly,
it is not an inductive invariant because its preservation under firing of t2
depends on the contents of podd. The following state predicate I7 strengthens
this equation by the restriction on podd given by I4 and I6. Now, it can be
verified by inspection of the net that I7 is indeed an inductive invariant.

I7 :⇔ I4 ∧ I6 ∧ Σp1 +Σp2 +Σp3 = (Σpi− 1)2

We will carry out this proof in detail: Since I4 and I6 are already known to
be inductive invariants they are preserved by every occurrence of a transition.
So we can concentrate on Σp1 + Σp2 + Σp3 = (Σpi − 1)2. I7 is clearly an
inductive invariant in t1 ∪ t3 since it holds initially and the occurrence of t1
and t3 preserves I4, I6, and Σp1 + Σp2 + Σp3 as well as Σpi. To conclude
that I7 is an inductive invariant in t1 ∪ t2 ∪ t3 it is sufficient to prove that
I7 stable in t2 and to apply the invariant/stable union rule. Stability of
I7 can be checked as follows: Assume m′ is the successor marking of m under
t2 and I4(m), I6(m), and (Σp1 +Σp2 +Σp3)(m) = ((Σpi− 1)2)(m) holds.
We have (Σp1+Σp2+Σp3)(m′) = (Σp1+Σp2+Σp3)(m)+(Σpodd)(m) and
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(Σpi)(m′) = (Σpi)(m) + 1. The goal is (Σp1 +Σp2 +Σp3)(m′) = ((Σpi−
1)2)(m′). But this follows from the previous two equations and (Σp1+Σp2+
Σp3)(m)+(Σpodd)(m) = ((Σpi)2)(m), which is proved next. Exploiting the
assumptions I6(m) and (Σp1 +Σp2 +Σp3)(m) = ((Σpi− 1)2)(m) the last
equation is implied by ((Σpi−1)2)(m)+(2Σpi−1)(m) = ((Σpi)2)(m) which
is obviously true.

Two further inductive invariants I8 and I9 capture the obvious relation
between pi and pm immediately after firing t1 and t3. They can also be
obtained directly from the net.

I8 :⇔ I1 ∧ I2 ∧ I3 ∧ (p2 6= ∅ ⇒ Σpi < Σpm+ 1)
I9 :⇔ I1 ∧ I2 ∧ I3 ∧ (p3 6= ∅ ⇒ Σpi = Σpm+ 1)

To prove that Σpi ≤ Σpm+1 is an invariant we again have to resort to a
stronger inductive invariant, which can be obtained by conjunction with I8.

I10 :⇔ I8 ∧ Σpi ≤ Σpm+ 1

At this stage partial correctness can already be verified. For this purpose
we have to establish assertion 16.1 but again this cannot be done directly since
TC ⇒ Σp3 = iv2 is not an inductive invariant. However, by the inductive
conjunction rule, the following I11 is an inductive invariant.

I11 :⇔ I5 ∧ I7 ∧ I9

Now the desired invariant 16.1 establishing partial correctness is implied by
I11.

In the remainder of this example our objective is to prove the assertion
16.2 which is additionally necessary for total correctness. For this purpose it
is convenient to collect I1, . . . , I10 into a single inductive invariant using the
conjunction rule for inductive invariants.

I :⇔ I1 ∧ . . . ∧ I10
I ind. invariant

It can also be seen from the net that the following ensures properties
hold. Remember that to establish an ensures assertion, the corresponding
unless assertion is verified first and then a transition has to be found which
realises the progress (the transient part of ensures). On the other hand,
the following assertions are quite intuitive on the basis of the given net. In
16.3 the progress is witnessed by t1 and t3 whereas in 16.5 it is witnessed by
t2.
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For all m, i:

p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i ≤ m+ 1
ensures

(p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ pm = {m} ∧ pi = {i} ∧ i = m+ 1) ∨
(p1 = ∅ ∧ p2 6= ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i < m+ 1)

in t1 ∪ t3.

(16.3)

For all m, i:

p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i ≤ m+ 1
stable in t2.

(16.4)

For all i:

p1 = ∅ ∧ p2 6= ∅ ∧ pi = {i} ∧ podd 6= ∅
ensures

p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1} ∧ podd 6= ∅
in t2

(16.5)

For all i:

p1 = ∅ ∧ p2 6= ∅ ∧ pi = {i} ∧ podd 6= ∅
stable in t1 ∪ t3

(16.6)

Applying the ensures union rule to 16.3 and 16.4 and also to 16.5 and
16.6 we obtain two ensures assertions for the joint view t1 ∪ t2 ∪ t3.

For all m, i:

p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i ≤ m+ 1
ensures

(p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ pm = {m} ∧ pi = {i} ∧ i = m+ 1) ∨
(p1 = ∅ ∧ p2 6= ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i < m+ 1)

in t1 ∪ t2 ∪ t3.

(16.7)

For all i:

p1 = ∅ ∧ p2 6= ∅ ∧ pi = {i} ∧ podd 6= ∅
ensures

p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1} ∧ podd 6= ∅
in t1 ∪ t2 ∪ t3

(16.8)

Since we have I stable, 16.7 and 16.8 can be modified using the stable

conjunction rule for ensures and the results can be converted into leads to

assertions by means of the basis rule for leads to.

For all m, i:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i ≤ m+ 1
leads to

(I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ pm = {m} ∧ pi = {i} ∧ i =
m+ 1) ∨

(I ∧ p1 = ∅ ∧ p2 6= ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i < m+ 1)

(16.9)



16.2 Assertional Reasoning 357

For all i:

I ∧ p1 = ∅ ∧ p2 6= ∅ ∧ pi = {i} ∧ podd 6= ∅
leads to

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1} ∧ podd 6= ∅

(16.10)

The condition podd 6= ∅ can be removed since it is already implied by I .

For all i:

I ∧ p1 = ∅ ∧ p2 6= ∅ ∧ pi = {i}
leads to

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1}

(16.11)

Each leads to assertion in the following family can be derived from an
assertion of the previous family by the strengthening rule for leads to:

For all m, i:

I ∧ p1 = ∅ ∧ p2 6= ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i < m+ 1
leads to

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1}

(16.12)

Now the leads to cancellation rule can be applied to 16.9 and the pre-
vious assertion.
For all m, i:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧ i ≤ m+ 1
leads to

(I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ pm = {m} ∧ pi = {i} ∧ i =
m+ 1) ∨

(I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1})

(16.13)

The following family of leads to assertions follows from the previous
one. Actually, the case where Σpm+1−Σpi= v holds is the only non-trivial
one. Notice that Σpm = iv by I5. Moreover, we have Σpi = i on the left-hand
side and Σpi = i+ 1 on the right-hand side. The reason why (<IN), i.e. the
restriction of (<) to natural numbers, can be used instead of (<) is that I10
which is part of I guarantees that Σpm+ 1−Σpi ∈ IN.

For all m, i, v:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧
i ≤ m+ 1 ∧ Σpm+ 1−Σpi = v

leads to

(I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ pm = {m} ∧ pi = {i} ∧ i =
m+ 1) ∨

(I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ pi = {i+ 1} ∧ Σpm+ 1−Σpi <IN v)

(16.14)

Applying the weakening rule for leads to with pm = {m} ∧ pi = {i} ∧
i = m + 1 ⇒ Σpi = Σpm + 1 and the fact that I ∧ p1 6= ∅ implies p3 = ∅
yields:
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For all m, i, v:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ pm = {m} ∧ pi = {i} ∧
i ≤ m+ 1 ∧ Σpm+ 1−Σpi = v

leads to

(I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ Σpi = Σpm+ 1) ∨
(I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ Σpm+ 1−Σpi <IN v)

(16.15)

Now observe that the condition i ≤ m + 1 can be removed since it is
implied by I (more precisely I10) in presence of pm = {m} and pi = {i}.
Furthermore, m and i occur only on the left-hand side of leads to. So the
general disjunction rule for leads to can be applied. The only assumption
about pi and pm that remains is that both are singletons. This condition,
however, can be removed since it is already implied by I .

For all v:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ Σpm+ 1−Σpi = v
leads to

(I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ Σpi = Σpm+ 1) ∨
(I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅ ∧ Σpm+ 1−Σpi <IN v)

(16.16)

Clearly, (<IN) is a well-founded order such that the induction rule for
leads to applies. We obtain:

I ∧ p1 6= ∅ ∧ p2 = ∅ ∧ p3 = ∅
leads to

I ∧ p1 = ∅ ∧ p2 = ∅ ∧ p3 6= ∅ ∧ Σpi = Σpm+ 1
(16.17)

The left-hand side of this assertion is implied by the initial condition IC.
Hence, leads to strengthening and weakening yields

IC leads to p3 6= ∅ (16.18)

which is just assertion 16.2, completing the proof of total correctness.

16.2.7 Extensions of the Logic

The state-based part of unity logic (i.e. the fragment without Hoare-style
assertions, transient, ensures, and the concept of views) can be conceived
as a fragment of linear time temporal logic with next-time operator ◦. For
instance, it can be embedded into the linear time temporal logic LTL (cf. sec-
tion 14.1.1, [Pnu81], [MP92]) by interpreting:

p co q as 2(p⇒ ◦ q),
p unless q as 2(p ∧ ¬q ⇒ ◦ (p ∨ q)),
p stable as 2(p⇒ ◦ p),

p ind. invariant as (IC ⇒ p) ∧ 2(p⇒ ◦ p),
p invariant as IC ⇒ 2p,
p leads to q as 2(p⇒ 3q).
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Here IC is the initial condition which is satisfied only for the initial mark-
ing of the coloured net. Recall that only p invariant and p ind. invariant

depend on the initial condition. Of course, to be consistent with the execu-
tion semantics which we use in this section we have to consider the set of free
admissible occurrence sequences as the LTL semantics. If we consider only oc-
currence sequences starting at the initial marking it is impossible to express
unity logic assertions, since they can express properties at non-reachable
states (at least in the reinterpretation of unity that we have adopted here).

From this more general point of view, the main unity operators are just
an abbreviation for frequently used formulae of linear time temporal logic. If
further operators turn out to be necessary they can easily be defined. This
supports our view that the logic presented here should not be seen as a closed
system but should be extended if necessary for certain applications.

Generalising the original presentation of unity logic, we incorporated the
standard notion of weak fairness and more generally weak fairness for groups
of transition elements by modifying the original definition of transient.
That weak and strong fairness are central issues for the specification and
verification of concurrent systems has already been observed in [LPS81] and
should also be clear from the example in section 10.1, where unity logic was
used as a specification language for state-oriented modelling with P/T nets.
In that chapter weak and strong fairness for certain transitions was assumed
to ensure important liveness assertions needed to meet the specification.35

Of course, it is not possible to express the occurrence of transitions di-
rectly in a (primary) state-based temporal logics such as unity or MP logic.
However, depending on the expressibility of the logic it may be possible to
approximate by temporal formulae the effect of weak and strong fairness on
the state. For instance, unity logic can express weak fairness assertions of
the form (32p) ⇒ (23q) for atomic formulae p and q since this MP logic
formula is equivalent to 23(¬p ∨ q) which is in turn equivalent to the unity

assertion true leads to (¬p ∨ q) (see [BT95]). On the other hand, unity

logic is not expressive enough to capture strong fairness assertions of the form
(23p)⇒ (23q).

Instead of viewing fairness requirements as assumptions expressed in
the temporal logic itself, the unity approach encapsulates them in the
definition of the temporal operators transient and ensures. Just as
ind. invariant is an auxiliary operator for deriving invariant assertions, we
regard transient and ensures as auxiliary operators for deriving leads to

assertions. It is possible to adjust their definitions to add further kinds of
fairness specifications. For instance, as described in [Rao95], it is possible
to integrate strong fairness for transitions by redefining ensures appropri-
ately. An alternative that we prefer, however, is to preserve the definitions
of transient and ensures and their compositional properties, and to add

35 Strong fairness is treated in [Fra86] and also in [MP92] where it is called com-
passion.
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a proof rule for strong (group) fairness at the level of leads to. Although
details are beyond the scope of this introduction, we would like to point out
that such a rule can make use of a strong (group) fairness specification SF
in analogy to the weak (group) fairness specification WF we are already
using, and it can be justified using a more restricted execution semantics
AdmOcc(N ,WF ,SF) that takes WF and SF into account.

16.2.8 Combination with Other Methods

Of course, results obtained by other methods, such as model checking or
structural methods, can be incorporated into the reasoning process to the
extent that they can be expressed within the logic.

In particular, techniques for determining S-invariants are well suited for
supporting the verification process. For instance, in the example above the
(inductive) invariants I1, . . . , I6 are actually linear S-invariant equations. To
verify this notice that the functions |p| and Σp are linear mappings from mul-
tisets of IN into IN. I6, for example, is equivalent to the equation W (m) = 1
with linear weight function W (m) = 2Σpi(m)−Σpodd(m) mapping mark-
ings to natural numbers. To verify that W (m) = 1 is indeed an S-invariant
equation it remains for us to check it for the initial marking and to ver-
ify the flow balance condition W (Pre[•, t](β)) = W (Post[•, t](β)) for every
transition t under every binding β ∈ cd(t).

In contrast with I1, . . . , I6, the invariant Σp1 +Σp2 +Σp3 = (Σpi− 1)2

contained in the (inductive) invariant I7 is clearly non-linear. Nevertheless it
is possible to treat this equation as an extended S-invariant using an approach
developed in [Val93a] and [Val93b]. We will demonstrate the basic idea below.

The invariant in question is captured by the equation W (m) = 0 us-
ing the non-linear weight function W (m) = (Σpi(m) − 1)2 − Σp1(m) −
Σp2(m) − Σp3(m). However, this function is almost linear, in the sense
that it is linear in all non-clearing places, that is p1, p2, and p3. A clearing
place is a place that is always empty after some transition of its post-set
fires. In [Val93a] and [Val93b] it is proved that the usual flow balance con-
dition is sufficient to establish the equation. Again, the flow balance condi-
tion is W (Pre[•, t](β)) = W (Post[•, t](β)). Whereas this equation is obvious
for t1 and t3 the case of t2 is more intricate: If β is the binding given by
(s, i, odd) we have W (Pre[•, t2](β)) = (i − 1)2 − s = i2 − (2i − 1) − s and
W (Post[•, t2](β)) = i2 − (s + odd) = i2 − odd − s. Flow balance can now
be established using the inductive invariants I2, I4, and I6 which ensure that
odd = 2i− 1. Notice that we have additionally used I2 which is not present
in I7. So we have actually proved the stronger assertion that I2 ∧ I4 ∧ I6 ∧
Σp1 +Σp2 +Σp3 = (Σpi− 1)2 is an inductive invariant.
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16.2.9 Final Remarks

Even in our simple example it has become evident that verification of concur-
rent systems requires general mathematical results and techniques in addition
to pure temporal reasoning. For instance, we implicitly employed straightfor-
ward logical rules and also simple results about natural numbers. The frame-
work we used is informal set theory, and the temporal logic is embedded into
set theory by its set-theoretic semantics. If we are interested in formalising
correctness proofs to support verification via interactive computer-aided the-
orem proving, there are interesting alternatives to set theory, namely higher-
order logics and type theories, e.g. those formalisms employed in [APP94],
[HC96], and [Ste98b]. In any case it should be clear that isolated proof sys-
tems supporting only temporal reasoning cannot cope with the complex ver-
ification problems which we encounter in practice. From this point of view
a combination of different methods seems to be inevitable, and remains an
important research challenge which goes far beyond net theory.

16.3 A Logic of Enablement

In this section we discuss a temporal logic language T that allows us to argue
about the enablement of transitions or so-called computations. In addition
to the standard temporal operators of future necessity and eventuality, we
need to define conditional modalities for which the standard semantics has to
be extended along the lines of PTL or the propositional modal mu-calculus
(see for example [Sti96, Bra92]). The semantics given to T will be essentially
event-based. Our arguments will use a special predicate using conditional
modalities that represents the enablement of a transition/computation which
we call E(t) for transition t for instance.

We study reductions from complex nets to much simpler test nets and
apply some preservation and reflection results for the reduction morphisms.
Assume that some property of a simple net N ′ has already been proved. Then
if we can show that the application of a reduction ρ on a more complex net
N leads exactly to N ′ such that the same property holds for N , we speak of
the reflection of properties of net behaviours. Conversely we say a property
ϕ is preserved by a morphism ρ from net N to net N ′ if it holds for N ′

whenever it can be shown to hold for N . This can be seen as a formalisation
of concepts informally proposed by Olderog in [Old91].

16.3.1 Morphisms, Reductions, and Simulation

In this section we will define the basic notions that will be needed to study
relations between nets. We start by setting up a categorical framework, then
we define morphisms, and finally convey our understanding of simulation
between nets.
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A Category of Nets. In the literature there exist many categorical repre-
sentations of Petri nets and net dynamics. Since we are not interested in the
mathematical theory of categories in the present context, we will only out-
line for the more mathematically inclined reader the fundamental category
in which we will be working.

A category with markings of Petri nets as objects and computations as
morphisms is called a behaviour category in [BG92]. Other authors have de-
fined categories with behaviour categories as objects, i.e. [MM88, DMM89].
We will instead follow Brown and Gurr’s [BG94] notion of a category of
marked nets and reductions.

MNet+ is a category with marked multi-loop-free Petri nets as objects
and reverse reductions of nets as morphisms. A multi-loop is a transition that
outputs more than one token to any one of its input places, or conversely
consumes more than one token from an output place. Formally we define:

Definition 16.3.1. The category MNet+ has net systems (i.e. marked
P/T nets) S = 〈N ,m〉 consisting of a multi-loop-free Petri net N =

(P, T,Pre,Post) and a marking m : P → IN|P | as objects, and morphisms
〈f, F 〉 such that f : T → T ′+ and F : P ′ → P are partial functions. Further-
more we require that the left diagram holds for ≤ and the right for ≥:

P ′+ × T ′ IN-

Pre′

P ′ × T P × T-
F×id

?

id×f

?

Pre

P ′ × T ′+ IN-

Post′

P ′ × T P × T-
F×id

?

id×f

?

Post

Put in standard set-theoretic terms we require ∀t ∈ T . ∀p′ ∈
P ′ . (Pre[Fp′, t] ≥ Pre′[p′, ft]) ∧ (Post[Fp′, t] ≤ Post′[p′, ft]), i.e. the
image net uses at most as many tokens from, and produces at least as many
tokens to, the corresponding places as the original net.

Composition is defined component-wise in the morphisms.

We will allow an isolated place in our net systems that is labelled by
?. This will be needed to abstract from certain places of the original net.
Isolated places will contain no tokens and will formally be written as a net
system ⊥ = 〈{?}, {?},0,0,0〉, such that the pre- and post-condition vectors
as well as the marking vector are zero vectors.

Remark 16.3.2. Note that the definition of MNet+ is based solely on the
structure of the nets. There will be no need to construct any form of the reach-
ability graph to apply its morphisms, hence avoiding the state-space explo-
sion problem encountered in many traditional approaches to model checking
of nets.

The net theoretic interpretation of categorical products and coproducts
is not needed to understand the rest of the section. We remark though that
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the product represents choice and the coproduct is interpreted as the parallel
composition of nets from MNet+.

Notion of Simulation. We first define a relation F+ ⊆ P×P′ on multisets
of places based on functions F : P ′ → P , such that (m,m′) ∈ F+ iff ∀p′ ∈
P ′ .m[F (p′)] ≤ m′[p′] holds. The following notion of simulation is easily
verified to hold for all morphisms in MNet+ and also every simulation is a
morphism in our category.

Definition 16.3.3 (Simulation). A morphism 〈f, F 〉 is a simulation be-
tween two net systems S = 〈N ,m〉 and S ′ = 〈N ′,m′〉 iff (m,m′) ∈ F+

and

∀(m1,m
′
1) ∈ F

+ .

(
m1

t
−→m2 ⇒ (m′

1

f(t)
−→m′

2 ∧ (m2,m
′
2) ∈ F

+)

)
.

There are other kinds of reductions defined on nets that serve a similar
task, namely that of proving properties of nets. Most of these reductions are
designed to simplify the net by some reduction rules that preserve properties
such as boundedness or liveness, such that it is trivial to show that the
simplified net has that property. The rules for such reductions are in general
much more intricate and their application is very limited compared with the
morphisms studied in this approach. For a more detailed introduction to such
reductions, see Section 15.1.

Computations. We write computations, i.e. sequential and parallel compo-
sition of transitions, as the product and sum respectively of the individual
transitions involved.

Definition 16.3.4 (Finite Computation, Computation Sequence). A
finite computation of a net system 〈P, T,Pre,Post,m〉 is defined recursively
as:

1. A single transition t ∈ T and the “non-action” ι (identity step) are finite
computations.

2. Given two finite computations u and v their parallel composition u‖v is
a finite computation.

3. Given two finite computations u and v their sequential composition u · v
is a finite computation.

4. Only those expressions formed in a finite number of steps from 1.–3. are
finite computations.

A computation sequence γ = γ0, γ1, . . . is a finite or infinite succession of
finite computations γi. Since any finite computation sequence can be viewed
as an infinite one that has a suffix of infinitely many identity steps, we will
use only infinite computation sequences.
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Remark 16.3.5. Any finite computation sequence γ = γ0, γ1, . . . , γn can be
rewritten as a finite computation γ1 · γ2 · · · · · γn. Infinite computations in
which all computation steps are single transitions are called executions of a
net, i.e infinite sequential processes.

Let CN ,m denote the set of all finite computations of the net N with initial
marking m.

16.3.2 A Temporal Logic for Nets

In the following we define a temporal dynamic logic that will be used to
describe properties of marked Petri nets. The logic presented here will be
given an event-based semantics and the basic property of enablement of a
single transition or of a computation will be the starting point for describing
further properties of net dynamics.

Syntax. The logical language T used is given by

Φ := true | ¬Φ | Φ ∧ Φ | 3Φ | 〈t〉Φ | ∀x . Φ

where t is any closed term and x is a variable. As usual for any formulae α
and β of T we can define the following composite formulae:

false := ¬true, α ∨ β := ¬(¬α ∧ ¬β), ∃x . α := ¬∀x .¬α,

[t]α := ¬〈t〉¬α, 2α := ¬3¬α,

α⇒ β := ¬α ∨ β, α⇔ β := α⇒ β ∧ β ⇒ α.

Semantics. An interpretation θ is a partial function from the logical con-
stants to computations of a net system 〈N ,m〉. Following the definition of
the denotation for formulae from T it is possible to specify a range of net
properties:

‖true‖θ = CN ,m

‖false‖θ = ∅
‖¬Φ‖θ = {γ | γ 6∈ ‖Φ‖θ}
‖Φ ∨ Ψ‖θ = ‖Φ‖θ ∪ ‖Ψ‖θ
‖Φ ∧ Ψ‖θ = ‖Φ‖θ ∩ ‖Ψ‖θ
‖[t]Φ‖θ = {γ | ∀k ∈ IN . γ0, . . . , γk = θ(t)⇒ γk+1 ∈ ‖Φ‖θ}
‖〈t〉Φ‖θ = {γ | ∃k ∈ IN . γ0, . . . , γk = θ(t) ∧ γk+1 ∈ ‖Φ‖θ}
‖2Φ‖θ = {γ | ∀k ∈ IN .γk+1 ∈ ‖Φ‖θ}
‖3Φ‖θ = {γ | ∃k ∈ IN .γk+1 ∈ ‖Φ‖θ}
‖∀α.Φ‖θ = {γ | ∀x ∈ dom(θ) . γ ∈ ‖Φ[α/x]θ}
‖∃α . Φ‖θ = {γ | ∃x ∈ dom(θ) . γ ∈ ‖Φ[α/x]θ}

We say a marked net 〈N ,m〉 models a formula Φ iff there is an interpre-
tation θ under which Φ is satisfied. In this case we write 〈N ,m〉 |=θ Φ.



16.3 A Logic of Enablement 365

The satisfaction relation is defined as follows:

〈N ,m〉 |=θ true
〈N ,m〉 |=θ ¬Φ iff 〈N ,m〉 6|=θ Φ
〈N ,m〉 |=θ Φ ∧ Ψ iff 〈N ,m〉 |=θ Φ and 〈N ,m〉 |=θ Ψ

〈N ,m〉 |=θ [t]Φ iff ∀m′ .m
θ(t)
−→ m′ ⇒ 〈N ,m〉 |=θ Φ

〈N ,m〉 |=θ 2Φ iff ∀a.∀m′ .m
a
−→m′ ⇒ 〈N ,m〉 |=θ Φ

〈N ,m〉 |=θ ∀x . Φ iff ∀α ∈ dom(θ) . 〈N ,m〉 |=θ Φ[α/x]

The Enablement Predicate Since our reasoning about net properties is
based on the enablement of computations, it is convenient to define an en-
ablement predicate E(t) as 〈t〉true. It is easily shown that 〈N ,m〉 |=θ E(t)
whenever the interpretation of the term t is enabled in the net system
S = 〈N ,m〉. Conversely 〈N ,m〉 |=θ 〈t〉false whenever θ(t) is not enabled,
and so 〈N ,m〉 |=θ ¬E(t) holds.

Some properties that can be stated in T are:

formula property

E(t) enablement of θ(t)
∃x .¬E(x) existence of some non-enabled computation
∀x .¬E(x) deadlock
2∃x .E(x) “there is always some computation that is enabled”
∃x .2E(x) “there exists a transition that is always enabled”

In practice many properties can be described by state formulae from T ,
i.e. formulae of the form true | E(t) | α∧α | ¬α. Among these properties are
(for state formulae Φ and Ψ):

1. Safety properties 2Φ, such as mutual exclusion
(2¬E(t‖t′) = ¬3E(t‖t′));

2. Progress properties 32Φ ∨ 23Ψ such as the (strong) fairness described
by 2(23E(t0)⇒ 23E(t1));

3. Persistence properties 32Φ;
4. Termination properties 3Φ;
5. Recurrence properties 23Φ.

Many of these properties can be shown to be invariant against the appli-
cation of simulations as defined above. To do this we need to define what we
mean by invariance in this setting. We have made a distinction between safety
and progress properties here, becaus we will see that different preservation
results apply to the formulae of the example above.

Preservation and Reflection of Properties. We are interested in both
directions of the application of morphisms to marked Petri nets. When look-
ing at the reduction aspect, i.e. the transformation from a more complex net
to a simpler one, we will use the preservation of properties for our arguments.
When considering the abstraction aspect we are interested in reflection of
properties. We start by formalising these concepts:
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Definition 16.3.6 (Preservation). The satisfaction of a property Φ of a
marked net 〈N ,m〉 is said to be preserved by a morphism 〈f, F 〉 if the fol-
lowing holds for the image net 〈N ′,m′〉:

〈N ,m〉 |=θ Φ ⇒ 〈N ′,m′〉 |=fθ Φ.

Φ-computations are preserved by a morphism 〈f, F 〉 iff

∀γ . γ ∈ ‖Φ‖θ ⇒ fγ ∈ ‖Φ‖fθ.

Definition 16.3.7 (Reflection). The satisfaction of a property Φ of a
marked net’s image 〈N ′,m′〉 is said to be reflected by a morphism 〈f, F 〉
if the following holds for the source net 〈N ,m〉:

〈N ′,m′〉 |=fθ Φ ⇒ 〈N ,m〉 |=θ Φ.

Φ-computations are reflected by a morphism 〈f, F 〉 iff

∀γ . fγ ∈ ‖Φ‖fθ ⇒ γ ∈ ‖Φ‖θ.

We will often omit the the term “satisfaction” and simply talk about
the preservation or reflection of a formula. We will also omit mention of a
particular morphism if the result holds for every morphism in the category.

Theorem 16.3.8. The following preservation results for formulae from T
can be obtained:

1. A quantifier-free formula Φ is preserved if it does not contain an instance
of the connective [t].

2. true-computations are preserved and true is preserved.
3. E(t) and E(t)-computations are preserved.
4. If 〈f, F 〉 preserves Φ- and Ψ -computations then also Φ ∧ Ψ -, Φ ∨

Ψ -, 3-, 〈t〉Φ-, ∀x . Φ-, and ∃x . Φ-computations are preserved.
5. If 〈f, F 〉 preserves Φ-computations and f is injective, then 〈f, F 〉 also

preserves [t]Φ-computations.

Theorem 16.3.9. The following reflection results for formulae from T can
be obtained:

1. A quantifier-free formula Φ is reflected if it does not contain an instance
of the connective 〈t〉.

2. Φ-computations are reflected iff ¬Φ-computations are reflected.
3. 〈f, F 〉 reflects Φ if 〈f, F 〉 reflects Φ-computations.
4. ¬E(t) is reflected.
5. If 〈f, F 〉 reflects Φ- and Ψ -computations then 〈f, F 〉 also reflects Φ ∧ Ψ -,

2Φ-, [t]Φ-, and ∀x . Φ-computations.
6. If 〈f, F 〉 reflects Φ-computations and f is injective, then 〈f, F 〉 also re-

flects [t]Φ-computations.

For proofs of these results the reader is referred to [BG94].

Example 16.3.10. Property 1. (safety) from page earlier in this section is
reflected, but property 2. (progress) is not reflected by all morphisms.



16.3 A Logic of Enablement 367

16.3.3 The Concept of a Test Net

There are several simple nets whose properties have been extensively studied
in the past or which can be efficiently checked using traditional model check-
ing techniques. Using these nets, we can apply our category of morphisms to
show that the same properties hold for more complex nets. Therefore we call
the simple nets test nets as proposed by C. Brown [BG94]. The basic idea is
that if it is easy to show that a complex net is simulated by a test net (or
vice versa) and we know that the simulation relation depends on a reduction
morphism that has been shown to preserve certain properties, then it is also
easy to deduce these properties for the net itself (by simply applying the
morphism in question).

By applying some morphism from our category we obtain a net N ′ from
N . The morphisms will be designed to reduce the complexity of the net N ,
to which a preservation theorem is to be applied, such that N ′ will in general
have fewer states or transitions. If applying a reflection theorem the converse
will be the case. If a net is “sufficiently” simple to show the satisfaction of
some formula it will be called a test net.

Minimality We are interested mainly in morphisms between nets, such that
the behaviour of one net is an image of another net’s behaviour under a
specific morphism. For reasons of efficiency it is natural to consider only
morphisms that do not allow any superfluous components. Such morphisms
are called minimal.

Definition 16.3.11 (Minimality). A morphism 〈f, F 〉 is said to be mini-
mal if for every computation sequence γ ′ of 〈N ′,m′〉, there exists a unique
inverse image with respect to f such that f(γ) = γ ′. In other words, if we
have CN ′,m′ ⊆ f(CN ,m) then 〈f, F 〉 is minimal.

A formula Φ ∈ T is said to be minimally preserved if all minimal mor-
phisms 〈f, F 〉 preserve Φ. Minimal reflection is defined analogously.

Theorem 16.3.12. If 〈f, F 〉 is a minimal morphism between two net sys-
tems the following preservation results may be obtained for formulae from
T :

1. If 〈f, F 〉 preserves Φ-computations then 〈f, F 〉 also preserves Φ.
2. If 〈f, F 〉 preserves Φ-computations then 〈f, F 〉 preserves [t]Φ.

Corollary 16.3.13. If Φ is minimally preserved then [t]Φ is minimally pre-
served. If Φ is minimally reflected then 〈t〉Φ is minimally reflected.

Example 16.3.14. Property 2. (progress) from Section 16.3.2 is minimally
reflected by morphisms 〈f, F 〉 where f is an injection. This progress property
is also preserved.
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Fig. 16.7. Nets for mutual exclusion algorithm with semaphore

16.3.4 Example: Mutex

Let us now turn to one of the previous example properties of nets, the mutual
exclusion property. Consider the net N from Figure 16.7. We would like to
show that the places cs1 and cs2 cannot both hold a token at the same time
and thus the transitions enter1 and enter2 are never concurrently enabled.
This would be formally expressed by the enduring holding of the negation of
the concurrent enablement of the transitions: 2¬E(enter1‖enter2).

Consider the two propositional variables α and β. Let the interpretation θ
assign the following computations to the variables: θ(α) = free1‖free2 and
θ(β) = enter1‖enter2‖enter3.

We take for granted that the transitions End1 and End2 of the test net
N ′′ have the mutual exclusion property. Let mRes denote the marking of N ′′

in which the only token in the net occupies place Res. Then the following
holds:

〈mRes,N
′′〉 |=fθ 2¬E(α) (16.19)

As we know from Theorem 16.3.9, ¬E(t)-properties are reflected, thus we
have to find a morphism from N to N ′′ (actually to the coproduct of N ′′ with
⊥, since we will need the isolated place ?). But this is not possible directly, so
we have to consider a modest extension N ′ of N as depicted in Figure 16.8.
It is easily seen that N ′ is behaviourally equivalent to N , since it adds only
two redundant places.

Now specify the morphism 〈f, F 〉 by f(reqi) = Begi, f(freei) = Endi,
f(enterj) = ?, and F (Res) = res, F (CS1) = cs1, and F (CS2) = cs2‖cs3 for
i ∈ {1, 2}, j ∈ {1, 2, 3}. It is easy to check that 〈f, F 〉 is indeed a morphism in
MNet+ and that N is multi-loop-free. The reasoning for the ME-property
of N goes as follows:

From Theorem 16.3.9 it follows that 〈m0,N
′〉 |=θ 2¬E(α), where m0

denotes the marking of N ′ in which places res, idle1, and idle2 contain one
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Fig. 16.8. Net modification N ′ for showing mutual exclusion in N

token each. We also have 〈m0,N ′〉 |=θ [β]E(α), i.e. whenever enter1, enter2,
and enter3 fire simultaneously, free1 and free2 are both enabled. We have
just shown that this cannot be the case, so we deduce that no computation
of 〈m0,N ′〉 can ever enable θ(β), thus 〈m0,N ′〉 |=θ 2¬E(β) holds, meaning
that in no reachable marking are places cs1 and cs2 simultaneously marked.

In a similar fashion we could also show that cs1 and cs3 cannot hold a
token simultaneously, but cs2 and cs3 can be simultaneously marked.

Modularity of the Approach. The application of morphisms allows large
parts of a complex net to be made invisible in a simulation of some aspect
of the net. By successively concentrating on parts of the net and simulating
them on suitable test nets we have a modular approach for verifying different
system properties.

It is then possible to collect a basic set of test nets to deal with different
kinds of situations such as the mutual exclusion problem shown in the ex-
ample. Other test nets could be specified to deal with a variety of properties
including those mentioned above.

For instance, the simple net consisting of a single marked place that acts
as a side condition to one transition for each branch of the choice situation
in the initial marking of N can serve as a test net to show that the net N
from Figure 16.7 is deadlock-free. Absence of a deadlock can then be shown
to be a preserved property of this net. The construction of an appropriate
morphism is left to the reader as an exercise.

Requirements and Complexity Issues. The complexity of the basic
check of whether a given morphism belongs to the category MNet+ is linear
in the size of the net. However, as in the case for other techniques of model
checking, this approach also has some drawbacks:
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1. The morphisms used to verify a certain property have to be designed
manually. A fully automatic method does not seem possible.

2. Properties of the net have to be expressed in temporal logic. The seman-
tics of the temporal logic used by our approach allows only event-based
properties to be expressed directly; arguments about markings and P-
invariants have to be given indirectly by statements over the transitions
enabled by the markings in question.

3. The question of which logical calculus is best suited is still open. In future
work it would be desirable to construct a compositional proof system
along the lines of [Win90] to exploit the modularity of this approach and
the additional structure in the category MNet+ (i.e. the existence of
products and coproducts to represent choice and parallel composition of
processes).

16.4 Linear Logic and Petri Nets

Linear logic has been shown to be well suited for describing Petri nets and
their dynamics, however few attempts have been made to develop linear logic
for analysing nets and proving properties beyond the reachability of certain
markings.

Before going into the details of the Petri net representation we will briefly
and informally characterise the connectives of linear logic, the main idea of
which is to split the conjunction (respectively disjunction) into two different
versions, one that is resource sensitive and another that behaves more or
less like the classical connective. In order to maintain the power of classical
calculi one has to introduce modalities, the so-called exponentials. The linear
constants and connectives that will be used in this section are:
⊗ (times, tensor) is the multiplicative resource-sensitive version of classi-

cal conjunction, e.g. A ⊗ B in linear logic means that both resources A and
B are present at the same time, whereas A⊗A means that two instances of
the same resource are present.

..............................................
............
..................................... (par) is the multiplicative disjunction, A

..............................................
............
..................................... B means: if not A then B.

−◦ (entails) is the multiplicative implication, such that A −◦ B means
that we get one new instance of resource B while consuming exactly one
instance of resource A.

The additive conjunction & (with) expresses a kind of deterministic choice,
e.g. in a situation where both resources are offered to you but you cannot grab
both of them, A&B is the representation of your choice between A and B. The
additive disjunction ⊕ (plus) on the other hand represents nondeterminism
or a choice on the systems side, i.e. given A⊕B it is at the system resource
managers discretion to give you either A or B. You can only be sure not to
leave empty-handed.

Linear negation (·)⊥ could be called a dept in monetary terms. In general
A⊥ is an input slot for using up one instance of resource A.
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The exponential ! (of course) is the storage operator, also called the op-
erator of reusability, which makes a resource arbitrarily available.

The multiplicative constants are 1 and ⊥, where 1 is the unit of the
multiplicative conjunction, meaning truth only in isolation, and ⊥ is the unit
of par representing a placeholder for nothingness. The units of the additive
conjunction and disjunction are > and 0, representing true truth and falsity
respectively (i.e. truth or falsity in any context).

16.4.1 Basic Relationship

We will give a short survey of the work done by C. Brown ([Bro89]), N. Mart́ı-
Oliet and J. Meseguer ([MOM91]), U. Engberg and G. Winskel ([EW90]). We
use the notion of a marked net, i.e. that of an instantaneous description of
a net. Only formulae from propositional linear logic that contain the tensor
product ⊗, linear implication −◦ , the additive connective of choice &, the
storage-operator ! and the constant 1 will be used in this section.

Terminology. We denote sequents by Γ ⇒ ∆, where Γ and ∆ are multisets
of formulae, and ⇒ is a metasymbol that has the meaning of entailment
in the calculus. The multisets are usually written in list notation, omitting
any superfluous braces or parentheses, i.e. a sequent will often be written as
A1, . . . , An ⇒ B1, . . . , Bm. The semantics given to such a sequent in classical
terms is A1 ∧ · · · ∧ An ⇒ B1 ∨ · · · ∨ Bm. For linear logic the multiplicative
fragment is used to give semantics to such a sequent, i.e. A1 ⊗ · · · ⊗ An ⇒
B1

..............................................
............
..................................... · · ·

..............................................
............
..................................... Bm which is equivalent to the occasionally used one-sided sequent

⇒ A⊥1
..............................................
...........
...................................... · · ·

..............................................
...........
...................................... A⊥n

..............................................
...........
...................................... B1

..............................................
...........
...................................... · · ·

..............................................
...........
...................................... Bm or ⇒ A⊥1 , . . . , A

⊥
n , B1, . . . , Bm for short.

Sequent Calculus for Linear Logic. Only the inference rules from the
fragment of linear logic shown in Table 16.1 will be needed. We use the
two-sided version of the sequent calculus rules here, since it appeals more
naturally to our intuition.

Remark 16.4.1. The calculus given above is a fragment of the full intuition-
istic linear logic calculus and thus gives an interleaving semantics for Petri
nets. It is nevertheless possible to give a true concurrency semantics to Petri
nets by using a multi-conclusion fragment of linear logic.

Let us take a look at an example of a simple Petri net from which we will
derive a linear logic representation. In the remainder of this section we will
use the following abbreviation:

an := a⊗ · · · ⊗ a︸ ︷︷ ︸
n

Example 16.4.2. Starting from the Petri net system shown in Figure 16.9
we can obtain a natural set of formulae from the fragment LPetri of linear
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A ⇒ A(Identity) ⇒ 1(1)

Γ ⇒ A ∆, A ⇒ B

Γ, ∆ ⇒ B
(Cut)

Γ, A, B, ∆ ⇒ C

Γ, B, A, ∆ ⇒ C
(Exchange)

Γ, A, B ⇒ C

Γ, A⊗B ⇒ C
(⊗L)

Γ ⇒ A ∆ ⇒ B

Γ, ∆ ⇒ A⊗B
(⊗R)

Γ ⇒ A Γ ⇒ B

Γ ⇒ A&B
(&R)

Γ, A ⇒ C

Γ, A&B ⇒ C
(&L1)

Γ, B ⇒ C

Γ, A&B ⇒ C
(&L2)

Γ ⇒ A ∆, B ⇒ C

∆, Γ, A −◦ B ⇒ C
( −◦ L)

Γ, !A, !A ⇒ B

Γ, !A ⇒ B
(Contraction)

Γ, A ⇒ B

Γ, !A ⇒ B
(Dereliction)

Γ ⇒ B

Γ, !A ⇒ B
(Weakening)

Table 16.1. Inference rules for LPetri

2

r

A

B

Cs

t

••

Fig. 16.9. Petri net for Example 16.4.2

logic to describe it. We start by describing the current marking of the net
by introducing one resource of type pi for each token in place pi and writing
these as a tensor product. In our net the current marking is therefore A2

indicating the presence of two tokens in place A.
We shall now construct subformulae for each transition of the net:
t is represented by the formulaB⊗C −◦ A2, meaning that firing transition

t consumes one token each from places B and C, while producing two tokens
in place A.

For transitions r and s we have: A −◦ B and A −◦ C respectively.
As usual every transition may fire as often as desired, as long as the

pre-conditions are satisfied. Therefore we have to precede each formula that
represents a transition by the storage operator !. Hence the complete descrip-
tion of transition t would be: !(B⊗C −◦ A), making t available ad infinitum.
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By putting all subformulae together we arrive at an instantaneous description
of the net system:

A2⊗!(A −◦ B)⊗!(A −◦ C)⊗!(B ⊗ C −◦ A2)

In the manner outlined in the previous example it is possible to construct
for every net system S(m) = 〈N ,m〉 = 〈P, T, F,W,m〉, its canonical formula
ΨS(m) by forming the tensor product of the following formulae:

• For a transition t with non-empty pre-conditions •t and non-empty post-
conditions t•, construct

!

(⊗

p∈ •t

pW (p,t) −◦
⊗

q∈t•

qW (t,q)

)
.

• In the special cases where a transition t has no pre-conditions (i.e. a source
transition) construct for each such transition the formula

!

(
1 −◦

⊗

q∈t•

qW (t,q)

)
or equivalently !

(⊗

q∈t•

qW (t,q)

)
.

• For all transitions t without any post-conditions (i.e. sink transitions) con-
struct the linear logic formula

!

(⊗

p∈ •t

pW (p,t) −◦ ⊥

)
or equivalently !

(
(
⊗

p∈ •t

pW (p,t))⊥

)
.

• Construct for the current marking m and all places p ∈ P with m[p] = n,
n ≥ 1 the formulae pn. Thus for the complete marking

⊗

p∈P,m[p]≥1

pm[p].

Having now a representation of a Petri net in linear logic we can state the
following soundness and completeness theorem.

Theorem 16.4.3. A marking m′ is reachable in S(m) iff for the correspond-
ing canonical formulae the sequent ΨS(m) ⇒ ΨS(m′) is provable in LPetri.

Proof. See [Bro89] for a detailed proof using induction on the number of
steps made in the derivation, especially looking at the last rule used for the
only-if-branch. The if branch is straightforward.
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16.4.2 Specification of Net Properties

The view of linear logic presented in this section is based on the work of
Engberg and Winskel in [EW90]. Places are henceforth represented as atomic
propositions in the logical calculus, such that the well-formed-formulae are
constructed in the following manner:

A := > | 0 | 1 | a | A⊗A | A −◦ A | A&A | A⊕A

An atomic proposition a is interpreted as the downwards closure of the
associated marking a, i.e. the set of markings from which a is reachable. In
other words: An assertion is represented by the set of requirements sufficient
to establish it.

The denotation of a formula for a given net N is then defined as follows,
whereM is the set of all markings of the net in question:

‖>‖N =M
‖0‖N = ∅
‖1‖N = {m | m→ 0}
‖a‖N = {m | m→ a}
‖A⊗B‖N = {m | ∃mA ∈ ‖A‖N ,mB ∈ ‖B‖N : m→mA + mB}
‖A −◦ B‖N = {m | ∃mA ∈ ‖A‖N : m + mA ∈ ‖B‖N }
‖A&B‖N = ‖A‖N ∩ ‖B‖N
‖A⊕B‖N = ‖A‖N ∪ ‖B‖N

From q1⊗ q2 := {m | ∃m1 ∈ q1,m2 ∈ q2 .m→m1 +m2} it is easily seen
that this semantics also treats two formulae connected by⊗ as simultaneously
available resources. The connective & is interpreted as a choice between two
possible resulting markings. From the interpretation of 1 it follows that for
any A with respect to a net N we have |=N A if and only if 0 ∈ ‖A‖N holds.

The following theorem is easily shown:

If m ∈ ‖A‖N and m′ →m then m′ ∈ ‖A‖N holds.

In other words: If m is a marking sufficient for A, then every marking m′

from which m is reachable is also sufficient for A. It now becomes obvious
that in our semantics any marking from which a is reachable is sufficient for
a. The semantics gives the linear logic connectives the expected meaning, e.g.
A ⊕ B is the denotation of the union of sufficient conditions for A and B,
whereas the cutset of markings sufficient for A and B is denoted by A&B.

Theorem 16.4.4. Let m and m′ be arbitrary markings. Then the following
holds:

m→m′ iff |= m −◦ m′

Given the fact that (m ⊗ >) = ↓ {m′ | m′ ≥ m}, where ↓ denotes the
canonical extension of the downward closure of a marking, we can express
some properties of the net from Example 16.4.2:
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• From the initial marking A2 a marking is reachable in which place B holds
a token: |= A2 −◦ B ⊗>

• From a marking in which place A holds a token, there exists some firing
sequence such that in the resulting marking place B holds a token: |=
A⊗> −◦ B ⊗>

• From a marking in which place A holds a token, it is possible to reach
a marking in which either place B or place C contains a token, but we
cannot tell which: |= A⊗> −◦ (B ⊕ C)⊗>

• From a marking in which place A holds a token, it is possible that both
places B and C become marked, but not necessarily at the same time:
|= A⊗> −◦ (B&C)⊗>

• From the initial marking A2 every marking is reachable that contains at
least one marked place from the set P ′ = {A,B}, but again we do not

know which: |= A2 −◦ (
⊕

a∈P ′

a)⊗>

The most interesting part of this characterisation of a net’s property lies
in the meaning of the classical-like conjunction in the antecedent, which in
this case represents the deterministic choice between two possible resulting
markings.

16.4.3 Linear Logic for Representation of Coloured Nets

There is an obvious way in which coloured Petri nets are representable within
the same fragment of linear logic used in the preceding sections. The encoding
used here is easily arrived at by a standard unfolding of a coloured net. One
problem arises when considering infinite colour domains: In the unfolding
there will be infinitely many transitions for each transition of the coloured
net that has an incoming or outgoing arc labelled by a variable of an infinite
colour domain. In this case we would have to use infinitary linear logic formu-
lae as considered in [Far96]. If we restrict ourselves to finite colour domains
the canonical linear logic formula is constructed as in the following example.

Example 16.4.5. Consider the transition depicted below and assume the mul-
tiset marking m[A] = {1, 2, 4},m[B] = {4},m[C] = {},m[D] = {}

y '

x '

y

x

{1,...,10}

D

{1,...,10}

C

{1,...,10}

B

{1,...,10}

A

x≥3
x'=x-1
y'=y+1

Fig. 16.10. Example of a coloured transition

This excerpt from a coloured Petri net can be represented by
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A1 ⊗A2 ⊗A4 ⊗B4 ⊗
⊗

x∈{1,...,10}

y∈{1,...,10}

x′∈{1,...,10}

y′∈{1,...,10}

(x≥3)∧(x′=x−1)∧(y′=y+1)

!(Ax ⊗By −◦ Cx−1 ⊗Dy+1)

It is easily seen from the example above that the guard expression is not
incorporated directly into the logic, but is used as a set-theoretic expression in
the construction. In general a coloured transition t with exactly one variable
per incoming and outgoing edge inscription is translated into a formula by
means of the following construction:

• For each token with value x that is located in place S, one copy of Sx is in
the tensor product representing the current marking.

• A transition with pre-set {p1, . . . , pn} – the input places having colour do-
main c1, . . . , cn respectively – and post-set {q1, . . . , qm} – the output places
having colour domain d1, . . . , dm respectively – and incoming edges with
inscriptions x1, . . . , xn, outgoing arc inscriptions y1, . . . , ym, and guard
g(x1, . . . , xn, y1, . . . , ym) is represented by:

⊗

xi∈ci,i∈{1,...,n}∧

yj∈dj ,j∈{1,...,m}
∧

g(x1,...,xn,y1,...,ym)

!

 ⊗

i∈{1,...,n}

pixi
−◦

⊗

j∈{1,...,m}

qjyj




Again the guard is used to restrict the possible bindings for the incoming
variables in a set-theoretic way. This construction furthermore makes clear
the need for an infinitary version of linear logic in the case of infinite colour
domains, such as the set of natural numbers.

16.4.4 The Principle of Backward Reasoning

So far only the positive multiplicative fragment has been used for specifying
Petri nets, but it is possible to give some negated formulae a meaning within
the realm of net theory. Specifically, negative formulae can be interpreted
as questions asked about the hypothetical enablement of transitions, or the
possibility of reaching certain markings.

If, for instance, we have a transition with input places A, B and output
place C, we can state that in order to fire the transition and obtain a token
in place C we need tokens in both places A and B. We could simply try to
negate both the premise and the conclusion of the transition’s representation
in linear logic, hence arriving at C⊥ −◦ A⊥

..............................................
............
..................................... B⊥. The disjunctive character

of the consequence is slightly misleading though, because in order to fire the
transition and reach a marking in which C holds a token, we have to put
one token each in places A and B, i.e. a debt in both places would better be
expressed by the tensor product of A and B.
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It would probably make more sense to consider the formula C⊥⊗A −◦ B⊥

(and C⊥ ⊗ B −◦ A⊥) since it is clear that we would readily be willing to
provide a token in place B if we knew that there was already a token in place
A such that the transition may then fire. A theory using this approach has
yet to be established.

In any case, having fixed a linear logic calculus we can use results from the
computation of invariants for a given net, and combine them with deductions
in our formal logic to reason about possible markings or restrictions on pos-
sible markings (e.g. some mutual exclusion property). This method however
has to be applied manually.

16.4.5 Nondeterministic Transitions

Allowing a yet larger class of formulae including a very restricted use of the
additive connective ⊕ we can take into consideration derivations in the (!,⊕)-
Horn fragment of linear logic containing only (!,⊕)-Horn sequents, i.e. only
sequents of the following kind are allowed:

A1 ⊗ · · · ⊗Ak, !Γ ⇒ B1 ⊗ · · · ⊗Bl

where the Ai and Bj are positive literals and Γ is a multiset of formulae
of either of the two kinds (the Ci and Dj are also assumed to be positive
literals):

• C1 ⊗ · · · ⊗ Cn −◦ D1 ⊗ · · · ⊗Dm

• C1 ⊗ · · · ⊗ Cp −◦ ((D1,1 ⊗ · · · ⊗D1,q1)⊕ · · · ⊕ (Dr,1 ⊗ · · · ⊗Dr,qo
))

The former kind of formula is exactly the one used to represent transitions
in ordinary Petri nets. The latter can be used to represent nondeterminis-
tic transitions, i.e. transitions that have a set of sets of post-conditions. In
nets without capacity restrictions on places the enablement of a transition is
defined for nondeterministic transitions in exactly the same way as in ordi-
nary nets. The difference in firing such a transition is that there are many
possibilities for the post-set, one of which is chosen by the transition. This
is viewed as internal nondeterminism of the net. An example of a nondeter-
ministic transition is given in Figure 16.11 where the different post-sets are
marked by inscriptions [i] and [j] on the outgoing arcs.

In [Kan94] this kind of transition has been considered and the undecid-
ability of the reachability problem for nondeterministic Petri nets is proved
by reduction to vector games (a variation of vector addition systems).

Theorem 16.4.6. The problem of whether there exists a firing sequence in
a nondeterministic Petri net that takes the initial marking m0 precisely to
the marking m is undecidable.
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[ j ]

Wjm

[ j ]

Wj

[ j ]

Wj

W

[ i ] Win
[ i ]

Wi
[ i ]Wi

Wk
W

pjmpjpj

pinpipi

pkpp

t

Fig. 16.11. Example of a nondeterministic transition

This result is used in [Far98b] and [Far99b] to show that reachability in
the system net is undecidable for generalised elementary object systems and
for linear logic Petri nets36. These are Petri net systems that consist of an
elementary net system called the system net, a P/T net called the object
net, and an interaction relation between transitions of both nets. The to-
kens of the system net are defined to be the object net processes restricted
by the interaction relation – which requires synchronisation of certain pairs
of transitions – and the firing rule (cf. [Val96b, Val96a, Val98, Val95]). Ob-
ject systems generalise and extend the model of task/flow systems defined
earlier in [Val91]. We give an outline of these constructions in the following
paragraphs.

Generalised EOS. The main idea of object systems is the use of Petri net
systems as tokens in a Petri net. This is an extension of the task systems
defined in [Val91]. For this reason a distinction is made between the so-called
system net and the object nets. We focus on elementary object systems where
both the system net and the object nets are elementary Petri net systems.

Definition 16.4.7 (Elementary Object System (EOS)). An elemen-

tary object system is a tuple EOS = (SN, ÔN,Rho, type, M̂) where

• SN = (P, T,W ) is a net (i.e. an EN system without initial marking), called
the system net or environment net of EOS,

• ÔN = {ON 1, . . . ,ON n} (n ≥ 1) is a finite set of EN systems, called the
object nets or token nets of EOS, denoted by ONi = (Bi, Ei, Fi,m0i),

36 Linear logic Petri nets (LLPN) – defined in [Far98b],[Far98a], and [Far99b] – are
Petri nets with linear logic formulae as tokens.
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• Rho = (ρ, σ) is the interaction relation, consisting of a system/object
interaction relation ρ ⊆ T × E where E :=

⋃
{Ei|1 ≤ i ≤ n}, and a

symmetric object/object interaction relation σ ⊆ (E×E) \ idE,
• type : W −→ 2{1,...,n} ∪ IN is the arc type function, and

• M̂ is a marking as defined in definition 16.4.8.

Definition 16.4.8. The set Obj := {(ONi,mi)|1 ≤ i ≤ n, mi ∈ R(ONi)} is
the set of objects of the EOS. An object-marking (O-marking) is a mapping

M̂ : P −→ 2Obj ∪ IN such that M̂(p) ∩ Obj 6= ∅ ⇒ M̂(p) ∩ IN = ∅ for all
p ∈ P .

The preceding definitions from [Val98] do not cover the occurrence rule
of object systems. We will briefly and informally summarise the main impact
of the occurrence rule: The tokens in object systems may exhibit a dynamic
behaviour since they are themselves Petri nets. In addition they can synchro-
nise with one another or with the system net. Synchronisation with other
object nets is not in principle restricted to the case where they occupy the
same place. The occurrence rule for object systems is constructed to allow
the distributed parallel execution of an object net in the presence of a strict
fork-and-join structure, i.e. partially executed object nets may only be joined
if their processes are compatible in the sense that they can all be extended
to a valid object net process. For a detailed discussion of the occurrence rule
the reader is referred to [Val98].

We generalise elementary object systems (EOSs) so that the object net
may be an arbitrary P/T net. The system net still has to be an elementary
net system.

Definition 16.4.9 (Generalised EOS).
A generalised elementary object system is an object system that satisfies the
following conditions:

1. The system net 〈PS , TS , FS ,WS ,mS〉is an elementary net system.
2. The object net 〈PO , TO, FO ,WO ,mO〉is an ordinary P/T net system.
3. The interaction relation ρ ⊆ TS × TO is an arbitrary relation between

system and object transitions.

Enablement of transitions is defined as in elementary object systems.

Theorem 16.4.10. The reachability problem for generalised elementary ob-
ject systems relative to the system net occurrence sequences is undecidable.

Proof. We show that nondeterministic (sometimes called generalised) Petri
nets are reducible to generalised elementary object systems such that the
admissible processes of the nondeterministic net are exactly the admissible
system net processes of the object system.



380 16. Deductive and Process-Algebra-Based Methods

Note that for any transition t of a nondeterministic Petri net its post-set
t• is a set, i.e. t• ⊆ 2P , where 2P denotes the powerset of P . If card(t•) > 1
then t is a nondeterministic transition, otherwise t is an ordinary transition.

Nondeterministic Petri nets have an undecidable reachability problem as
proved by Kanovich in [Kan94]. Thus reachability in GEOSs is also undecid-
able for any given system net process.

The simulating GEOS will be built of a system net which consists of
only one place connected to transitions named exactly as all those of the
nondeterministic Petri net. The firing of these system net transitions will be
restricted by the interaction relation that allows for a choice of transitions
in case the original transition was nondeterministic. The nondeterministic
transition from Figure 16.11 would be simulated by the GEOS from Figure
16.12. The interaction relation is indicated by 〈1〉, meaning that the system
net transition must interact with one of the object net transitions marked
by the same number. Both partial constructions must then be applied to all
remaining transitions of the nondeterministic net.

SN:

ON:

pjmpjpj

pinpipi

pkpp

Wk

WW

WjmWjWj

<1> tj '<1>

<1>

t i '

t

A

W

Wk

Wi
Wi

Win

W

Fig. 16.12. Example of a nondeterministic transition simulated by a GEOS

We will now formalise the aforementioned reduction:
To construct an equivalent generalised elementary object system OS =

(SN,ON, ρ) for a given nondeterministic Petri net system S(m) = 〈N ,m〉
with sets of places P and transitions T , flow relation F and weight function
W 37, we have to construct a system net SN , an object net ON , and an
appropriate interaction relation ρ. We assume without loss of generality that
for all t ∈ T the set of post-conditions is t• = {X0, . . . , Xnt

}, where Xi ∈ 2P

37 Note that the weight function is deterministic for incoming arcs but is composed
of several possibilities for the nondeterministic outgoing branches!
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with associated weight functions Wi(t, p) for all p ∈ Xi, i ∈ {0, . . . , nt} and
nt := card(t•).

1. SN = 〈{A}, T, FS,WS ,mS〉, with mS [A] = 1, and ∀t ∈ T.WS(A, t) =
1 ∧WS(t, A) = 1 ∧ (A, t) ∈ FS ∧ (t, A) ∈ FS

2. ON = 〈P, TO , FO,WO ,m〉, with TO = {t′i | t ∈ T ∧ i ∈ {1, . . . , nt}}, ∀t ∈
T . ∀i ∈ {0, .., nt} . (p, t) ∈ F ⇒ (p, ti) ∈ FO ∧WO(p, ti) = W (p, t) and
∀t ∈ T.∀i ∈ {0, .., nt}.∀p ∈ Xi.(ti, p) ∈ FO ∧WO(ti, p) = Wi(t, p)

3. ρ = {(t, t′i) | t ∈ T ∧ i ∈ {1, . . . , nt}}

It is left to the reader to show formally that the set of system net occur-
rence sequences of OS determined by the set of SN -processes for OS, is equal
to the set of occurrence sequences of S, and that the resulting markings of
N and ON correspond to each other with respect to the simulation relation
defined above.

Clearly for each possible post-set of any nondeterministic transition in S
there exists exactly one transition in the object net of the corresponding ob-
ject system OS. On the other hand, there are no other transitions to choose
from unless there is also a choice of the nondeterministic transition to fire in
S. The reverse direction is also true, i.e. whenever some system net transition
is enabled according to the firing rule of object nets, the corresponding non-
deterministic transition is also enabled if we transfer the object net marking
to S.

16.4.6 Bibliographic Remarks

Introductions to linear logic, apart from Girard’s original paper [Gir87], are
available in [Sce93],[Tro93],[Tro92], and [Wad93]. For a thorough treatment
of decidability and complexity issues of the various fragments of linear logic
we refer the reader to [LSS92]. Some remarks on the possibility of backward
reasoning can be found in [GPC95]. A detailed account of linear logic as a
semantic framework for object Petri nets can be found in [Far99a]. The topic
of dynamic modifications of the Petri net structure is tackled in [Far99c]
and [Far00a]. A discussion of issues related to value semantics and reference
semantics for object Petri nets has recently appeared in [Val00], while a
comparison with the object Petri net formalism of Lomazova, called nested
Petri nets, can be found in [Far00b].

16.5 Verifying Petri Net Models Using Process Algebra

In this section, we describe an example of the combined application of two
formal methods, namely Petri nets and process algebra [BW90], to design and
verify a distributed system. First, we briefly explain the engineering method
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that is the basis for combining the two methods. The key aspect is that it
integrates system design with system verification. Secondly, we explain the
net model and the process algebra used. Thirdly, we apply the integrated
method to the development of a simple production unit. Finally, we explain
what extensions of the method are possible and what still needs to be done to
make the method useful in practice. An extensive treatment of the material
presented in this section can be found in [Bas98, Chapter 3].

16.5.1 Method

Petri nets and process algebra are both formal methods that focus on the
dynamic behaviour of systems. In distributed systems, the order in which
communications between different parts of the system occur is often crucial.
Does a indeed always happen before b? Can the system receive c while it is
waiting for d? We are less interested in questions related to the data struc-
tures being used in the implementation of the system, and the correctness of
computations local to some specific part of the system. This does not mean
that these issues are less important. However, other methods, such as asser-
tional reasoning based on predicate logic, are more useful for those purposes.
As a consequence, the method presented in this section is particularly useful
for the design of distributed systems in which the communication protocol
between the various parts of the system plays an important role. It is not
well suited for data-oriented applications.

However, if Petri nets and process algebra both focus on dynamic system
behaviour, what then is the use of combining them? The answer is simple:
They complement each other very well. Petri nets have an easy-to-understand
graphical representation and are well suited for describing the dynamic be-
haviour of a system including the states in which the system can be. Hence,
Petri nets are very useful for purposes of system validation and simulation.
Process algebra, on the other hand, is a compositional, purely symbolic for-
malism, designed to compare the dynamic behaviour of different systems.
It is most often used in verification. By applying term rewriting techniques
and equational reasoning, it can be verified whether an implementation sat-
isfies a given specification, where both specification and implementation are
algebraic terms.

Based on the above observations, we arrive at the following engineering
method consisting of four separate activities. Each activity is explained in
more detail below.

1. Give a specification of the system in process-algebraic terms;
2. Construct a Petri net model of the system;
3. Use simulation to validate the specification and to test whether the Petri

net conforms to the specification;
4. Verify the correctness of the net with respect to its specification.
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Algebraic Specification. In the early stages of design, it is useful to specify
in a concise way the order in which the actions in a system can occur. Process
algebra is well suited for that purpose. Assume, for example, that a system is
initialised by executing either an a or a b, after which it performs a c and d in
parallel. In process-algebraic terms, this is denoted as follows: (a+ b) · (c ‖ d),
where + denotes choice, · denotes sequential composition, and ‖ denotes
parallel composition.

Petri Net Model. Once one has a clear understanding of the dynamic be-
haviour of a system, it is usually not very difficult to construct a coloured
Petri net whose behaviour conforms to the algebraic specification of the sys-
tem. The reason for starting with an algebraic specification instead of a Petri
net model, is that the former is much more concise and easier to change than
the latter. Also, in a coloured Petri net model, many details must be filled in
which are not addressed in the specification step, such as data types, timing
of events, etc. At this stage, there is not yet a formal relation between the
algebraic specification and the Petri net model.

Simulation. The Petri net model of a system can be simulated using tools
such as ExSpect [Bak97] or Design/CPN [JCHH91]. The specification and
the net model can be validated, and corrected if necessary. Simulation is an
excellent means to discover the more obvious mistakes in both the algebraic
specification and the coloured net model. However, using simulation alone, it
is usually impossible to guarantee that all possible errors are discovered.

Verification. In the verification phase, the Petri net model is formally trans-
lated into an algebraic expression using the theory of [BV95a, BV95b]. By
means of term rewriting techniques and equational reasoning, it is verified
that the behaviour of the net conforms to its algebraic specification. This
step is useful for discovering the more subtle mistakes in a specification and
the corresponding Petri net.

The presentation of the four activities suggests an order. In an ideal sit-
uation, they are indeed applied in the order presented. However, needless to
say, in practice they are seldom clearly separated. Systems engineering is a
complex process where one often works on several of the four activities simul-
taneously. If one discovers an error during one step, it may be necessary to
redo some of the work in other steps. Also, if one follows a top-down design
strategy, it is possible to first design and verify a system at a high level of
abstraction before adding more detail. When adding detail, it is of course
recommended to repeat the design cycle.

16.5.2 Hierarchical Place/Transition Nets

To illustrate the method of the previous subsection, we use a hierarchical
variant of ordinary P/T nets. Since this section focuses on the verification
part of the method, which is done in process algebra, a formal definition
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of hierarchical P/T nets is omitted. Instead, they are explained using the
example of Figure 16.13.

Operator

Unit

Input Output

cmd

imt

irq

omt

orq

ncrq

Processing

cmd ncrq
BUnit

BControl

irq

imt

orq

omt

tcmd tncrq

Fig. 16.13. A basic production unit and its environment

The left-hand-side of Figure 16.13 shows a hierarchical P/T net modelling
a production unit in its environment. A hierarchical P/T net may contain
places, transitions, and sub-nets. The net in the example consists of four sub-
nets connected via places. It does not have any transitions. Sub-nets may be
instantiated with other hierarchical P/T nets. For example, sub-net Unit is
instantiated with the hierarchical net BUnit , which models a basic unit and
is depicted on the right-hand-side of Figure 16.13. The net BUnit consists
itself of two sub-nets. The dashed box divides BUnit into an internal and an
external part, yielding a so-called open net. The external part or interface
may consist only of places, which are called pins. The other places of the net
are the internal places. When using an open net in a higher-level net, its pins
must be mapped onto places. In the example of Figure 16.13, the mapping is
simply the identity mapping. The absence of a dashed box means that a net
is closed.

Since transitions are not always visible in a hierarchical P/T net, it is
difficult to describe the behaviour of such a net in terms of transition firings.
Instead, the behaviour of hierarchical P/T nets can be expressed nicely in
terms of (simultaneous) consumption and production of tokens. For exam-
ple, the Operator sub-net in Figure 16.13 can send a command to the unit
by putting a token in place cmd . The unit may receive the command by
consuming the token, after which it can request input by putting a token in
place irq .

Based on this observation, it is possible to give concrete form to the goal
of the specification step of our method. At this step, we must specify the or-
der in which consumption and production of tokens may occur. The possible
behaviour given above for the interaction between a unit and its environment,
for example, could act as a (partial) specification for a unit. This automati-
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cally yields the goal of the verification step. We must verify whether the ob-
served behaviour of an implementation of a net satisfies its specification. For
example, considering net BUnit in Figure 16.13, we might see the following
behaviour. Commands received through cmd are transferred to Processing
via tcmd . After receiving the command, Processing issues an input request
by putting a token in place irq . If we abstract from the command transfer be-
tween BControl and Processing , then the behaviour of BUnit conforms to the
behaviour specified for the interaction between the unit and its environment.
Thus, we may conclude that BUnit satisfies (this part of) its specification.

Other details of the example in Figure 16.13 are not yet important. They
are further explained in section 16.5.4, where the method of the previous
subsection is applied to the development of a production unit. In the next
subsection, we introduce a process algebra which is designed to reason about
the token game as described above.

16.5.3 A Brief Introduction to Process Algebra

This section briefly introduces a process algebra in the style of ACP [BW90]
which can be used to reason about hierarchical P/T nets. The algebra is
taken from [BV95b].

An ACP-like process algebra consists of a signature and a set of axioms.
The signature defines the sorts of the algebra and its functions including the
constants. The functions of an algebraic theory can be used to build terms
representing processes. In our case, processes can be thought of as P/T nets.
The axioms state which process terms are considered equal.

The algebraic theory for reasoning about P/T nets is parametrised with
a universe of constants U , which are identifiers of places in a P/T net. Other
sorts in the signature of the theory are the sort of atomic actions A, the sort
of actions AC , and the sort of processes P ; each atomic action is an action
and each action is a process (A ⊆ AC ⊆ P).

An atomic action is either a consumption of a token from a place a in U ,
denoted as a?, or a production of a token in a, denoted a!. An action consists
of an arbitrary number of simultaneous consumptions and/or productions.
A function | : AC ×AC → AC , called the synchronous merge, is used to
construct actions. For example, a? | a? | b! denotes the consumption of two
tokens from place a and the production of one token in place b. Sort AC
contains one special action τ which denotes the unobservable or silent action.
The introduction of this action is useful for hiding the internal behaviour of
open P/T nets.

The most simple processes in our theory are the actions and a special
process δ, called deadlock or inaction. Other processes can be constructed by
means of the following operators, which are all functions of type P ×P → P :
+ , denoting choice, · , denoting sequential composition, ∗ , called the

binary Kleene star, denoting iteration, ‖ , called the merge, denoting parallel
composition, and bb , called the left merge, also denoting parallel composition
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but with the restriction that the first action is executed by the left operand.
Axioms for these operators, which may clarify their intuitive meaning, can be
found in Table 16.2. The operators which have not yet been mentioned are
explained below. The binding precedence of operators is as follows. Unary
operators bind stronger than binary operators. Sequential composition and
the Kleene star bind stronger than all other binary operators. Choice binds
weaker than all other operators. In Table 16.2, a is a place label in U ; d is
either an action in AC or δ; e, f , and g are actions in AC , and x, y; and z
are processes in P .

x + y = y + x A1 e | f = f | e S1
(x + y) + z = x + (y + z) A2 (e | f) | g = e | (f | g) S2
x + x = x A3
(x + y) · z = x · z + y · z A4 x ‖ y = x bb y + y bb x M1
(x · y) · z = x · (y · z) A5 d bb x = d · x M2
x + δ = x A6 d · x bb y = d · (x ‖ y) M3
δ · x = δ A7 (x + y) bb z = x bb z + y bb z M4

λI
s(δ) = δ CSO1 (x bb y) bb z = x bb (y ‖ z) ASC1

ce |̀ I ⊆ s ⇒ λI
s(e) = e CSO2 (x ‖ y) ‖ z = x ‖ (y ‖ z) ASC2

ce |̀ I 6⊆ s ⇒ λI
s(e) = δ CSO3

λI
s(e · x) = x ∗ y = x · (x ∗ y) + y BKS1

λI
s(e) · λ

I
s−ce+pe|̀I(x) CSO4 x ∗ (y · z) = (x ∗ y) · z BKS2

λI
s(x + y) = λI

s(x) + λI
s(y) CSO5 x ∗ (y · ((x + y) ∗ z) + z) =

(x + y) ∗ z BKS3

e | τ = e AT x · τ = x B1
x · (τ · (y + z) + y) = x · (y + z) B2

a ∈ I ⇒ τI(a?) = τ TAC1 a ∈ I ⇒ τI(a!) = τ TAP1
a 6∈ I ⇒ τI(a?) = a? TAC2 a 6∈ I ⇒ τI(a!) = a! TAP2

τI(δ) = δ TAD τI(e | f) = τI(e) | τI(f) TA1
τI(τ ) = τ TAT τI(x + y) = τI(x) + τI(y) TA2
τI(x ‖ y) = τI(x) ‖ τI(y) TAM 1 τI(x · y) = τI(x) · τI(y) TA3
τI(x bb y) = τI(x) bb τI(y) TAM 2 τI(x

∗ y) = τI(x) ∗ τI(y) TA4

Table 16.2. Basic axioms for reasoning about equality of processes

Some of the axioms for the above-mentioned operators may need an ex-
planation. Axiom A4 states the right distributivity of sequential composition
over choice. The fact that the left-distributivity axiom is absent implies that
processes which have different moments of choice are considered to be differ-
ent. That is, our theory is a so-called branching-time theory. Axioms A6 and
A7 show that δ is indeed a natural representation of inaction. Axioms M1
through M4 define parallel composition using the left merge as an auxiliary
operator. It follows from these axioms that the process algebra presented
in this section is an interleaving theory. Axioms ASC1 and ASC2 are the
so-called axioms of standard concurrency, defining some desirable properties
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of parallel composition. BKS1 through BKS3 axiomatise the binary Kleene
star. Axiom BKS1 shows that process x ∗ y means zero or more repetitions
of process x followed by a single execution of y. Axiom AT says that only
the visible part of an action is observed. Axioms B1 and B2 state that silent
actions can be removed provided the moments of choice remain the same.

The operators introduced so far can be used in the specification step
of a design process to specify the dynamic behaviour of the system under
development. In general, such a specification takes the form of one or more
terms containing only the above-mentioned operators. The two operators
that have not been mentioned so far are used in verifying the behaviour of a
P/T net against its specification. The most important one is the causal state
operator λ .

The intuitive meaning of λI
s(x), where I is a set of place identifiers, s a

bag of place identifiers, and x a process, is a P/T net x with internal places
I and marking s. The operator is axiomatised by five axioms, CSO1 through
CSO5. The auxiliary functions c and p, yielding for each action in AC the
bag of its consumed and produced tokens respectively, are defined as follows.
For all a ∈ U and e ∈ AC , cτ = ∅, ca? = a, ca! = ∅, c(a? | e) = a+ ce, and
c(a! |e) = ce; pτ = ∅, pa? = ∅, pa! = a, p(a? |e) = pe, and p(a! |e) = a+pe.
The notation x |̀ D means that a bag x is restricted to some domain D.
Axiom CSO2 can now be read as follows. It states that an action e may
occur provided all the tokens it consumes from internal places are available
in the marking s. Axiom CSO3 says that if not enough tokens are available,
the action cannot be executed, resulting in a deadlock. The reason for not
considering pins in the marking is that we want to determine the behaviour
of a P/T net under the assumption that the environment is responsible for
producing tokens into and consuming tokens from pins. Axiom CSO4 states
that the result of executing an action e is that consumed tokens are removed
from the marking, whereas tokens produced in internal places are added to
it. Axioms CSO1 and CSO5 should be clear without further explanation.

The last operator in the theory is the operator τI . It renames consump-
tions from and productions into places from I ⊆ U to the silent action τ . It
is mainly used to hide the internal behaviour of open P/T nets.

The axioms of Table 16.2 are the basis of every verification. However, they
are not always sufficient. To conclude this introduction to process algebra,
one more axiom is given. The Recursive Specification Principle for the binary
Kleene star (RSP∗) is a conditional axiom which gives for iterative processes
a solution in terms of the binary Kleene star. The requirement “x guarded in
y · x” means that y cannot terminate successfully without executing at least
one visible action. A formal definition of guardedness is omitted here and can
be found in [Bas98, BV95a].

x, y, z : P

x = y · x + z, x guarded in y · x
x = y ∗ z

RSP∗
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The idea of verifying the behaviour of a P/T net against a specification
is now straightforward. First, an algebraic term is constructed from the net,
representing its observable behaviour. Secondly, the algebraic framework pre-
sented in this subsection is used to prove that the observable behaviour is
equal to the specification. The production-unit example in the next section
will clarify this approach. The formal definition of the algebraic semantics of
hierarchical P/T nets based on the process algebra of this subsection can be
found in [BV95a, BV95b]. In [Bas98, Chapter 3], an extensive treatment of
algebraic semantics for P/T nets is given.

16.5.4 The Production Unit

In this subsection, we apply the method introduced in the previous sections to
the development of a production unit. This case study is a simplified version
of a problem that originated from Dutch industry.

Informal System Requirements. The informal description of the produc-
tion unit and its required behaviour is as follows. The most simple version of
the unit can perform a single operation on a single piece of unprocessed mate-
rial. First, it must receive a command. Then it requests material, performs the
operation specified in the command, and waits for an output request. Upon
receiving an output request, it delivers the processed material. Typically, the
processing of material takes the most time in the whole system. While the
unit is processing material, it must be ready to receive the next command.
In this way, the delay between two operations in a unit is minimised.

It must be possible to combine several basic units into a more complex unit
by connecting them in series. For this purpose, a generic controller must be
developed that controls two units. These two units are not necessarily basic.
They can be more complex units built from basic units and controllers. In
this way, it must be possible to construct arbitrarily long series of basic units,
using only two components, namely the basic unit and the generic controller.
Therefore, it is essential that the interface behaviour of a series of basic units
is similar to the behaviour of a single basic unit.

The last requirement in particular is rather vague, but, as is often the
case in practice, that is the way the problem was phrased. The case study is
a simplified version of the real case, because we assume that no errors can
occur during the processing of the material. In reality, this is not true. In the
concluding remarks, we briefly return to this point.

Below, we discuss the design and verification of the basic unit. At the end
of this subsection, we say a few words about the generic control component
and the more complex units.

Algebraic Specification. First, we start with the algebraic specification of
a basic unit. From the informal description above, we derive the following
actions that a unit can perform.
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cmd? : receive a command ncrq ! : send a new-command request
irq ! : request input material orq? : receive an output request
imt? : receive input material omt ! : deliver output material

The behaviour of a basic unit can now be specified as follows:

BUnit = cmd? · ((irq ! · imt? · (ncrq ! · cmd? ‖ orq? | omt !)) ∗ δ) (16.20)

Note that it can be derived from the axioms in Table 16.2 that for any process
x, x∗δ = x ·(x∗δ). Hence, x∗δ denotes a non-terminating repetition of process
x.

The above specification deserves a few words of explanation. It is not
difficult to see that BUnit first receives a command and then enters a non-
terminating repetition. Each cycle of the repetition starts with an input re-
quest followed by the receipt of material. Upon receiving material, the unit
starts its processing task, which does not result in a visible action. It continues
by sending a new-command request followed by the receipt of the next com-
mand, and in parallel it may deliver the output material, provided of course
that the processing is completed. After it has delivered the output and re-
ceived a new command, it starts with the next cycle of its non-terminating
loop. In the above specification, the unit refuses to receive an output request
if the output material is not available. Only if both the request and the ma-
terial are available, is the request processed and the material delivered. A
slightly different, but equally correct, possibility is to let the unit first receive
the output request and then deliver the material.

The next step is to construct a net model of the basic unit. Although in
this section, we use P/T nets, the actual case study was done with the tool
ExSpect which uses coloured Petri nets. However, as mentioned earlier, we
omit all the details about data structures and timing, and focus instead on
the hierarchical construction and the communication structure.

Petri Net Model. We have already seen the Petri net model of the basic
unit and its environment in Figure 16.13. The environment consists of an
input system, an output system, and an operator. The environment is simply
given for the sake of completeness. We do not go into detail about any of these
three sub-nets. At the interface of the basic unit, we recognise the places we
could expect after reading the list of actions a basic unit can perform. As
mentioned, the implementation of the basic unit is divided into two separate
subsystems, a control system, BControl , and a processing system, Processing .
The control system transfers commands and new-command requests between
the environment and the processing system.

The next two steps are simulation and verification. However, for this
purpose, we need to have at least a specification of the systems BControl
and Processing . Given such specifications, it is in principle possible to sim-
ulate the processing unit without detailing the net models of BControl and
Processing . However, current tools such as ExSpect and Design/CPN do not
allow simulation of such incomplete net models. Therefore, we proceed as
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follows. First, we give an algebraic specification of the systems BControl and
Processing . Then we verify that the unit behaves correctly, provided the sub-
nets for BControl and Processing satisfy their specification. Next, net models
for BControl and Processing are given. Finally, the complete model of the
basic unit is simulated and verified.

Algebraic Specification. The specification for BUnit shows that the re-
ceipt of a command and the sending of a new-command request alternate.
Given the informal requirement that BControl transfers commands and new-
command requests between the environment and the processing system, the
following specification for BControl makes sense:

BControl = (cmd? | tcmd ! · tncrq? | ncrq !) ∗ δ (16.21)

For the processing part, we arrive at the following specification. Actions are
processed simultaneously as much as possible. Upon receiving a command, an
input request is sent; upon receiving material, a new command is requested;
and upon receiving an output request, the output material is delivered.

Processing = (tcmd? | irq ! · imt? | tncrq ! · orq? | omt !) ∗ δ (16.22)

Note that in terms which are equal up to associativity, brackets are often
omitted. It may be surprising that neither BControl nor Processing contains
explicit parallelism. However, if we have a close look at the specifications, we
see that Processing produces a token in place tncrq at the same time that it
receives input material. Hence, the transfer of the new-command request to
the environment by system BControl can occur in parallel with the delivery
of output material by system Processing . This is exactly the desired result.
The informal argument of this paragraph is confirmed by the verification in
the next step of the design cycle.

Verification. Given the specifications for BControl and Processing , we can
now verify the behaviour of the basic unit. The formal algebraic seman-
tics for the behaviour of the Petri net BUnit is the following algebraic term
(see [BV95a, BV95b]):

τI ◦ λ
I
∅(BControl ‖ Processing) ,

where I is the set of internal places {tcmd , tncrq}. The above term can be
interpreted as follows. The unrestricted behaviour of system BUnit is simply
the parallel composition of the behaviour of all its components. The causal
state operator λI

∅ restricts this behaviour to all possible firing sequences al-
lowed by the initial marking, which in the above case is the empty bag of
tokens. The abstraction operator τI hides consumptions from and produc-
tions into internal places. By means of equational reasoning, it can be shown
that the behaviour of the basic unit satisfies its specification. That is,

τI ◦ λ
I
∅(BControl ‖ Processing) = BUnit .

The details of the verification are as follows. First, we introduce some abbre-
viations.
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tc = cmd? | tcmd ! transfer command
tn = tncrq? | ncrq ! transfer new-command request
pc = tcmd? | irq ! process command
ri = imt? | tncrq ! receive input
po = orq? | omt ! produce output

The first part of the verification considers the complete behaviour of the
basic unit without hiding internal details. Only after we have derived a simple
expression for λI

∅(BControl ‖Processing) will its internal behaviour be hidden.

λI
∅(BControl ‖ Processing)

= { Specifications BControl and Processing ; BKS1, A6 (Both 2×) }
λI
∅(tc · tn ·BControl ‖ pc · ri · po · Processing)

= { M1 }
λI
∅(tc · tn ·BControl bb pc · ri · po ·Processing

+ pc · ri · po ·Processing bb tc · tn ·BControl )
= { M3, A6,BKS1 (All 2×) }
λI
∅(tc · (tn ·BControl ‖ Processing)

+ pc · (ri · po · Processing ‖ BControl ))
= { CSO5,CSO4 (2×),CSO2,CSO3 }

tc · λI
tcmd(tn ·BControl ‖ Processing)

+ δ · λI
∅(ri · po · Processing ‖ BControl)

= { A7, A6 }
tc · λI

tcmd(tn ·BControl ‖ Processing)

Summarising, the above derivation yields

λI
∅(BControl ‖ Processing) = tc · λI

tcmd(tn ·BControl ‖ Processing) .

In a similar way, it is possible to derive the following results.

λI
tcmd(tn ·BControl ‖ Processing) =

pc · λI
∅(tn ·BControl ‖ ri · po · Processing)

λI
∅(tn ·BControl ‖ ri · po · Processing) =

ri · λI
tncrq(tn ·BControl ‖ po · Processing)

λI
tncrq(tn ·BControl ‖ po · Processing) =

tn · λI
∅(BControl ‖ po · Processing)

+ po · λI
tncrq(tn ·BControl ‖ Processing)

λI
∅(BControl ‖ po · Processing) =

tc · λI
tcmd(tn ·BControl ‖ po · Processing)

+ po · λI
∅(BControl ‖ Processing)

λI
tcmd(tn ·BControl ‖ po ·Processing) =

po · λI
tcmd (tn ·BControl ‖ Processing)

λI
tncrq(tn ·BControl ‖ Processing) = tn · λI

∅(BControl ‖ Processing)
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The above equations can be combined to derive a result for the expression
λI
tcmd (tn ·BControl ‖Processing). The reason for considering this expression

and not any of the others, is that the specification of BUnit tells us that
we may expect λI

tcmd (tn · BControl ‖ Processing) to be the beginning of an
iteration.

λI
tcmd(tn ·BControl ‖ Processing)

= { Repeated substitution }
pc · ri · ( tn · ( tc · po · λI

tcmd(tn ·BControl ‖ Processing)
+po · tc · λI

tcmd(tn ·BControl ‖ Processing)
)

+po · tn · tc · λI
tcmd (tn ·BControl ‖ Processing)

)
= { A4 (2×) }

pc · ri · (tn · (tc · po + po · tc) + po · tn · tc)
· λI

tcmd (tn ·BControl ‖ Processing)
= { Derivation below }

pc · ri · (tn · tc ‖ po) · λI
tcmd (tn ·BControl ‖ Processing)

tn · (tc · po + po · tc) + po · tn · tc
= { M2 (3×) }

tn · (tc bb po + po bb tc) + po bb tn · tc
= { M1 }

tn · (tc ‖ po) + po bb tn · tc
= { M3 }

tn · tc bb po + po bb tn · tc
= { M1 }

tn · tc ‖ po

Axioms A6 and RSP∗ yield

λI
tcmd(tn ·BControl ‖ Processing) = (pc · ri · (tn · tc ‖ po)) ∗ δ .

Note that the guardedness requirement for RSP∗ is fulfilled. Combining the
above result with the result derived for λI

∅(BControl ‖ Processing) yields

λI
∅(BControl ‖ Processing) = tc · ((pc · ri · (tn · tc ‖ po)) ∗ δ) ,

which already looks very similar to the specification of the basic unit. In the
second part of the verification, the internal behaviour in the above result is
hidden. Recall that I is the set of internal places {tcmd , tncrq}.

τI ◦ λI
∅(BControl ‖ Processing)

= { Previous result; substitution of abbreviations }
τI(cmd? | tcmd ! · ((tcmd? | irq ! · imt? | tncrq! ·

(tncrq? | ncrq ! · cmd? | tcmd ! ‖ orq? | omt !)
) ∗ δ))
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= { Axioms for the abstraction operator τI }
cmd? | τ · ((τ | irq ! · imt? | τ · (τ | ncrq ! · cmd? | τ ‖ orq? | omt !)) ∗ δ)

= { AT }
cmd? · ((irq ! · imt? · (ncrq ! · cmd? ‖ orq? | omt !)) ∗ δ)

Hence,

τI ◦ λI
∅(BControl ‖ Processing)

= cmd? · ((irq ! · imt? · (ncrq ! · cmd? ‖ orq? | omt !)) ∗ δ)
= BUnit ,

which is the desired result. We have formally proved that the behaviour of the
P/T net BUnit is indeed as given by its algebraic specification of Equation
16.20, provided of course that the sub-nets BControl and Processing are
implemented according to their specifications of Equations 16.21 and 16.22.
So the next step is to give the net models for those two systems.

rdy

bsy

rcmd sncrq

cmd

tcmd tncrq

ncrq
BControl

rmt

rcmatimt

irq rqmat

wfmt

pmat
omt

orq

pmt

omat

empty

tncrq

tcmd
Processing

Fig. 16.14. The subsystems of the basic unit

Petri Net Model. Figure 16.14 shows the Petri net models of BControl
and Processing . System BControl keeps track of the state of the unit. A unit
is either ready to receive a command or busy processing. System Processing
can receive a command if it is empty. Upon receiving a command, it sends an
input request and enters a state called waiting for material. Next, it receives
raw material. Processing turns raw material into processed material . Finally,
the unit delivers the processed material, returning to the empty state.

Simulation and Verification. At this point, the P/T net model for the
basic unit is complete, which means that it can be simulated using tools such
as ExSpect and Design/CPN. Since the net of the production unit is very
simple, the simulation results are not very surprising. Therefore, we do not
go into details.

The final step in the design cycle of the production unit is the verification
of the systems BControl and Processing . Details are left to the reader. We
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simply state the results. Transition names are used as abbreviations for the
synchronous merge of their consumptions and productions. The algebraic
semantics for BControl is as follows.

τI ◦ λ
I
rdy(rcmd ‖ sncrq) ,

where I is the set of internal places {rdy , bsy}. The semantics for Processing
is the following term.

τJ ◦ λ
J
empty(rqmat ‖ rcmat ‖ pmat ‖ omat) ,

where J is the set of places {empty ,wfmt , rmt , pmt}. It is straightforward to
verify that these two terms are equal to the specifications of BControl and
Processing given in Equations 16.21 and 16.22. The verifications follow the
pattern of the verification of BUnit . However, the verification of Processing
is very tedious when only the basic axioms of Table 16.2 plus RSP∗ can be
used. The so-called expansion theorem, which is a generalisation of M1 to an
arbitrary number of processes in parallel, greatly simplifies the calculations.
The theorem can be found in [BV95a, BV95b].

As a consequence of the previous verification steps, we may conclude that
the complete hierarchical net model of the basic production unit, given in
Figures 16.13 and 16.14, satisfies its specification.

Properties of a Basic Unit. At this point, it is time to return to the
requirement that the behaviour of a series of basic units must be similar to the
behaviour of a single basic unit. We ask ourselves: What are the fundamental
properties in the dynamic behaviour of a basic unit? The most obvious one
is related to the interface between the unit and the operator. As we have
seen already, the receipt of a command and the sending of a new-command
request alternate. We can prove this property formally. Hiding all actions
in specification BUnit of Equation 16.20 except cmd? and ncrq ! yields the
following behaviour:

(cmd? · ncrq !) ∗ δ , (16.23)

which shows that the basic unit of Figures 16.13 and 16.14 indeed alternates
commands and new-command requests. The calculations are as follows. Let
I be the set {irq , imt , orq , omt}.

τI(BUnit)
= { Equation 16.20 }
τI(cmd? · ((irq ! · imt? · (ncrq ! · cmd? ‖ orq? | omt !)) ∗ δ))

= { Axioms of the abstraction operator τI }
cmd? · ((τ · τ · (ncrq ! · cmd? ‖ τ | τ)) ∗ δ)

= { B1,AT }
cmd? · ((τ · (ncrq ! · cmd? ‖ τ)) ∗ δ)

= { M1,M3,M2 }
cmd? · ((τ · (ncrq ! · (cmd? ‖ τ) + τ · ncrq ! · cmd?)) ∗ δ)

= { M1,M2 (2×), B1 }
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cmd? · ((τ · (ncrq ! · (cmd? + τ · cmd?) + τ · ncrq ! · cmd?)) ∗ δ)
= { A6, B2, A6 }

cmd? · ((τ · (ncrq ! · cmd? + τ · ncrq ! · cmd?)) ∗ δ)
= { A6, B2, A6 }

cmd? · ((τ · ncrq ! · cmd?) ∗ δ)

This result is almost the result we are looking for. The final step using RSP∗

is as follows.

cmd? · ((τ · ncrq ! · cmd?) ∗ δ)
= { BKS1, A6 }

cmd? · ((τ · ncrq ! · cmd?) · ((τ · ncrq ! · cmd?) ∗ δ))
= { A5 (3×), B1 }

(cmd? · ncrq !) · (cmd? · ((τ · ncrq ! · cmd?) ∗ δ))

Hence, A6 and RSP∗ yield

cmd? · ((τ · ncrq ! · cmd?) ∗ δ) = (cmd? · ncrq !) ∗ δ ,

which is the desired result.
Another characterising property is that the unit behaves as a one-place

buffer if we look at the stream of material. Hiding the appropriate actions
yields:

τ · ((imt? · omt !) ∗ δ) , (16.24)

which states that the unit after initialisation, expressed by the silent action
τ , enters a cycle in which it alternates the input of material and the output
of material. The details of the proof are left to the reader.

A final property is that the unit can accept two commands before it must
produce output. That is, it behaves as a two-place buffer with respect to
commands. Hiding the appropriate actions yields the following behaviour:

cmd? · ((cmd? ‖ omt !) ∗ δ) , (16.25)

which is indeed the behaviour of a two-place buffer. This last property con-
firms that the unit satisfies the requirement that it must be able to receive a
new command while it is still busy processing.

Complex Units. So, what happens if we combine basic units into more
complex units? As mentioned, it must be possible to construct arbitrarily
long series of basic units, using only two components, namely the basic unit
and a generic controller for two units. We do not discuss the entire design
trajectory. Figure 16.15 simply shows the high-level net of a complex unit
consisting of two units in series. The basic idea is that the control component
receives a command from the environment and forwards this to the two units.
Commands may be forwarded only if the receiving unit is ready to accept
them. In its most simple form, the complex unit consists of two basic units.
However, by instantiating Unit1 and Unit2 with complex units themselves,
it is possible to construct arbitrarily long series of basic units.
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Fig. 16.15. Two units in series

The question is what properties a complex unit must satisfy. Obviously, in
order to be compatible with a single basic unit, it must alternate commands
with new-command requests. That is, if we calculate the behaviour of system
CUnit and hide the appropriate actions, it must satisfy requirement 16.23.
Furthermore, looking at the stream of material, it is not difficult to see that a
complex unit consisting of N basic units should behave as an N -place buffer.
Each basic unit can contain one piece of material. Finally, in order to exploit
the parallelism in the basic units, a unit consisting of N basic units should be
able to receive N + 1 commands before having to give its first output. These
last two properties are generalisations of properties 16.24 and 16.25 derived
above for the basic unit.

We conclude this discussion with the results we have obtained for complex
units thus far. We have calculated the complete behaviour of a unit consisting
of two basic units in series. We also have verified the above three properties for
such a unit. The verifications are not difficult for someone experienced with
the theory. However, they are very tedious and take many pages. Verifying
the properties for a series of three basic units is not recommended without
the support of tools. For more details on the production-unit case study, the
reader is referred to [Bas98, Section 3.8].

16.5.5 Concluding Remarks

In this section, we have discussed an engineering method combining Petri
nets with process algebra. The example of the production unit shows the
possibilities of the approach.

To date, the algebraic verifications do not incorporate data; they focus on
the order of consumption and production of tokens. An important extension
of the method is the inclusion of data in the style of µCRL [GP93]. Such an
extension makes it possible to handle pre-conditions, or guards, in coloured
nets, which is important since pre-conditions are used to steer the flow of to-
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kens in a net. Furthermore, the induction principles of µCRL make it possible
to derive properties for coloured nets with parameters. For example, assume
that the production unit of Figure 16.15 is instantiated with one unit of N
basic units in series and another unit of M basic units in series. Using the
induction principles of µCRL, it is possible to prove the buffer properties of
the unit for arbitrary N and M instead of specific instances of N and M .
Although such a parametrised proof is more difficult than a proof for specific
instances of the parameters, in the long run it can save a lot of work.

Another useful extension of the method is the following. As mentioned,
the case study discussed in this section is simplified in the sense that units
always operate correctly. However, in reality, processing errors may occur. If
such an error occurs, a unit must be reset, after which processing may resume.
This means that error-handling facilities must be added to the specifications
and the net models. It would be nice if some of the verifications discussed
in this section could be reused in verifying the correctness of the extended
production units. The theory presented in [AB97a, BA99] can be used for
this purpose. However, it needs to be adapted to the framework presented
here.

Finally, the method discussed in this section is only useful in practice with
proper tool support. It is simply impossible to do any real-world verifications
completely by hand. First, it is necessary to develop tools supporting alge-
braic reasoning in general. Current tools are usually built for a specific process
algebra and, hence, not useful for the process algebra used in our method. In
a later phase, process-algebra tools and Petri net tools must be combined to
form one integrated design environment. An initial study of the possibility
of providing support for ACP-style algebraic reasoning in the general proof
environment PVS [SRI00] can be found in [BH99].





17. Conclusion

The diversity of the verification methods developed for Petri nets and their
extensions may confuse the engineer trying to choose the best approach for
his problem. This part of the book aimed to clarify the basics of such a choice
by discussing some general issues involved in the design and application of a
verification method:

• The net models that the method enables one to verify;
• The types of properties one wants to check;
• The families of methods;
• The interplay of different methods.

On the one hand a net model with a high expressive power such as a
coloured Petri net enables us to handle complex systems. On the other hand,
this expressive power implies difficulties for the verification process (e.g. com-
plexity increase, semi-decidability, restrictive types of properties).

Each type of analysis method has been presented in a different chapter of
this part.

Chapter 14 described the state-based methods. We showed that the com-
putation of the state space may be managed efficiently. Then we introduced
more precisely partial-order methods, symmetries, and modular methods.
There was an emphasis on the use of symmetries including implementation
for well-formed coloured nets where this construction can be completely for-
malised. This part ended with a comparison of these methods under differ-
ent criteria such as space and time reduction and property equivalence, and
showed how these different methods can be combined.

The subsequent sections of the chapter extended the previous work by
taking into account the types of properties that one can check and the im-
pact on the graph construction was. An original technique of parametrised
construction developed including the verification of temporal logics. Finally,
the problem of model checking was discussed in general terms.

In Chapter 15, structural methods were developed. Accurate reduction
rules were presented with emphasis on the implicit place. The implicit place
has a particular role since it simplifies the structure of the net and enables us
to apply other techniques more efficiently. Moreover, implicit places have a
strong connection with positive flow computations as shown in the chapter.
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Linear algebraic techniques were then developed, and the equivalence between
behavioural properties and linear algebraic results was shown. Then siphons
and traps were carefully studied since they are the cornerstone of necessary
and sufficient conditions for liveness properties.

In the last part of the chapter, some syntactical subclasses were defined
showing the behavioural consequences which can be established from the
syntactical restrictions. The behavioural properties include fairness, liveness,
deadlock-freeness, and the relation between reachable states and linear in-
variants.

Chapter 16 presented new techniques from an open research field. The
first technique was based on linear logic. The attraction of linear logic is
twofold: it gives an operational semantics to Petri nets, and a proof scheme
for linear logic gives the proof of a property in the corresponding Petri net.

The second technique helped us to understand how to benefit from multi-
formalisms. This technique started from a specification of the system given in
process-algebraic terms. Then it constructed a Petri net model of the system.
The Petri net was simulated to exhibit bad behaviour in order to reinforce
trust in the model. Finally the Petri net was transformed again into a process
algebra such that the two process algebras (modelling the specification and
the implementation) were equivalent. Emphasis was put on the design cycle
rather than on technical aspects.



Part IV

Validation and Execution





18. Introduction

Validation is one of the central tasks of system development. The modelled
system has to match the expectations of the user/client/customer. A variety
of possibilities is available. The models can be executed, simulated, animated,
inspected, tested, debugged, observed, controlled, etc. This incomplete list
can easily be enlarged. However, in this book the emphasis is on the validation
of Petri net models for systems engineering applications. This allows us to
concentrate on the major areas of Petri net validation, namely prototyping,
net execution, and code generation. Petri net concepts can be applied in
some of the most important areas of systems engineering: concurrency and
distribution.

Software engineering is a good candidate for presenting systems engineer-
ing validation concepts. Many aspects of software can be expressed by Petri
nets in a natural and adequate way. Because of the operational semantics
and the ability to express the dynamic behaviour of systems (models) by the
token game, prototyping based on Petri nets is an approach which covers
all the tasks from initial idea to final product. In this part direct execution
and indirect execution (by code generation) for the purpose of validation of
Petri net models will be discussed extensively. Without tools there would be
no efficient handling of large and complex distributed systems, and therefore
the relevant tools for Petri-net-based systems engineering are presented.

Chapter 19 introduces validation within the systems engineering area and
relates it to prototyping and tools. Chapter 20 introduces different types of
distributed execution concepts and shows their relevance. Chapter 21 covers
the (automatic) generation of code for distributed software systems from a
Petri net. Conclusions follow in Chapter 22.





19. Systems Engineering and Validation∗

The objective of this chapter is to describe the importance of validation
for systems engineering approaches, to introduce the notion of validation, to
explain prototyping, and to sketch the relevant tools in these areas in relation
to Petri nets.

19.1 Software Life-Cycle and Validation

A major problem during the specification process is determining the user-
formulated requirements which a system has to fulfil. Using verification to
adress this problem was discussed in Part III. The contribution of validation
is explained here. Due to the complexity of systems, a complete verification or
complete validation is in most cases not possible. The goal of verification is to
prove that certain properties hold or do not hold. To do this the description
of the properties is checked against the specification. The goal of validation is
to confirm that the specification meets the original requirements of the user.
Therefore, validation and verification complement each other.

The definition of validation within the software engineering process varies
greatly and depends to a large extent on the specific software engineering
approach. Depending on the goals and concepts used, different means can be
used to validate specifications, models, or systems.

The most well-known approach is the waterfall model and its modifi-
cations [Boe81]. There, a validation is done at the different phases of the
development process. However, nothing is said about how this task is to be
performed. Other models such as the spiral model (see [Boe86]) are more
precise but still leave several questions open to the modeller. The V-model
(see [Som96]) explicitly encourages modellers to verify and validate the cur-
rent results. At the different levels of the V-Model the validation process is
determined. But how this is done remains open. Other approaches do not con-
sider validation to be a central task in building software or systems. A topic
which is closely related to validation is testing. There are test approaches
(see [Som96]) which cover a wide range of the aspects of validation. However,
they mostly work as post mortem approaches. Test cases can be generated
∗ Authors: D. Moldt (Sections 1, 2 & 4), F. Kordon (Section 3)
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during the validation process or they can be generated prior to verification
tasks.

Here validation is seen as the process of checking whether the system or
model behaves as the user expects it to. Therefore, there are no formal means
of validation in the general case. However, to support the tasks of engineers
during validation, different means are available from software engineering,
such as inspection, observation, and/or testing of simulated, animated, or
executed models. In the phase of building the models all variants of valida-
tion can already be applied. The graphical structure of net models allows
easy communication about the planned system. In the initial modelling the
emphasis is laid on inspection, i.e. reading the diagrams. The further the
process proceeds, the greater the need to understand the behaviour of the
model. Here the advantages of the operational semantics and the token game
become of interest. The net models can usually be executed by a simulator or
animator (see Chapter 20). An additional step is to transform them into code
and then to execute them (see Chapter 21). In addition, available verification
techniques and methods can be used (see Part III). By combining verification
and validation techniques we can improve confidence in the validity of the
model.

An important software engineering approach with respect to validation is
prototyping. Prototyping includes the tasks of modelling and validation. How-
ever, prototyping is used in many different ways. Therefore in Section 19.3
the notion is discussed in more detail.

It is important to notice that different approaches imply a different set of
validation techniques. Not all possible validation techniques are used in every
project. A description of validation in general follows in the next section.

19.2 Validation

The term validation is often confused with verification. The definition of
verification is given above (see Part III). In general, verification is the task
of checking that a model matches a given specification. A model is correct if
it fulfils all the properties given in the specification.

Validation is the task of checking whether a model or system fulfils the
expectations of the user, customer, or client. This includes the behaviour, the
functionality, and the structure. While the static structure can be checked
by inspection of a model, behaviour and functionality are best checked by
execution. It is important to notice that involving the user is a central issue
in this context. This adds an informal component to the validation process.
Nevertheless, formal techniques such as simulation or code generation can be
applied.

In the context of validation, the meeting of requirements can be viewed
narrowly or broadly. With the narrow view, semi-formal approaches are
mainly used. The broad view aims to allow the modeller/user/engineer to
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feel satisfied with the specification/system model so far. This extends the
narrow view with formal approaches. These formal approaches include the
use of previously verified sub-specifications to model a certain compound
action, as is explained in Chapter 21.

Engineers emphasise the parts of a system which are critical and therefore
under stronger and more precise investigation. Appropriate approaches are
chosen according to the needs of the engineer. For example, the proof that a
certain part of a model is live, independently of the rest of the model, is often
important for an engineer. If the requirements have been precisely described,
then verification techniques are normally used. If the requirements have not
been fixed in an exact manner, then validation in the narrower sense is the
only possible way to check the fulfilment of the requirements, since there is
nothing against which to verify the specification.

There is a close connection with refinement and replacement processes,
which will be described in more detail in Section 19.3. Both activities are
central to the process of prototyping. Refinement covers the integration of
models (or model parts), where one or more models are a more detailed
version of the refined one. Replacement can be taken literally: (some part of)
the whole model is replaced by one or several parts. This can even lead to a
more abstract model.

How can specifications or models be validated? There are different solu-
tions when using nets.

1. Observation and inspection of static net models, in this case the nets are
not executed;

2. Simulation and observation, covering inspection, performance, account-
ing, testing, debugging, and diagnosis;

3. Animation; and
4. Code generation and code execution.

Here again the advantages of nets are the formal basis, the operational seman-
tics, and the graphical interface. In addition to the verification opportunities,
the direct execution of nets allows us to animate and simulate nets with little
effort. Whereas simulation is directly related to the net formalism, animation
is closely related to the application context. The same is true for most other
interface-related topics which are not discussed here. Code generation from
nets allows us to execute them in their final (and sometimes different) execu-
tion environment. Furthermore, different tools provide different observation,
testing, and debugging possibilities. All this allows and supports prototyping
approaches.

Because we use the narrow view of validation, verification techniques as
presented in Part III are not considered here. The predominant aspect of
validation comes from the operational semantics of nets which can be used
for the execution of a specification. For this execution several cases have to
be distinguished. The first is the direct execution of nets by a simulation
tool. The second is indirect execution, which is achieved by code generation
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followed by the execution of the generated code. Indirect execution can be
done within the environment used for the creation of the net, or a different
environment. The tools can either execute the net directly or compile it before
execution. This will be considered in more detail in the following chapters.

It is important to notice that there is always some risk. For verification,
there is the possibility of a false proof, or that the wrong property was proved,
or that incorrect assumptions about the environment have been made. (The
latter two problems should be detected by validation.) For validation, we must
take into account the fact that the tests performed usually do not cover all
cases. Therefore, there remains a degree of uncertainty about the behaviour.
However, this is often the case when building complex systems. For critical
parts of a system, validation in the broader sense applies, because there are
proofs of properties of the system. It is important to test even proved parts,
as illustrated by the explosion of the Ariane rocket in June 1996. There, an
approved system was transferred to a new platform without sufficient testing
(see [Lio96]). The system fulfilled the specification, however, this specification
did not describe the desired behaviour. The assumptions about the behaviour
of the environment were wrong, hence the Ariane 5 showed a higher perfor-
mance than the Ariane 4 in the tests but not in practice. An important
question is how to make the risk of a failure or malfunction as small as pos-
sible. The techniques discussed make an important contribution but the way
in which the engineer proceeds is also important. Therefore, in Section 19.3
prototyping as an approach is sketched.

19.3 Prototyping as an Approach

Since the beginning of the ’90s, prototyping has become a popular and fash-
ionable technique. However, this term has many definitions. In this section,
we briefly recall the origin of this technique and some widely accepted defi-
nitions of prototyping. Finally, we propose a new and richer vision.

19.3.1 The Original Problems

There are three main issues that prototyping can address:

1. Initial requirements: Software engineers must correctly understand the
requirements of the client. A prototype which behaves similarly to the
intended system can help to confirm that what the engineer proposes is
what the client wants.

2. Experimentation: This is worthwhile to check that an implementation
strategy is correct before making a large investment. If it is a dead end,
the strategy can be abandoned. Otherwise, the experimentation validates
it and may provide some extra information about the global investment
required for the complete design and implementation.
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3. Closing the Gap: There is a gap between the implementation require-
ments (the detailed solution that is proposed to the client by the soft-
ware engineer) and the implementation itself. Ideally the implementation
should be closely related to the requirements.

These three issues lead to different techniques. In (1), it is obvious that
the prototype will be discarded as soon as there is an agreement between
the engineer and the client. Here the main benefit of prototyping is that it
clarifies the problem and its potential solution. In (2) the prototype may
be either discarded or retained, depending on the care that was put into its
design and implementation. In (3), the prototype is a product that has to be
reliable and prototyping is then generally reduced to code generation.

It is obvious that if the prototyping process is well established and uses
tools, firms can save time and money on both development (point 1 and
sometimes 2) and maintenance aspects (point 3 and sometimes 2):

• Technique (1) reduces the misunderstandings of initial requirements, which
are the source of 70% of bugs [Hol96];

• Technique (2) prevents major design mistakes. The throw-away product
that is obtained allows experimentation with an implementation strategy
before using it in the final product;

• Technique (3) minimises the difference between the specification and the
corresponding code.

Prototyping is also called Rapid Prototyping when it is supported by
tools because the time to market of a product may be greatly reduced. Rapid
Prototyping has already been exploited [GHT91, Bur93], even for real-time
applications [Cas91, LSB93]. The results are satisfactory for large projects
because the required tools are very expensive to develop.

19.3.2 Prototyping Taxonomy

There are many ways to interpret the three issues discussed in the previous
section. If we emphasise aspects (1) and (2) only, the prototype does not need
to be retained but the results should be carefully documented to produce de-
tailed requirements for the final system. If we emphasise aspect (1), then
prototyping aims to produce a final product. According to a similar interpre-
tation, [Hal91] and [AH93] propose the following classification: throw-away,
incremental, or evolutionary.

In the throw-away approach (also called experimental prototyping) only a
subset of the requirements is generally implemented. This provides informa-
tion about design choices and/or development costs. A throw-away prototype
may be:

• Simulated: Usually, it cannot be executed outside the simulation environ-
ment for which it is designed [Bur90, PG92]. Most prototyping environ-
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ments allow integration of external procedures into the prototype to pro-
vide a good evaluation.

• Executed: it is able to run outside the environment in which it is designed.
This approach is mainly used for larger or long-term projects [Cas91]. Many
executed prototypes are implemented within very sophisticated environ-
ments such as Smalltalk [GR89].

In the incremental approach , new parts of a system are successively
added to a system kernel [HI88]. The designed software architecture guides
all the development phases. This approach is very similar to the traditional
development process. The main problem is that this technique relies on the
software architecture; if it is not robust, reliable, or pertinent, the prototype
cannot be fully operational.

The main objective in the evolutionary approach is to preserve the flex-
ibility of both the system architecture and functions. The prototype is im-
proved by successive refinement of the previous version [BKMZ84, Von90].
This approach is also called waterfall prototyping [Flo84].

Both incremental and evolutionary approaches produce a version 1.0 of
the final system.

19.3.3 Key Issues in Prototyping

Throw-away prototyping is now a well-accepted technique in both the soft-
ware and hardware fields. In the former field the goal is to evaluate require-
ments. In the latter domain, the goal is to implement a system using “soft”
techniques (PLA in [PTVdB90], simulation in [LP90], etc.) in order to test it
intensively. The production cost of any hardware system explains the interest
of the hardware community in prototyping.

Incremental and evolutionary prototyping are not yet as popular as throw-
away prototyping because, most of the time, the implementation operation is
so expensive that the prototype replaces the application specification. Then,
modification, extensions, and maintenance are performed at the prototype
level and the model, if any, becomes increasingly out of date. A solution to
this problem is to automate the process. This is outlined for both software
[Luq89] and hardware [DC90] systems. A quick and low-cost procedure allows
the system designer to work at the specification level instead of the program
level. This may be valuable when the system is complex (distributed systems
for example).

The notion of a model is very important. A model is a description of the
system to be prototyped. Such a description may be general or detailed. Of
course, the accuracy of computed results depends on the level of detail in the
description.

In throw-away approaches, the expected information is a better under-
standing of what the client wants; so the construction of the model is not
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important. Models may even be expressed using high-level programming lan-
guages.

In incremental and evolutionary approaches, the construction of the model
must be done carefully because code is generated (or deduced) from the
model. So the use1 of a formal representation such as Petri nets is valuable
because properties can be computed from the model. The most important
point is that properties can be deduced from the model in order to help a
designer increase his knowledge of the system at a semantic level instead of
a syntactic level.

With respect to these considerations, most of the studies outline the fol-
lowing points:

• It is rather difficult to determine when a model becomes a prototype [Hal91,
EG92, DK96]. A good illustration is that some approaches rely on very
sophisticated programming languages: the model is the prototype.

• The quality of the results depends on the formalism used to design the
specification of the system [Luq92]. For this reason, formal specification
techniques are valuable because they enable the computation of properties.

• While there is no universal formalism which fits every problem, the choice
of an input formalism is not easy [MGK89]. Particularities of an application
domain must be considered.

The problem arises mainly because the boundary between model and
prototype is not really clear. Hence there is little difference between modelling
(specifying the design) and implementing (introducing operational aspects).
When the design and operational issues are considered simultaneously, errors
due to the misunderstanding of the application logic may be introduced. Such
errors are difficult to detect.

19.3.4 Extended Definition of Prototyping

Prototyping should not be reduced to code generation. It also involves op-
erations such as modelling, evaluation of the model, and evaluation of the
prototype. It is thus more than a technique, it is a strategy. Figure 19.1
illustrates the prototyping approach. The main characteristic is that there
are two distinct entities: the model, which is defined using a set of adapted
representations, and the prototype.

If a system designer works on model version N, he may evaluate this
model and refine it using the information provided by the environment. The
approach may be formal or not. However, he cannot get complete information
about the system execution: some aspects can only be studied when the
prototype runs in its final execution environment.

1 By “use”, we mean either the direct description of the system by means of Petri
nets, or the description of a system by means of a representation that is related
to Petri nets, such as the one presented in Section 10.3.3.
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Model Version N Model refinement
toward version N+1

Prototype refinement
towards version N+1

Prototype Version N

Prototype production
(code generation)

Main refinement
towards version N+1

Fig. 19.1. Prototyping as an approach

Code generation provides him with a prototype that is an exact image of
the model and that is ready to run in the final execution environment. This
prototype may be evaluated and modified (in distributed systems, discrete
process location may be investigated) and, if it is not satisfactory, the infor-
mation provided can be reused to refine model version N into a version N+1
that should correct the problems.

This extended definition of prototyping may be seen as an extension of
evolutionary prototyping that emphasises the differences between a model
and a prototype. It takes advantages of operations (validation, evaluation, . . . )
that are enabled at both levels. This is especially valuable when the model
level relies on a formal modelling technique (Petri nets). At this stage, we do
not further define the words “model” and “prototype”.

19.4 Tools

Petri nets can be applied to areas as diverse as software architecture, dis-
tributed system design, protocol verification, etc. In each of these areas Petri
net tools may be used to clarify the structure of the system and to analyse or
verify its properties. In general, Petri nets will be used mainly in the analysis
and system specification phase.

There are two different classes of tools that employ Petri nets. First of
all are tools that are built for a specific application area and that use Petri
nets as part of their modelling or execution formalism. Examples are process
centred software engineering environments (MELMAC, Process Weaver) and
work flow management systems (COSA). Their task is to support a specific
application area using some Petri net variant. Often the Petri net itself is
hidden to a large extent from the end-user.
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The second class consists of general-purpose Petri net tools. They are
independent of a specific application area and provide the user with the means
to construct, analyse, and simulate specific classes of Petri nets. These tools
are usually stand-alone tools that do not interface directly to application-
specific tools.

In this section we will concentrate on general-purpose Petri net tools.
In general, such a Petri net tool consists of at least some of the following
components:

• Editor;
• Simulator;
• Analyser;
• Code generator;
• Animator;
• Repository.

Editor

The editor is used to create, modify, and store a Petri net model. An editor
may be textual or graphical, or a combination of both. A graphical editor
allows for the direct drawing of the Petri net. It supports the usual functions
of a drawing package. In the case of hierarchical nets a navigation mechanism,
eventually supported by multiple windows, may be needed to view all the
components.

The editor should support the syntax of the underlying Petri net variant
of the tool. Some editors support one or more very specific Petri net variants
(syntax), while others allow the user to supply his own net variant. Editors
that are targeted towards a specific Petri net variant will usually have a more
user-friendly interface.

Petri net editors are often tightly coupled to the rest of the tool and are
in most cases bound to a specific platform.

Simulator

The simulator executes the Petri net that has been constructed e.g. via the
editor. Simulation can be in batch or interactive mode. In the latter mode,
the user may interact with the execution of the Petri net, for example by
inspecting, adding, or removing tokens. By setting breakpoints or going back
and forth in the execution graph, the user has control over the simulation. In
this way he can debug the model to detect incorrect-functions.

The simulation can be performed with or without animation. Without
animation the report of the simulator will usually concentrate on numerical
and statistical results.

Existing simulators are mostly bound to a specific editor or animator,
and it is not easy to incorporate them in another Petri net environment or
in another application.
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The efficiency of most simulators will decrease rapidly for (very) large
nets. In some cases it is possible to use the simulator as the end-product, e.g.
to drive a real-time system. In such a case the net should usually be rather
small, in order to meet timing requirements.

Analyser

The analyser derives static or dynamic properties of a Petri net model. Ex-
amples of such properties are S- and T-invariants. Another important area is
the analysis of the reachability graph, to obtain information on e.g. liveness,
fairness, and boundedness of the net. In order to avoid a state explosion,
tools should support the operation on sub-nets, reduced nets or net gener-
ated graphs. Some properties can be calculated without computing the whole
reachability graph, others may need the whole graph (e.g. model checking).

For stochastic Petri nets it may be possible to use Markov analysis to
analyse the time behaviour. For timed Petri nets, time analysis is able to
calculate, for example, bounds on arrival times of tokens in output places.

As is the case for the simulators, the analyser components are mostly
coupled very tightly to a specific tool environment and are not available as
subroutine packages.

Code Generator

A code generator generates executable code for a specific software/hardware
platform. In some sense the simulator also generates code. However, a sim-
ulator usually interprets the Petri net, whereas we refer here to compilable
code. An important problem is transforming the inherently parallel Petri net
to sequential code.

At the moment, available code generators offer the possibility of gener-
ating code (or code skeletons) for small systems. It is not easy to target the
code to a specific platform.

Animator

In the animator the user observes and (sometimes) may interact with the
external behaviour of the net. The animation that is provided may be realistic
or non-realistic. In the first case, the user sees a realistic scene (for example
a factory) that the Petri net is supposed to describe. In the latter case, the
user sees the tokens flowing through the Petri net.

Tools that offer animation mostly concentrate on non-realistic animation
and show the state of the net as it evolves in time. Realistic animation may
be obtained by attaching code to transitions or places. Especially in com-
bination with graphical interfaces, newer products provide animation that
expresses Petri net aspects in a way that is intuitive for users since it refers
to application-dependent representations.
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Repository

The Petri net models that are constructed by the editor, and in some cases the
results of simulation runs and analysis sessions, are stored in a repository. In
this sense a Petri net tool is just another CASE tool that manipulates system
models.

Most available Petri net tools store their models in a proprietary data
format, directly in the operating file system. Some tools make available the
syntax of these files so that it is possible to interface to other applications.
If they use a standard database system, this repository can also be used
to query and update the model directly without the help of the Petri net
tool itself. Version and configuration management of the Petri net models is
relatively easy for an open repository.

In summary, existing Petri net tools offer adequate means to design, exe-
cute, animate, debug, and analyse Petri net models. When comparing Petri
net tools to ordinary CASE tools, one observes that most Petri net tools are
rather closed and are not easy to couple to other Petri net tools or to em-
bed in standard software development environments. However, there is some
ongoing work to agree on a common basis for an exchange format which is
based on XML (extensible markup language).

An overview of existing Petri net tools can be found on the Internet at
the World of Petri Nets homepage (http://www.daimi.au.dk/ petrinet/).





20. Net Execution∗

For some years, there has been a growing consensus on the distinction between
requirement analysis and software design.

• The requirement analysis phase of the software development life-cycle is
concerned both with the elicitation of requirements from a customer, and
their formalisation into a specification of the system behaviour.

• The design phase aims to produce an architecture suitable for code gener-
ation and to assign pieces of behaviour to components of the architecture.

This distinction also fits that between the verification of the specification and
the validation of the software. Observation plays an important part in the
two phases of the software life-cycle, as well as in dynamic software validation
using simulation.

During the requirement analysis, the behaviour of the target system must
be extensively considered before deciding that a particular course of events
is an allowed behaviour. So the elicitation of requirements from a customer
stresses observation and interactive execution under the control of the engi-
neer [DBD94].

During the design phase, on the contrary, the emphasis is put on the re-
verse side of observation, namely hiding or encapsulation. In order to define a
module, or a component, one has to hide the internal behaviour of the piece
of software. Furthermore, defining an equivalence relation on behaviours, for
instance observational equivalence, allows the freedom to embed a component
into a system. However, the designer must rely on a formal model for com-
ponents plugging and for unwinding a compound system behaviour. Without
such a model, simulation and prototyping techniques would be worthless.

This chapter is concerned with net execution in this setting; it focuses on
software simulation and prototyping. Let us note that “net execution” may
be misleading because a Petri net model is not precise enough to enforce a
particular course of execution and because the execution semantics of such
model has to be changed:

• Even if some transition is enabled, being idle is always an allowed behaviour
of a net; the process driving the behaviour must be distinguished from the
constraints modelled by the net.

∗ Author: P. Barril
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• A sequence of transitions formalises an execution trace well enough for
most purposes. However, some highly concurrent systems require a step
semantics, that is, must consider the synchronous firing of a multiset of
transitions.

• To model concurrence or asynchrony, one behaviour of the system may
correspond to a set of execution traces.

In order to deal with these multiple execution semantics, we follow the
execution paradigm of [Tau88] for Petri net execution. Every transition is
attached to a step process divided into two sections:

• A black box section where the process stays for an unknown period of time,
driven by its own concerns and which is left by requesting permission to
fire a multiset of transitions.

• A management section where the step process tries to get permission to fire
the transitions, and initiates the marking update if permission is granted
before going back into the black box section. A process which is granted
permission is committed to firing and cannot change its mind; it must
initiate the moves of tokens before going back into the black box section
or issuing other requests.

This process-driven approach separates the control of a behaviour from
its correctness with regard to the firing rule. Computation and communica-
tions between the black box sections can be used to search for a particular
behaviour or to enforce a higher-order form of control using causal or syn-
chronic properties. We will say that computations in the black boxes are
running at the semantic level. Because the intended uses of the Petri net en-
gines are simulation and prototyping of distributed systems, we do not assume
a central clock. A step which is granted permission is committed to firing,
but takes some time to update the marking. Furthermore, the occurrence
of a step is mirrored by a piece of code which performs the corresponding
tasks in the black box sections and which also takes an unspecified amount
of time to complete. In this asynchronous setting, our notion of step is not
the usual one: the transitions are concurrently enabled, but their occurrences
can overlap in time, without being required to do so.

We are concerned only with conservative strategies for allowed behaviours.
This means that, assuming a way to suspend execution, the system stops
at a reachable marking, where all tokens are causally accounted for by a
sequence of steps in the Petri net model. A device for stopping execution is a
snapshot algorithm running at the semantic level, rejecting any new requests,
but allowing each committed transition to complete.

More formally, we adopt the semantics which unfolds a P/T net into
a prime event structure generated by occurrences of transitions. Following
[Sas95], tokens are just grains of causality corresponding to the events that
move them into their places, modulo symmetries making two tokens in the
same place indistinguishable. So the mapping from a commitment event in
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the simulation model to an occurrence event in the formal model is harmless
if we allow a transition in the simulation to loop, continually requesting per-
mission until tokens promised by committed transitions are delivered. Using
the algebraic event structure in this way defines enabling without reference
to a virtual global marking. In order to define disabling, we need to du-
plicate each generator of the formal event model: an occurrence maps to a
commitment event and a completion event. Some algorithms in the following
sections test only for enabling conditions and solve conflicts: they perform
only input co-ordination and do not try to synchronise moving tokens or care
about completion events. On the contrary, when simulating atomicity of a
step occurrence or initiating a snapshot we do care about completion events:
both require output co-ordination and quite different control techniques. The
observation of the simulated system as well as its prototyping requires us to
compute a partial or global virtual marking using a snapshot.

We sketch several algorithms and discuss them with regard to a dis-
tributed object software platform target. The main quality criteria are the
efficient use of distribution and the feasibility for the target platform. The
most important properties are obviously correctness , deadlock-freeness , and
productivity . Beware, these properties are properties of an algorithm, not
properties of the Petri net model! Furthermore one has to check that these
properties are well defined with regard to our “waiting for promised tokens”
semantics.

• Correctness is the fact that only enabled steps are permitted to occur.
• Deadlock-freeness means that no infinitely long delay is introduced by the

management of the algorithm. For instance, conflicting transitions may
easily result in such a deadlock without some care. Deadlock-freeness of
the execution engine implies that the execution of a deadlock-free net (c.f.
Section 5.1) is infinite.

• Productivity means that a request is rejected only if between the announce-
ment of the request and the rejection, there was a moment when the step
was not enabled. This is a weak fairness property (no step is permanently
enabled without occurring), also known as a finite delay property (c.f. Sec-
tions 9.3.2 and 10.1).

Designing and engineering algorithms to ensure productivity is difficult:
weaker properties are also of interest. First notice that productivity and cor-
rectness require solving conflicts and answering positively with permission
first, delaying rejections until the system has evolved. So the kind of finite
delay considered will exclude livelocks , that is, loops in the management sys-
tem which do not eventually grant a permission when at least one of the
candidates is enabled.

Less formal properties of a simulation platform are related to its user
interface and its software engineering. For instance, a particular user might
sometimes obtain an out-of-date view of the system state. At other times,
he might observe the actual state of a suspended execution. The honesty
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of the user interface requires that the user view of the system has actually
happened during execution, and also that the difference between an out-of-
date and a real-time view is clearly shown on the screen. The scalability of
the simulation platform with regard to the number of sites involved is also an
issue: deployment and maintenance of a large-scale distributed environment
require well-defined procedures.

Furthermore, a simulation of a particular Petri net model needs an instal-
lation, that is, an initial placement of components (places, transitions) and
a set-up of remote communications between them. A large part of a simula-
tion platform supports this set-up phase. We nevertheless deal only with the
execution phase in the following sections.

20.1 Centralised Control

We are looking for a distributed control of the management subsystem be-
cause we want to use the P/T net model for prototyping or simulating a
distributed system. We feel that a centralised control may easily overlook
some race condition in the target distributed system. Yet, most simulation
environments for high-level Petri nets (HLPNs) use a centralised management
because finding enabled transitions is already a difficult and time-consuming
task.

The enabling rule for HLPNs requires binding transition parameters to
token attributes. For instance, the occurrence rule for coloured PNs defines an
occurrence mode binding variables to colours (c.f. Section 4.3). A first idea is
to place some syntactic restrictions on the form of parameters and attributes
in order to use symbolic pattern matching instead of brute-force exhaus-
tive checking of alternative bindings. The well-formed Petri nets [CDFH91]
achieve this for coloured nets because they allow symbolic operations on the
colour function associated with an edge. The model incurs no modelling power
loss: every coloured net can be transformed into a well-formed net [Dut92],
and the semantics of folding an ordinary Petri net is preserved. The enabling
tests can be further optimised [IR93] using token dependency.

A second idea is that partial bindings of transition parameters to token
attributes are in fact resources. In this approach, the management system
updates a working memory of partial bindings each time a transition occurs,
instead of starting the enabling test from scratch. The KRON interpreter for
HLPNs [JBn93] uses the phenomenon of “temporal redundancy” to justify
the idea. KRON means Knowledge Representation Oriented Net. It relies on
the similarities between HLPNs and a rule-based production system, more
precisely, the OPS5 expert system shell. The core of the system is an adap-
tation of the RETE matching algorithm which takes advantage of temporal
redundancy by recording a graph structure storing both the state of a par-
tial match and an evaluation strategy for rule pre-conditions. The KRON
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matching algorithm returns the set of enabled transitions, and conflict reso-
lution relies on policies defined in external libraries. The HLPN is intended to
model the dynamic of knowledge revision through time. Knowledge update
is usually a slow process and the number of tokens involved in a transition is
small in relation to the total number of tokens in the marking. Using tempo-
ral redundancy is particularly efficient in this setting. The system described
in [VB90] was developed earlier, but pushes the idea further, for a special
case of P/T nets using objects (in fact, OPS5 entities) as tokens. First, the
sorting network of the matching algorithm takes into account the partition
of the working memory according to places. Furthermore, tokens of the Petri
net and elements of the working memory are the same: they are tuples of
objects satisfying relations. These relations are satisfied as long as the token
remains in the place and a tuple may only be split during transition firing, but
not during substitution for variables in matching. Thus the use of bindings
as resources is strict. The system goal is the implementation of a real-time
system using rule-based production systems: it uses moreover a compilation
transform to encode run-time control information into tokens.

This last example shows that testing for enabling and solving conflict
is already difficult for centralised implementations of HLPNs, so we limit
ourselves to ordinary Petri nets in the following sections about distributed
implementations. Furthermore, according to the prototyping framework de-
scribed earlier, compilation of control is not considered and the management
uses a strict interpreter approach to net execution. All control information
about execution, for instance the distinction between representing and syn-
chronisation places [CSV86] or the concept of triggering places [Val86], is
handled at the semantic level. In fact, one of the intended uses of the proto-
typing environment is to help the engineer to redesign the Petri net model to
take into account control of the simulated system in terms of such concepts.

Remark 20.1.1. The analysis of conflicts leads to a mild improvement and
a management distributed over locksets. By definition, all input places of a
transition are in the same lockset and two transitions with distinct input
locksets are independent. This definition of locksets deals with conflicts be-
tween transitions and cannot be used with a step semantics. Furthermore the
structure of the net can be very unfavourable.

20.2 Distribution of Control over Places

We discuss now the distribution of management over places: the place objects
or processes are responsible for checking pre-conditions and solving conflicts.

Putting a priority on resources is a well-known technique for solving con-
flicts. In our setting, the resources are located in places: priorities are defined
by a total ordering over places. Thus this first algorithm will be called “polling
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Algorithm 20.1 (Polling places in a fixed order)

Token reservations are queued by the place process which is responsible for denying
overly large requests and granting the others in a first-in-first-out order:

• A step wanting to fire notifies its input places by sending the message
reserve(step, tokencount) which is queued by the receiving place process.

• If there are enough tokens, the tokens required by the first step in the queue are
marked as reserved and the step is notified by a result(true) message.

• Places are polled sequentially in a fixed order: a step waits for a result( ) notifi-
cation before reserving tokens in its next input place or cancelling its reservations
in the previous ones.

• The removal of reservations on failure is the responsibility of step processes: if
a reservation in an input place is denied by a result(false) message, the step
cancels its previous reservations by sending a release(tokenCount) message.
The reserved tokens return in the free token pool.

• The effective firing is also under the control of steps: take(tokencount) removes
reserved tokens from input places while put(tokencount) updates the output
places marking.

• The place process is a sequential loop:
– First process one message (reserve, release, take, and put);
– Traverse the queue and deny reservations by a result(false) message for

transitions requiring more than the actual marking tokenCount;
– Check the first reservation and grant it if there are enough free tokens, that

is, if requiredToken ≤ tokenCount − reservedCount.

places in a fixed order”. Another feature is the use of token reservations in a
way similar to a two-step commitment protocol for distributed transactions.

Algorithm 20.1 is clearly correct. It is also deadlock-free and produc-
tive independently of any communication model. Assuming no message
loss and a finite delay property for transition firing, for firing control by
step, and for cancellation of reservations, we shall prove: ∀s ∈ Step . ∀p ∈
Place . H(t, p) where H(t, p) denotes the property “the step process s re-
quiring reserve(s, tokenCount) from place p will get a result( ) answer
in a finite time”.

The proof uses the linear ordering {pj , 1 ≤ j ≤ n} of places and the
inductive hypothesis ∀s ∈ Step . ∀pj , i < j ≤ n .H(t, pj). This hypothesis is
void for i = n. Assume a reservation from s is waiting in the queue of place
pi, it will be answered when it reaches the front position of the queue and
reservedCount decreases to zero. By the induction hypothesis, transitions
owning reserved tokens will eventually send take(tokenCount) or cancel
their reservation, in both cases decreasing reservedCount, so the place will
eventually answer the front reservation and remove it. ut

The implementation of the algorithm using distributed objects such as the
Java remote method invocation (RMI) platform is straightforward [AG96].
Java RMI is a lightweight client-server platform, without a sophisticated ob-
ject request broker. Yet this remote object approach offers several benefits
over a simpler remote procedure call (RPC) . First, server applications, which
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instantiate and export remote objects, bind them to a name into a registry
server. This name is a string in an URL-like syntax. A client gets a remote
reference to an object by connecting to a registry and looking for the name
of the object. Secondly, objects of the proper type can be exported as ar-
guments of a remote call, allowing servers to call-back clients. These two
features simplify the bootstrap of sophisticated peer-to-peer communication
patterns. Finally, remote references are first-class objects: the RMI system
maintains their identity, they can be used as look-up keys in a dictionary
and are automatically garbage-collected. Notice however that RMI handles
remote objects and not remote classes. The remote instantiation of new ob-
jects relies on creational design patterns called factory methods or factories
[GHJV95].

import java.rmi.*;

public interface PRunTimeIntf extends PInitIntf, Remote {

/* step is a local or remote reference to the calling step
in order to delay answering by a result(boolean) message.
tokenCount is the weight of the receiver place in the
minimal pre condition of the step.

*/

public void reserve(SRunTimeIntf step, int tokenCount)
throws RemoteException;

public void release(int tokenCount) throws RemoteException;
public void take(int tokenCount) throws RemoteException;
public void put(int tokenCount) throws RemoteException;

}

Fig. 20.1. Place interface for polling

A client interacts with servers only through abstract interfaces used to
type remote references. After designing the abstract interface for remote in-
teraction (for instance, PRuntimeIntf for places, Figure 20.1), one writes a
concrete class for implementation (for instance, PImpl for places) and runs
the RMI compiler which generates a stub and a skeleton class. The stub
(client side) and skeleton (server side) are dynamically loaded to forward
remote invocation using the RMI transport layer. Therefore, they must be
located in the proper search path. Then you must start the RMI registry
on each server site, then start the server applications. For our purpose, the
servers are factories, constructing a new place or a new transition on the
server, and returning a remote reference to the client. A client application
invokes the server for placement of places and transitions. Then it uses their
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remote references to link and initialise the net and its initial marking (using
the PInitIntf and TInitIntf remote interfaces).

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import com.objectspace.jgl.*

public class PImpl implements PInitIntf, PRuntimeIntf,
UnicastRemoteObject {

private String label;
private int tokenCount, reservedCount;
private Deque queue;
class Reservation {

SRunTimeIntf step;
int required;
};

public void init() {
...
}

private synchronised void clean() {
for ( DequeIterator i = queue.begin();

!i.equals(queue.end()); i.advance() ) {
(Reservation r = i.get());
if r.required > tokenCount {

r.step.result(false);
queue.remove(i);

}
}

}

private synchronised void check() {
Reservation r = queue.front();
if r.required <= tokenCount - reservedCount {

r.step.result(true);
reservedCount = reservedCount + r.required;
queue.remove(1);

}
}

}

Fig. 20.2. Queue management for polling

The run-time interface for the Place class (Figure 20.1) uses a refer-
ence to the calling step in order to delay answering reservations. The corre-
sponding methods in the implementation are declared with the synchronised
modifier in order to enforce the sequential loop structure of the algorithm:
synchronised methods must acquire the receiver object lock before running
and so their activations are mutually exclusive. The queue uses class Deque
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from the Objectspace Java Generic Library ; its management is shown in Fig-
ure 20.2. The class Step just initialises itself by computing its pre-conditions
from the constituent transitions before running the reservation protocol.

The sequential polling for reservation is a communication bottleneck in the
previous algorithm. A transition willing to occur should instead concurrently
reserve tokens in its input places. The next algorithm achieves this, and relies
on a distributed election game between transitions to solve conflicts. It focuses
on conflict resolution, not on concurrent firing, and its execution semantics
is limited to transitions (as opposed to steps). Because a winning transition
secures unique access to its input places, the execution is interleaved between
each lockset.

Algorithm 20.2 (Distributed election game)

The token reservation queues are under the management of transitions, and conflict
resolution uses a local round-robin priority list of transitions for each place.

• Each place manages a local list defining a total priority order on outgoing tran-
sitions.

• Each transition manages two subsets of its input places:
– enqueuedPlaces is the set of places where the transition is waiting for lower

priority transitions to cancel their earlier reservations, but may be removed
from the queue if another transition wins the reservation.

– reservedPlaces is the set of places where the transition is at the front of the
queue.

• A reservation is denied if there are not enough tokens or if a higher priority
transition is already waiting.

• In the event of such a denial, a transition must cancel all its previous reservations.
• A transition wins the game when all its input places are reserved, that is, when

it holds the front position in each queue.
• An input place receiving a take message retrieves the winning transition which

is at the front of its queue and removes it. Then the place changes its priority
by moving the transition to the end of the local priority list. The place finally
notifies the transitions requiring too many tokens and removes them from the
queue.

• A transition has to check or be notified of changes in all its enqueuedPlaces:
– Cancellations of competing transitions move the transition to a better position;
– Success of a competing transition may force the transition to cancel its reser-

vations.

The implementation written in OCCAM on parallel processors is given
in [Tau88]. In the distributed-object setting one has to handle proper termi-
nation of the algorithm: the late delivery of cancellation messages to unused
places after a winning event in a round may cause undue denial of lower
priority transitions in the next round. The proper termination of a round
guarantees that all the queues are emptied before the process driving execu-
tion starts the next round of the game. Java uses the so-called “synchronous
message-sending protocol”, so each message is acknowledged before the cur-
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rent thread of control [Lea96] sends the next one, but improper multithread-
ing can abruptly dispose of a thread and spoil the implementation.

This distributed election algorithm is due to Vinkowski [Vin81] who has
shown its non-productivity but proves a weaker property, strong enough to
exclude livelocks. This weak productivity property states that if each mem-
ber of a set of processes is looping asking permission to occur, and if the set
contains a process which is enabled, then one process of the set (not neces-
sarily the enabled one) will eventually get permission to fire. We will sketch
the proof assuming that the local priority list of each place manages all tran-
sitions. Although the local priority list of the implementation is restricted
to transitions which have an output edge from the place, any extension to
a total order on transitions in the initial state leads to a local priority list
which is total, because only transitions corresponding to output edges can
change their priority by firing. Under this assumption, we must prove that if
a non-empty set of transitions is competing and if there are enough tokens,
the election game can neither deadlock nor reach a livelock.

• In a deadlock situation, each transition either holds a queued reservation
for each of its input places, or has been forced to cancel its reservations
and is absent from the queue for each of its input places. Because one
transition is enabled, there is at least one transition enqueued in each of
its input places. Now there is no winner, so there is a transition with a
lower priority in a better position in the queue for some input place, and
in a deadlock situation, this transition is enqueued in each of its input
places. So assuming a deadlock, one can construct an infinite sequence of
transitions with strictly decreasing priority, which is impossible.

• In a livelock situation, there is an infinite sequence of moves but no winner.
Because only winning moves change the marking and the local priority lists,
both the marking and the priorities remain the same forever, and the set of
possible situations of the game is finite. Because there are enough tokens,
only a transition of higher priority already waiting in a queue can force a
transition to cancel its reservations. So there is at least one transition t that
is not forced to cancel its reservations. Let S(t) be the set of places where
t holds a reservation. Similarly, among the competing transitions which
need none of the place of S(t), there is one that is not forced to cancel its
reservations. This construction ends up with a partition of the set of places
involved such that each class is held by a transition which is not obliged
to cancel and such that every other transition needs a place from the set.
That implies only a finite number of moves is possible, contradicting the
livelock assumption. ut

We will not describe the possible implementations. The game protocols
for a transition can run in a different thread for each input place. The sharing
of places and their queues imply some synchronisation between these threads.
But this amounts to a further distribution of control over edges, which is the
subject of the next section.
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20.3 Distribution of Control over Edges

Because place processes can communicate only with one (step or transition)
process at a time, they are bottlenecks in the previous algorithms. So a place
process is further divided into a place centre and several place parts managing
a pair of incoming-outgoing edges.

Assume first that all places have non-empty pre- and post-sets. A place
part of p is any 〈tin, p, tout〉 for tin ∈ •p and tout ∈ p•. We shall say that
〈tin, p, tout〉 is an input part of tout and an output part of tin. The place parts
can store tokens: tokens in 〈tin, p, tout〉 are reserved for tout consumption and
the actual marking for a place is the sum of the token counts in the place
centre and every place part. Places with empty pre- or post-sets are dealt
with by special edges 〈•, p, tout〉 and 〈tin, p, •〉 whose meaning is that tokens
of the part are borrowed from or delivered to the place centre.

The idea of the third algorithm is to divide management into two phases:

• If there are enough tokens in each input part of a transition willing to
occur, the transition occurs without further notice;

• Otherwise, tokens are gathered from the place part into the place centre
and the management reduces to a distribution of control over place (for
instance, polling places in a fixed order, for this particular place).

[Tau88] gives an OCCAM implementation of this algorithm. In our
distributed-object setting, the implementation relies on multithreading. Java
threads are lightweight processes competing for execution on a particular Java
virtual machine (VM). One use of multithreading is to increase server respon-
siveness by handling client connections in separate threads. Notice that pro-
gramming a connection protocol in a separate thread is conceptually clearer.
Furthermore, a thread may be suspended instead of waiting for input-output
or for the response from a remote server. Thus multithreading leads to im-
portant optimisations. On the other hand, objects are shared by concurrent
threads and an unexpected change of the active thread may well leave an
object in an inconsistent state, which raises the issue of thread-safe program-
ming. The Java thread model provides methods for accessing the scheduler,
but the scheduler behaviour depends on the execution platform and VM im-
plementation. So the best way to write thread-safe portable code is not to
try to interfere with the VM scheduling of threads, but to use more abstract
control structures such as object-monitors.

Object-monitors manage locks on objects. More precisely, they guard a
body of code, which is usually a synchronised method call, by a mutual-
exclusion semaphore associated with the object. The thread which owns the
lock has an exclusive access: other threads trying to access the object or to
acquire the lock are queued. These monitors are hidden from the program-
mer and supported at the language-level through the synchronised modi-
fier. They are a variant of re-entrant Hoare’s monitors [Hoa74]: the thread
owning the lock of an object can issue a locking request on the same object



428 20. Net Execution

without deadlock. Hoare’s monitors provide a synchronisation device through
so-called condition variables representing waiting queues of processes. The
process owning the lock may enter a queue or awaken other processes by sig-
nalling condition variables. Such monitors have proved themselves useful for
object-oriented simulation of discrete-event systems [Béz87]. The synchro-
nisation devices of Java monitors are simpler because in an asynchronous
environment, it is more convenient to let each woken thread check for itself
the proper condition and then either proceed or go back to sleep. Thus Java
monitors provide a unique waitset instead of several condition variables. The
point of using monitors is that well-designed shared objects define monitor
invariants. These assertions involving both the state of the shared object and
the threads suspended in its waitset are valuable for validation.

The distribution of control over edges uses several threads of controls
sharing access to a place. The partition into place centre and place parts is
built into the control structure synchronising the threads. The first thread
runs a variant of the polling reservation algorithm. Other threads run at
the semantic level and execute the firing sequence built into place parts.
The part marking is stored as a temporary variable in the thread’s working
memory. The main control thread is responsible for both synchronisation and
redistribution of tokens. Tokens in place parts are marked as reserved for the
thread running the reservation algorithm, so that the actual marking of the
place is an invariant.

The Java language permits the execution of a block of code as a critical
section under the control of the monitor associated with any local object.
But when trying to lock a remote reference, the Java compiler generates
code which will lock its proxy (its stub, using RMI terminology), instead
of the intended remote object. So the only way to lock a remote object is
through the remote invocation of a synchronised method. Coordination using
the monitor’s synchronisation device usually involves several monitors, and
may be tricky in the RMI distributed setting. Yet this technique appears to
be very valuable for output coordination.

20.4 Multithreading and Synchronisation

While control threads are programming entities confined to a particular site
and virtual machine, their proper management is the key for designing and
synchronising concurrent activities and processes involving several process-
ing sites. Again, this management is not an operational scheduling matter,
but relies on more abstract control entities: for instance, monitors or object-
channel.

Object-channels implement point-to-point synchronous communication
between sequential processes of the CSP model [Hoa85]. Their Java imple-
mentation uses monitors and can be extended to asynchronous (buffered) or
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multicasting (multiple readers) channels. The communication protocol be-
tween place and transition for the distributed game algorithm, for instance,
is conveniently implemented by an object-channel. In fact, most of the OC-
CAM language (including the alternative construct) was implemented in Java
[HBVB97]. Thus, several algorithms from [Tau88] for net execution can be
simulated in Java. Notice however that dynamic instantiation of new chan-
nels, at run-time, is a powerful feature which is not possible with OCCAM.

Let us illustrate the use of monitors for output synchronisation in our
prototyping framework. The idea is to generalise monitors so that they si-
multaneously lock a group of distributed objects thus creating a critical co-
ordination space, before unlocking all objects in the group. We call such a
structure a causal box , because all the messages exept the ones involved in
the coordinated threads inside the box must occur before the box is created
or after its dissolution. Creation and dissolution of a causal box is quite simi-
lar to a two-phase commitment protocol: first acquire the lock of each target
object in the group and wait until each one is locked, then start the activities
and wait until each activity inside the box terminates, finally unlock each
target object in the group.

The atomicity of transition occurrences can be simulated according to
this scheme: the movement of tokens takes place inside a causal box grouping
all output places of the firing transition. In the same way, making a partial
snapshot of a group of places is implemented by putting them into a box
before reading their marking. In both these examples, the activities inside the
box are compiled. However, dynamic invocation of messages using reflectivity
and an object-channel to control operations inside the box is possible. Such
techniques are useful for debugging a multithreaded execution algorithm at
the management level. They are also useful for inspecting the control running
at the semantic level and driving a particular simulation.

Thus multithreading achieves a better distribution of control in two ways:
through the scheduling of finer structures and through the restriction of the
scope of a control structure. The definition of time-out for message acknowl-
edgement is not a basic feature of the RMI system, but can be simulated
using threads. Multithreading introduces the possibility of building fault de-
tectors based on time-out, a first step towards fault tolerance and simulation
of large-scale distributed systems.

20.5 Asynchrony

It does not seem possible to display a consistent global real-time view of the
system to the user of the simulation environment without losing all the ben-
efits of the asynchronous approach. The multithreading techniques above are
intended to handle and to take advantage of asynchrony. Furthermore, we
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argue that asynchrony is an important feature of the kind of distributed sys-
tem we want to simulate, and that synchronous simulations of asynchronous
systems are unfaithful. Let us make clear that a synchronous approach to
distributed simulation is possible, and indeed exists.

Our solution is to display most of the time a partial consistent view of
the system which is usually out of date. The user of the simulation can ask
for a partial snapshot to get information on the actual state of the system.
The implementation relies on multicasting transition firing events using the
Java event system. The user interface (UI) on a particular site focuses on a
subset of places and updates a local copy of their marking: it subscribes to
the transitions events for all transitions which are incident to the set of places
of interest. Event multicasting is not causally ordered: events from different
sites may be delivered in a different order to different clients, and worse,
causally related events from different sites may be delivered in the wrong or-
der. Therefore a client UI uses its local view of the marking to compute a local
set of enabled transitions as in Section 20.1. An occurrence event is queued
until it becomes enabled and the local set of enabled transitions is updated
when handling or dequeuing a locally enabled occurrence event. Assuming
no loss of events, the local view is faithfully following the actual distributed
execution of the net. However the execution semantics has changed and no
longer takes steps into account.

The set of places of interest may be changed, which requires a snap-
shot to get a consistent local copy of their marking. Besides the marking of
places, the user may be interested in the set of enabled transitions or, in
our framework, the set of transitions wishing to occur. This introduces new
complications into the event set. Furthermore, this requires new presenta-
tions on the screen. The display of token moves is not enough to convey all
these pieces of information. One has to design a full-fledged user interface,
including alternative presentations and interaction with the user.

A distributed simulation platform is suitable for team prototyping. For
instance, two users can set up two disconnected Petri nets and simulate fusion
of transitions by a step. Such a feature, and more generally, using the semantic
level to control the execution of the net, requires the synchronisation of clients
on different sites. We rely on logical clocks (c.f. [Lam78]) which are vectors
counting the transition occurrences. While the topic of causal multicast (c.f.
[MR93]) is quite different, there are striking similarities between the ISIS
causal broadcast protocol [BSS91] and message delivery in our framework,
which uses both a vector clock and a local enablement for occurrence events. A
better understanding of causality in Petri nets is however required to support
a higher order control of the execution as well as team prototyping.

The last issue concerns the reproducibility of an execution. One user may
be interested in the replay of a particular execution, in order to inspect it
more closely, using different tools of the interface. While the algorithms in
the management section are deterministic, their execution depends on the
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delivery order of remote messages. These delivery delays are not predictable,
because of variations both of the network and machine loads. So, restarting
the simulation on the same marked net may well lead to a different course
of execution. Registering a global trace is inefficient. For HLPNs, the trace
must register the bindings of parameters to token attributes and can be very
large. On the contrary, replaying a trace is made easier by the process-driven
control of our framework. Ideas along these lines, based on the “Instant Replay
Algorithm” may be found in [Pru98].

20.6 Conclusion

We have given the outline of a distributed implementation of Petri nets in a
simulation framework. We have also given a sketch of the proofs of several
algorithms: The development of such a simulation tool must rely on formal
methods. In order to apply it to the design and prototyping of distributed
systems, its specification must be carefully laid out and the implementation
must be correct. Notice that the formal specification of properties related to
fairness or productivity is not obvious for HLPNs.

The implementations of the algorithms were briefly described. In addition
to this programming point of view, we want to stress that the software engi-
neering of the simulation platform is of equal importance. On the one hand,
the multithreaded-object Java technology is evolving rapidly, most notably
in the domain of user interfaces. On the other hand, virtual machine imple-
mentations, just-in-time compilers and the operating systems themselves are
evolving independently. In practice, these layers of software platforms may
not be bug free. A preventive approach to software maintenance is required
in order to build a simulation platform above them.

Another kind of evolution is related to the incremental addition of features
to the simulation environment in order to satisfy new requirements of the en-
gineers using it. One can guess that presentation, user interfaces, and team
development will introduce new requirements. In another direction, the simu-
lation of large-scale distributed systems requires dealing with faults and fault
tolerance. A careful software design may succeed and sufficiently simplify the
programming task in such an intricate setting. However, a more architectural
approach must complement the brute-force programming approach we take
here.
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Petri nets as an initial specification introduce the possibility of verification
of many properties of the system to be built. Petri nets also introduce the
possibility of obtaining many interesting properties for the implementation
which do not appear in the initial specification. For example, the fact that
a net can be partitioned into a set of disjoint state machines can be used
to propose a distributed implementation. The advantage of deducing the
implementation from its formal specification is that it avoids (or reduces) the
inherent errors associated with the coding task.

Code Generation Purposes

Code generation shares with net execution the “animation goal” of a system
specification. However, the result is quite different. In code generation, the
produced code aims to be standalone: it can be run outside the environment
that produced it. In contrast, net execution remains closely related to the
simulator that animates the specification1.

This chapter deals with code generation from Petri nets. By code gener-
ation, we mean “production of programs (hardware or software) that imple-
ment a Petri net specification, i.e. that have the same behaviour”. Simulation
techniques were discussed in Chapter 20.

Thus, a prototype is the result of code generation. We also use the word
prototyping to refer to the methods (or methodologies) that aim to produce
“good” code from a specification. A brief classification of these techniques
(which usually combine modelling, validation, and code generation) was pre-
sented in Chapter 19.

Whatever the input specification or the application domain, a prototype
is software/hardware suitable for many purposes such as:

• Evaluation of the final system: the produced software corresponds to a “pre-
release” useful for checking a posteriori some constraints on the system.

∗ Author: F. Kordon
1 In many simulation environments, it is possible to “connect” the model to “ex-

ternal pieces of code” executed according to the model (e.g. the corresponding
transition fires). However, we cannot consider such an execution as being “inde-
pendent” of the software environment that produced it.
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The idea is to uncover information that might not have been outlined in
the formal specification such as the validation of time constraints or the
interface with the execution environment of the application.

• Evaluation of implementation strategies: this may be relevant for evaluat-
ing performance of a distributed system (modelled with Petri nets) accord-
ing to a given task allocation.

It is interesting if the produced code leads to the final application (i.e.
it respects some performance2 and/or other quality criteria3). However, this
should not be the main goal of code generation, even if we emphasise perfor-
mance of the prototype. The main point is the evaluation of something that is
no longer a system specification (or model) and not yet the final application
(but close). Of course, a fast, automatic, and low-cost code generation proce-
dure is required: if many tracks are to be investigated, a low-cost procedure
is essential.

This chapter considers distributed software systems. However, most of the
techniques described should be applicable to other types of systems. They are
not restricted to a particular type of programming language. However, they
rely strongly on message passing which is a commonly used technique in
distributed systems.

Structure of this Chapter

Prototyping from Petri nets has been investigated since the late ’70s. Three
classes of studies are presented in Section 21.1.1. It appears that the most
important point relies on an interpretation of the model semantics. We give
some clues in Section 21.1.2 and propose a particular technique for interpret-
ing a Petri net specification in order to partition it into a set of concurrent
programs. This technique has been implemented in a code generator from
coloured Petri nets (Section 21.2).

This partitioning technique relies on prototype objects corresponding to
pre-defined (Petri-net-like) patterns to be implemented. Section 21.3.1 dis-
cusses the implementation of such prototype objects. For better reuse and
evaluation of the produced code, interfaces with existing pieces of code may
be necessary. So some “linking” techniques are investigated in Section 21.3.2.

The performance of a distributed system relies strongly on the allocation
of its components. The prototype is more flexible if code generation is distinct
from software component allocation (tasks, resources, . . . ). The prototype
self-configures during its initialisation, and its architecture may evolve during
execution time (process migration). It is easier when component allocation
comes from a configuration file because the file can be modified without

2 Please note that generation of efficient code raises “compilation-like” problems.
This is now widely accepted as an industrial issue.

3 Such criteria may be readability of the code (for later modification), capability
of connection to the execution environment, . . .
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having to go through the entire code generation (and compilation) procedure.
We show in Sections 21.3.3 and 21.3.4 how the information obtained from
the Petri net and its properties can be used to get interesting clues about a
“good” allocation strategy.

Petri nets are very suitable for modelling distributed systems. However, it
is difficult to handle large-scale systems. Moreover, the nets may not contain
all the information required for code generation (for example, about high-level
objects that lead to complex submodels but a simple implementation). So
Section 21.4 addresses code generation for both the association with another
high-level (but not formal) model, and the encapsulation of Petri nets.

21.1 Petri Net Approaches to Code Generation

Code generation from Petri nets has been investigated for a long time. Studies
propose producing hardware or software implementations of Petri net models
(we focus in this section on the latter). Section 21.1.1 summarises the studies
of Petri net code generation and Section 21.1.2 focuses on the major problems
addressed by these works.

21.1.1 State of the Art

Many studies, summarised in [CSV86, Kor94], have been dedicated to the
prototyping of parallel systems specified by means of Petri nets. Characteris-
tics of these studies are presented in Table 21.1. These works represent three
approaches to code generation from Petri nets: the centralised approach, the
totally decentralised approach, and the hybrid approach.

Centralised Approach. The first approach aims to implement a centralised
“token player” investigating each transition in the model and checking its
fireability. Very efficient evaluation filters have been studied to reduce the
number of scanned transitions, to avoid the bottleneck that appears when the
net grows [CSV86, MKM86]. However, this approach does not preserve the
parallelism of the model because the “token player” is a sequential program.
This strategy was quickly discarded as a way to generate software systems.

However, the centralised approach is still considered in flexible manufac-
turing systems where the token player is considered as a scheduler . In this
case, a task represents an atomic action processing input data into output
data. Such actions are naturally associated with the firing of transitions.

The scheduler is then centralised but it can send the tasks to be executed
to discrete processors. Such a scheduler is difficult to distribute because it
needs to handle the global state of the net. In this context, the most effi-
cient techniques of centralised Petri net simulation are still considered to be
satisfactory implementation techniques [BC94].
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The scheduling of such tasks may also be computed and then statically
implemented in a program. Such a strategy addresses scheduling problems.
Such approaches are studied in [LLRKS93] for non-scheduling problems but
they do not rely on Petri nets. Petri nets are used in [HM95] but in the case
of cyclic scheduling.

Ref PN class Implementation Techniques Comments
Hard Soft Execution Approach

[SV82]
(1982)

Binary PN mono proces-
sor

Assembler Interpreted centralised -Use of a “scanner” to investigate
transition.
-Evaluation of discrete techniques.

[NHS]
(1983)

P/T nets
+ inhibitor
arcs

mono proces-
sor

PL/1 and
PL/S

Compiled centralised -Selective investigation of transi-
tions.
-Use of an intermediary language.

[VCBA83]
(1983)

Binary PN mono proces-
sor

Assembler Interpreted centralised
(extension for
distribution)

-Selective investigation of transi-
tions.

[Thu85]
(1985)

A form of
coloured
PN

mono proces-
sor

Pascal with
tasks

Interpreted centralised -First study for coloured Petri
nets.

[BM86]
(1986)

PROT nets
(a form of
coloured
nets)

mono & multi
processor

Ada83 Compiled Partially dis-
tributed

-Two types of processes, one for
places and the other for transi-
tions.

[MKM86]
(1986)

Control-
Nets

mono proces-
sor

PL Interpreted centralised -Selective investigation of transi-
tions based on both input and out-
put places.

[Hau87]
(1987)

P/T nets mono & multi
processor

C under
Unix

Compiled Distributed -Each node in the net is imple-
mented by a process.

[Tau88]
(1988)

P/T nets multi proces-
sor (transput-
ers)

Occam Compiled Distributed -Each node in the net is imple-
mented by a process.

[Bré90]
(1990)

P/T nets multi proces-
sor (transput-
ers)

Occam Compiled Hybrid -Manual partitioning of the net
into communicating processes.

[KEC90]
(1990)

P/T nets mono & multi
processor

Ada83 Compiled Hybrid -Manual partitioning of the net
into communicating processes.

[Pal91]
(1991)

P/T nets mono proces-
sor

Ada83 Compiled centralised -Description of an approach in the
design of complex systems that in-
volves both Petri nets and HOOD.

[KE91,
KP91,
Kor92]
(1991/92)

coloured
PN

mono & multi
processor

Ada83 Compiled Distributed -Automatic partitioning into pro-
cesses (deduced from the structure
of the coloured net),
coloured invariants.

[EKK94]
(1994)

coloured
PN

multi proces-
sor

Ada83 Compiled Distributed -Proposal for a process allocation
on a hardware architecture.

[LK95]
(1995)

coloured
PN +
hierarchy

mono proces-
sor

C++ Compiled Distributed -Code generation from object-
oriented Petri nets.

[Zak96]
(1996)

coloured
PN + time

multi proces-
sor

Ada83 + li-
braries

interpreted Distributed -Integration of pieces of external C
code.

[Hul97]
(1997)

Algebraic
PN

multi proces-
sor

Ada95 interpreted &
compiled

Distributed -Hierarchy management in input
Petri nets.
-Progressive substitution of gener-
ated code by hand written code.

Table 21.1. Summary of work on code generation from Petri nets

Totally Decentralised Approach and Hybrid Approach. Some work
considered a totally distributed execution [Hau87, Tau88]. Each place and
each transition was implemented by means of a process. This approach pre-
serves the parallelism of the model, but becomes inefficient when the net
grows or when it has large sets of colours. Since the overhead introduced
by conflict management (by means of messages, semaphores, . . . ) ruins per-
formance, a thorough investigation for efficient code4 was neccessary. The

4 Prototypes containing up to 500 Ada processes were experimented with by the
author on a single workstation.
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resulting code’s drawback is that some Petri nets cannot be processed. How-
ever, when the Petri net is structured “properly”5, transformation into an
equivalent, but decomposable, net is possible.

A natural extension of the hybrid approach is to enhance a Petri
net in order to find high-level information about its structuring. Some
work dedicated to code generation (tools are being implemented) can be
found in [LK95] and [BFR92, Hul97]. Some related work more likely dedi-
cated to high-level Petri nets and modelling also relies on this orientation
[SB94, Bas95, BCAP95, Val98, Lak96]. We can also mention an interesting
work that deals with Petri nets plus some timing constraints [Zak96]. In this
work, the generated code is a token player linked to external C/C++ func-
tions, stored in a library, that manage time constraints.

Code generation is also used to speed up simulation/animation of Petri
nets, as in [PG92]. In that case, the generated code is centralised. The pro-
duced code then communicates with a front-end displaying graphical actions.

21.1.2 Parallel Interpretation of a Petri Net

Evaluation of the parallelism in a Petri net model is important since both
centralised and decentralised approaches have poor performance when the
model becomes very large.

A solution is to split the net into a set of components that can be sepa-
rately generated (and then concurrently executed). Sequential state machines
[Hac74] are interesting candidates because they can be implemented by a se-
quential program (a process). Here are two accepted partitioning approaches:

• Techniques based on BDD (Binary Decision Diagrams) [McM93]. The idea
is to directly exploit information deduced from the state graph generated
by the Petri net [GVC95].

• Techniques based on place invariants. The idea is to use information de-
duced from the net structure. We will focus on this approach.

A state machine usually corresponds to a place invariant in a Petri net
model (in contrast, a place invariant is not automatically a sequential state
machine). So, for the hybrid approach presented above, it is useful to define
a way to select “good” place invariants which lead to state machines. In
[KP91, Kor92], such properties are defined for P/T invariants. Extensions
that use coloured invariants to deduce state machines are investigated in
[BP93, BP94]. In this chapter, we define a PN-process to be a sequential
state machine computed from the Petri net model6.

5 A “proper” structuring may be achieved by sub-net composition using the tech-
niques mentioned in Chapter 9.

6 A sequential state machine is quite different from a task as introduced in the
definition of the centralised approach (Section 21.1.1). Tasks always produce a
result in a finite time while state machines may not (they may contain loops in
which inputs are consumed and/or outputs are produced).
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The model is then interpreted as a set of PN-processes plus communi-
cation mechanisms. Two possible communication mechanisms are widely ac-
cepted in Petri nets:

• Places (asynchronous communication): this corresponds to the composition
of sub-nets by means of channel places [Sou89];

• Transitions (synchronisation): this corresponds to a transition fusion be-
tween discrete PN-processes7 [BC93, BCE94].

Colours do not raise any particular problem. Studies such as [CSV86,
Kor92, Bré93] propose managing them as data structures computed and ma-
nipulated by programs generated from the Petri net model. When the net is
split into state machines (hybrid approach), management should be defined
according to the following rules:

• If coloured tokens are located in communication (or channel) places, they
are treated like incoming or outgoing messages.

• If coloured tokens are located in state places in a sequential state machine,
they are considered as local variables.

• Management of colours in shared transitions is similar to that for channel
places. Data is exchanged between the PN-processes involved and a server
that manages the corresponding synchronisation.

Deduction of a generic architecture that is relevant for most programming
languages (Figure 21.1) is now possible. The prototype potentially contains
the following components:

• PN-processes, each being associated with a computed sequential state ma-
chine;

• Channel places manager (potentially distributed);
• Synchronisation manager (potentially distributed);
• Colour manager which takes care of both type constraints and type com-

positions (potentially distributed);
• Prototype manager (potentially distributed) which manages initialisation,

handles low-level communications (between PN-processes and the channel
manager, between PN-processes and the synchronisation manager), and de-
tects termination of the generated system (usually when all state machine
tokens have reached a state place without successors).

Figure 21.1 shows a sample model in which three PN-processes can be
detected. Each PN-process should be implemented as a specific module that
describes its sequential behaviour. The channel place C and the synchroni-
sation Ts are managed by dedicated modules. All components rely on the

7 Please note that the semantics of a synchronisation is that of a multi-rendez-
vous. A multi-rendezvous is an extension of the “classical” rendezvous mechanism
[And91] that is commonly used in CSP [Hoa85] and Ada [DoD83]. However, N
processes can synchronise on a multi-rendezvous. The rendezvous is a particular
case in which N = 2.
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Fig. 21.1. An example of a Petri net with the corresponding prototype structure

prototype manager and use primitives offered by the colour manager (a li-
brary deduced from the colour classes in the model and offering basic colour
management functions such as successor or predecessor).

Managers of PN-processes p1a/p1b, p2a/p2b, and p3a/p3b contain lo-
cal transitions (i.e. those that do not correspond to a synchronisation). In
p2a/p2b, transition t2 is local and the corresponding code must take place
in the PN-process. In contrast, Ts corresponds to a communication. It is
implemented by a server; in the program corresponding to p2a/p2b, it is im-
plemented as a communication with this server. A typical algorithm for local
and synchronisation transitions is provided in Section 21.3.1.

Please note that the only specific pieces of the produced code are related
to PN-processes. The code implementing the managers is almost independent
of the input Petri net: only the required data structures are specific to the
net. In the example of Figure 21.1, descriptions for C, Ts, and the colour
domain should be generated.

21.2 A Petri Net Partitioning Algorithm

The partitioning algorithm we present is the one proposed in [KP91, Kor92].
It relies on non-coloured place invariants. Extensions that deal with coloured
invariants can be found in [Pey93, BP94]. The algorithm has four steps:

• Computation of the structural model (defined below in Section 21.2.1).
• Computation and selection of positive place invariants (called P-semiflows

in this section) for the structural model. These P-semiflows will be used in
the next step to deduce sequential state machines.
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• Evaluation of partitioning properties in order to eliminate useless P-
semiflows and to find the set of combinations that corresponds to a possible
partition of the model into communication state machines.

• Computation of prototype objects which support code generation, accord-
ing to the generic architecture presented in Figure 21.1. A prototype object
is an entity corresponding to a software component of the generic architec-
ture.

The model of Figure 21.2 is used to illustrate the partitioning procedure.
It models the increment or decrement of a set of bank accounts (unit by unit)
according to a list of queries. It is a priori composed with two PN-processes.
The operation generator (covered by places s3/s4 ) generates either an opera-
tion increment and an operation decrement. The operation manager (covered
by places s1/s2 ) takes an operation provided by the operation generator and
applies it to the current user. It has one channel place value that effectively
represents a shared variable containing all pairs<user, current bank amount>
and one synchronisation (getQ).

next

s4
what

s3
what

<plus>

value
Account
<200, 1>,
<40, 2>,
<100, 3>

dec

[op=minus and
i = u]

s2 user_id

<1>, <2>, <3>

getQ

inc

[op=plus and
i = u]

s1 proc_class

Class
   what is [ plus,  minus ];
   user_id is 1..3 ;
   account_value is integer;
Domain
   proc_class is <what, user_id>;
   Account is <account_value, user_id>;
Var
   op in what;
   i, u in user_id;
   v in account_value;

<v, u>
<v, u>

<v++1, u>

<v--1, u>

<op,i>

<i>

<op,i>

<i><i>

<op,i>

<op>

<op++1>

<op>

<op>

operation generator operation manager

Fig. 21.2. Example to illustrate the partitioning algorithm. Colour classes, do-
mains, and variable declarations are given in the upper right of the net. Object
names are outlined using bold characters, colour domains of places are given using
italic characters.

21.2.1 Transformation into a Structural Model

The first step of the algorithm is to extract a structural model called Ns.
Ns is a P/T net structurally equivalent to N . The transformation procedure
from N to Ns is:
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1. Each place in N becomes a place in Ns. Colour domains (if any) are dis-
carded. Only the initial number of tokens remains as the initial marking
of each place in Ns.

2. Each transition of N becomes a transition of Ns. Guards (if any) are
discarded.

3. Each arc of N becomes an arc of Ns. Only the required number of tokens
remain in the arc valuation of Ns.

Remark: When N is a P/T net, N = Ns because the structural model de-
scribes the net structure without any information about variables and colours
(which are implemented by means of data structures).

Figure 21.3 shows the net obtained from that of Figure 21.2. Note that
there are three non-coloured tokens in places s2 and value, while place s3
contains only one token.

s1

incgetQ

s2

●●●

dec
value

s3

●

s4

next ●●●

Fig. 21.3. Structural model of the Petri net presented in Figure 21.2

21.2.2 Computation and Selection of Positive Place Invariants

Next, a generative family of P-semiflows on Ns, denoted F , has to be com-
puted. The algorithm8 will not be detailed here. To compute P-semiflows
for the examples presented in this chapter, we have used the GreatSPN tool
[Chi91].

We already indicated that invariants of F do not necessarily represent
PN-processes. We must first compute Fp, a subset of F that contains only
“good” candidates for PN-processes. Elements of Fp should satisfy the fol-
lowing property9:

8 The most frequent implementation of this calculus relies on the Farkas algorithm
[CS90a].

9 For a place invariant f =
∑|P |

i=1
ai.pi, ‖f‖ corresponds to all the places pi for

which ai > 0.
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∀f ∈ Fp. ∀p ∈ ‖f‖. ∀(t, t
′) ∈ p• × •p.

Pre[p, t] = Post[t′, p] = 1 ∧
∑

p∈‖f‖

m[p] ≥ 1 (21.1)

Condition 21.1 means that the elements of Fp should satisfy the following
conditions:

1. For each place covered by an element of Fp, the valuation of both the
input and output arcs should be equal to one (the program counter of a
process, and therefore a PN-process, must remain constant throughout
its execution.

2. There is at least one token in the set of places covered by Fp (the total
number of tokens represents the total number of PN-process instances in
the prototype). If this condition is not satisfied, then there is no potential
instantiation of this PN-process and the prototype cannot run.

The structural model of Figure 21.3 has three P-semiflows:

1. sf1: value = 3
2. sf2: s4 + s3 = 1
3. sf3: s1 + s2 = 3

21.2.3 Evaluation of Partitioning Properties

To partition the net into state machines, it is now necessary to find all pos-
sible combinations Fd ⊂ Fp that satisfy both condition 21.2 and 21.3. These
conditions select subsets of Fp in which:

• All transitions (instructions) take place in a state machine (condition 21.2);
• No elements of Fd have a place in common (condition 21.3).

|Fd|⋃

i=1

[
⋃

j∈‖fi‖

(pj
• ∪ •pj)] = T (21.2)

∀f1, f2 ∈ Fd. ‖f1‖ ∩ ‖f2‖ = ∅ (21.3)

Each Fd then corresponds to a possible partition of the net into a set of
communicating PN-processes.

In the example, there are two possible subsets Fd that satisfy the above
conditions:

1. Fd1 = {sf2, sf3}
2. Fd2 = {sf1, sf2}
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The partition Fd1 corresponds to the one that was a priori expected. Fd2

describes another possible partition of the net. They are both discrete views
of the system (Figure 21.4). Partitioning according to Fd2 relies on asyn-
chronous communication only (s1 and s2 are considered as channel places).
The choice of a partition has to be done by the designer. He uses criteria such
as the number of PN-processes found, the type of communication between
PN-processes, the semantic meaning of processes, etc.

Synchronisation channel

Process s1/s2Process s1/s2Process s1/s2Process s1/s2Process s1/s2

Process s3/s4

two channels

Process s1/s2Process s1/s2Process s1/s2Process s1/s2Process value

Process s3/s4

Fig. 21.4. The two views introduced by partitioning Fd1 and Fd2

21.2.4 Computation of Prototype Objects

When a given partition has been selected, prototype objects may be gener-
ated. These are the ones previously identified (PN-processes, channels, and
synchronisations). They can be automatically computed using the following
rules:

• Each element f ∈ Fd corresponds to a PN-process. Places supported by f
are states, and transitions that are connected only to states of f become
local actions. Please note that local actions should have one input state
and one output state only.

• Each place that is not supported by any element f ∈ Fd corresponds to a
channel place.

• Each transition that has more than one input state and more than one
output state is a synchronisation.

The result of such an operation for partition Fd1 in our example is shown
in Figure 21.5. It clearly outlines the structure that is convenient for the
generated prototype.

When the model is coloured, it is also necessary to compute the set of local
variables for each PN-process. Each PN-process instance (deduced from the
initial number of tokens in the net) will have its own copy of these variables.
These variables constitute the PN-process context.

Computation of the PN-process context corresponds to an interpretation
of the variables found in arc valuations. This is a complex operation that
must deal with a large number of configurations, especially when there is a
lack of writing rules for arc valuations.
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next

s4

s3

value
dec

s2

inc
getQ

s1

state place

channel place

synchronisation

local action
Process

,

Fig. 21.5. Prototype objects computed for partition Fd1

Figure 21.6 presents two examples illustrating some of the interpreta-
tion problems that have to be solved. Model A illustrates the overloading of
variables. Thus x, z and u are equivalent (as are y, t, and v). a is another po-
tential context variable. It is obvious that the context of the only PN-process
of model A should be either variable a (typed by domain D) or a set of two
variables (x and y, respectively typed by classes c1 and c2, for example).
This choice is difficult to automate when PN-processes are complex and deal
with state places having discrete colour domains.

channel2
c

channel1
c

S

b2
c

b1
c

a2
c

a1
c

p1 D

p2 D

class
   c1 is 1 .. 10;
   c2 is 1 .. 100;
domain
   D is <c1, c2>;
var
   x, z, u in c1;
   y, t, v in c2;
   a in D;

class
   c is 1 .. 100;
var
   x, y, z in c;

<x,y>

<z,t><u,v>

<a>

<y>

<x>

<x>

<z>

<y>

<y> <y>

<y>

<x>

<y++1>

Model A Model B

T

Fig. 21.6. Examples of nets for which the automatic computation of context vari-
ables is difficult to automate

Model B illustrates the problem that occurs when there is data exchange
by means of a synchronisation (here transition S ) or a complex selection of
tokens from a channel place (here transition T ). In the case of model B, the
conclusion could be:
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• In PN-process a1/a2, the context should be variable x ;
• In PN-process b1/b2, the context should be variable y ;
• There is a transmission of information from PN-process a1/a2 to PN-

process b1/b2 via synchronisation S ;
• Action T requires a token from channel2 that respects the condition pre-

decessor (“context variable y”) = “token from channel2”.

Such a conclusion is also difficult to compute automatically. A solution
could be the use of coloured invariants but they are difficult to compute
and to interpret10. However, some interesting aspects of such an extension
are discussed in [BP93, Pey93, BP94]. The solution proposed in [KEK94] to
ease the computation of the PN-process context is the definition of writing
conventions.

21.2.5 Speeding Up the Algorithm

The algorithm presented deals with a combination of N elements (N = |Fp|)
and is thus quite slow (complexity in n!). We can speed up the algorithm by
discarding a large number of solutions:

1. Let Fi be a subset of Fp that verifies condition 21.2, and f an element
of Fp/f 6∈ Fi.
∀Fj = Fi ∪ f , Fj verifies condition 21.2.

2. Let Fi be a subset of Fp that does not verify condition 21.3, and f an
element of Fp/f 6∈ Fi.
∀Fk = Fi ∪ f , Fk does not verify condition 21.3.

According to property 2, it is useless to investigate supersets of a set Fi

that does not verify condition 21.3 because they will be discarded anyway.
According to property 1, it is also useless to evaluate supersets of a set Fi

that already verifies condition 21.2 because they will either fail or introduce
useless synchronisations.

These optimisations have been implemented in the CPN/Tagada11 tool
that is a part of the CPN-AMI version 1.3 environment [MT94]. They provide
very good speed-ups except when the analysed model has structural symme-
tries. These symmetries generate many solutions. Thus, much smaller subsets
of “obviously bad solutions” are cut off.

10 The only algorithm to produce a generative family of coloured P-semiflows is the
one described in [CHP93]. It runs only on unary coloured nets without guards.
As far as we know, there is no systematic way to compute such invariants from
any type of coloured Petri nets.

11 Tagada for Translation, Analysis and Generation of ADA code.
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21.2.6 Net Transformation When the Algorithm Fails

For space reason, we present here only a few important transformations that
lead to a partitionable net. More detailed information and an extension of
the algorithm may be found in [Kor92].

a ●

b

1

2

3

c

4

d
d

4

c

3

2

1

b

a ●

Model A Model B

Fig. 21.7. First transformation that enables condition 21.2 in a model. Added
items (places, arcs, and tokens) are displayed in grey.

The failure of condition 21.2 means that there are pending places and
transitions. There are two possible origins:

• At least one transition without a predecessor or without a successor. A
very simple procedure is to add a place after a transition without a suc-
cessor and to connect a transition without an input place to the end of a
“sequence”. The first transformation can be done automatically; the sec-
ond requires semantic information that should be provided by the system
designer. Figure 21.7 presents an example of such a transformation. Model
A cannot be processed using our algorithm while model B can.

• At least one dynamic PN-process creation. In this case, forcing the PN-
process to be statically instantiated provides good results. An implicit place
is added (and marked). The corresponding P-semiflow appears and the
condition no longer fails. An example of such a transformation is given
in Figure 21.8. Model A cannot be processed using our algorithm. Model
B can be processed but it will be difficult to detect the end of execution
for PN-process c/e using the technique previously proposed (when a PN-
process instance reaches a place without a successor). Model C is another
possible transformation that allows such a detection of the end of execution,
but it cannot be processed automatically because semantic knowledge is
required.

The failure of condition 21.3 means that there are “shared sequences”.
This configuration corresponds to fork/join sequences as shown in Figure
21.9. In this example, two PN-processes share state places a and f, and thus
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Model A

Model B

Model C

Fig. 21.8. Second transformation that enables condition 21.2 in a model. Added
items (places, arcs, and tokens) are displayed in grey.

the algorithm we propose fails. Duplication of these places (including their
initial marking) produces model B that is partitionable with our technique.
Such a transformation can be performed automatically but produces many
synchronisations (transitions 1, 2, and 5 in our example).

f'

a' a

f

2

1

5
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d e

3 443

ed

cb
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1

2

f

a

Model A Model B

Fig. 21.9. First transformation that enables condition 21.3 in a model. Added
items (places, arcs, and tokens) are displayed in grey.
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21.3 Some Aspects of Code Generation from Petri Nets

Code generation from Petri nets deals with two separate (but complementary)
aspects:

• Implementation of the prototype objects in order to get efficient code.
• Computation of characteristics that could lead to a “good” allocation strat-

egy for a given hardware architecture. It is useful to map a software ar-
chitecture to a hardware one (Section 21.3.3) and to extract some helpful
configurations such as pipelines (Section 21.3.4).

21.3.1 On the Implementation of Prototype Objects

In the previous section, we have outlined the following prototype objects:
PN-processes (composed of state places and local actions), channels, and
synchronisations. This section details how such objects can be implemented
in an imperative language that handles parallelism management (such as
Ada or C/C++ under Unix). Most of the strategies proposed here have been
implemented in the code generator of the CPN/Tagada tool [KEK94].

Implementation of PN-Processes. A PN-process is a model of a sequen-
tial state machine that aims to become a thread or a process managed by
the operating system. Each sequential state machine is a model of a program
task implemented as a case included in a loop [Man90]. The loop ends when a
state place without a successor is reached. Each case alternative corresponds
to a state of the machine:

• A local action (for non-shared transitions).
• Connection to the synchronisation manager (for shared transitions).
• A state, if it has more than one successor. This is an optimisation that

eliminates useless states relating two transitions. Then the next state after
a transition in the PN-process automaton is the next transition. In that
case, the corresponding code should be a (random?) choice of one of the
successors. Concurrent evaluation of all pre-conditions is also possible but
may introduce unfair executions when one transition pre-condition is much
more complex than the others.

PN-processes are instantiated according to the number of tokens initially
found in the state places. Dynamic creation of PN-processes is difficult to
consider because such configuration usually leads to non-partitionable Petri
net models.

The code segment provided in Figure 21.10 corresponds to the implemen-
tation of PN-process s1/s2 in the model of Figure 21.2. Please note that:

• According to the optimisation previously outlined, states s1 and s2 are
not translated because they do not correspond to a choice point (they only
relate two sequential transitions);
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• Context (variables op and i) is implemented through local variables;
• Variables finish and c state are used to control the current state and the

end of the PN-process.

PN-process s1/s2
// declaration of local variables
type PN-process_state is (tr_inc, tr_getQ);
variable op : what;
variable i : user_id;
finish : boolean := false
c_state : PN-process_state;

begin
// behaviour of the state machine
initialisation phase that gets from the prototype manager
the values of op, i and c_state
loop

case c_state is
when tr_inc =>

treatment associated with tr_inc
when tr_getQ =>

treatment associated with tr_getQ (connection to the
synchronisation server etc.)

end case
until finish
termination phase that advises the prototype manager of the
PN-process end

end

Fig. 21.10. Typical algorithm of a PN-process

Evaluation of a local action predicate (if any) has to be split: 1) it evalu-
ates the part that involves context variables first, 2) if necessary, it contacts
the channel places manager which evaluates the part that involves channel
places. A process should not itself evaluate the part involving channel places
in order to minimise conflicts when they occur in more than one transition
guard. If the pre-condition fails, the process instance should be suspended
until the channel place manager wakes it up. If the transition occurs behind
a choice point, a time-out should be managed in order to avoid deadlocks.

The code segment provided in Figure 21.11 shows how to implement a
local action when it takes place behind a state that is a link between two
transitions. Note that variable c state is the one declared in the previous
algorithm.

The code segment provided in Figure 21.12 shows how to implement a
local action when it takes place behind a state that is a choice point between
a set of transitions. A time-out is now managed in order to avoid deadlocks
(the a priori choice of a transition to evaluate may not be good).
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begin
if condition on context variable = true then

send query to the channel place manager (if any)
wait for answer
execute code associated with the transition
update context variables
send "channel postcondition" (if any) to the
channel place manager
c_state := next state

else
signal deadlock for this process

end if
end

Fig. 21.11. Typical algorithm of a local action not located behind a choice point
(state with more than one successor)

begin
if local condition = true then

send query to the channel place manager (if any)
wait for answer until time-out
if answer OK then

execute code associated with the transition
update context variables
send "channel postcondition" (if any) to the
channel place manager
c_state := next state

else
c_state := previous state

end if;
else

c_state := previous state
end if

end

Fig. 21.12. Typical algorithm of a local action located behind a choice point (state
with more than one successor)

The code associated with a synchronisation is very similar to that for a
local transition except that no associated procedure or post-condition con-
struction is executed by the process. It will contact the synchronisation man-
ager and wait for a positive answer (with a time-out if the synchronisation
is behind a choice point). The synchronisation manager takes care of pre-
conditions and post-conditions.

Implementation of the Synchronisation Manager. A centralised im-
plementation of the synchronisation server is not of interest because it dis-
ables a possible distribution of synchronisations over a set of processors.
Moreover, synchronisations have nothing in common; each one corresponds to
a distinct communication mechanism. Considering this the synchronisation
manager is quite easy to distribute.
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Each synchronisation is managed by one process12 that manages its cur-
rent context. It accepts messages from clients. These clients are instances of
the PN-processes that share the corresponding transition.

When a client sends a connection query, the process evaluates it. If at
least one instance of each PN-process involved is present and respects the
transition condition, it fires the transition (i.e. executes the corresponding
transition and generates the post-condition) and wakes up the corresponding
clients.

If a synchronisation has input or output channels, the corresponding query
(token demand or production) is delegated to the channel place manager.

Implementation of the Channel Place Manager. The implementation
of the channel place manager raises some problems that are very close to
those of databases:

• Generation of tokens (data) is easy to handle. A complex query involving
token production in many places may be split into elementary queries that
deal with one place.

• In contrast, consumption of tokens is more complex, especially when there
are conditions to satisfy. In the model of Figure 21.13, the evaluation of the
pre-condition associated with transition T depends on the set of required
values respecting a complex condition.

ch3 c

ch2 c

ch1 c

T((x < y) and (y = z)) or
(z = x)]

state

<x>

<y>

<z>

,

Fig. 21.13. Example of model containing a complex precondition (on transition
T )

For these reasons, it is very difficult to evaluate separately the marking
of each place.

This conclusion leads to a centralised proposal. The channel place man-
ager is a database-like query evaluator. While the problem is related to the
evaluation itself, it seems possible to replicate the query evaluator on each
site. Places and their content should then be able to migrate from one site to
another. When a query is sent to one of the channel place managers, it calls
the required places and performs the evaluation when they are on the site.
This solution raises the following problems:

12 Potential replication of such a process to avoid potential bottlenecks is discussed
in Section 21.3.3.
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• Ordering of queries should be total. This can be solved using either the
Lamport clock [Lam78] or the vectorial clock [Mat89] synchronisation al-
gorithm.

• Migration should be managed carefully in order to avoid situations such
as:
– The loss of a migration demand that arrives during the migration of the

corresponding channel;
– The never-ending chase of a migration demand that always arrives just

after the departure of the corresponding channel.
Such situations can be solved using a commitment after each channel mi-
gration.

The main drawback of this implementation is that the number of messages
exchanged cannot be bounded. A small mistake in the mapping of processes
to a set of processors may lead to very poor performance due to unnecessary
migrations.

A second distributed implementation is based on the following observa-
tion: Sets of channels that belong to a query should never be separated. Each
manager is responsible for a set of channels that never move. Non-local queries
are then remotely evaluated. This solution does not generate a large number
of messages but its efficiency depends on the net structure.

s5t5

c6c5c4

c3c2c1

t3

t4t2

t1
s3

s4s2

s1

Set 2

Set 3

Set 1

Fig. 21.14. Example of channel place partitioning to distribute management

Figure 21.14 illustrates such a partitioning of channel places. The model
contains five outlined processes that communicate through six channels that
may be grouped into three sets:

• set1 = {c1, c2}: they are both involved in the pre-condition of transition
t1 ;
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• set2 = {c3}: it is involved in the pre-condition of t3 ;
• set3 = {c4, c5, c6}: c4 and c5 are involved in the pre-condition of t2 and

must be grouped. However, c5 is also involved in the pre-condition of t4
with channel c6. In order to evaluate both types of pre-condition queries,
these three channels have to be grouped.

Recall that post-conditions (in this case, that for transition t5 ) do not
have any influence on these sets. The channel manager of this model may be
distributed over up to three different hosts if this policy is selected.

21.3.2 Prototype and Execution Environment

Another key issue is connecting the generated prototype to its execution
environment. This is important when the prototype is not used to speed up
a simulation process as in [PG92].

A solution is to consider a “prototypable” Petri net N = Np ∪ Ne where
Np ∩ Ne = I is a set of objects (places and/or transitions) that constitute
the interface between Np and Ne. We assume that:

• Np corresponds to the system to be prototyped. The description is very
precise in order to get all the details of the implementation.

• Ne corresponds to the execution environment. The description is not as
precise as that for Np. It is the abstraction of the environment execution of
the system. This means that it mainly describes the interaction with the
system, not the way in which the environment is implemented.

N is important for validation purposes. Np is used to generate code and
Ne to deduce interfaces between the generated code and the execution en-
vironment (Figure 21.15). Thus, the partitioning algorithm is applied to Np

only after extraction of Ne, which is used to build an appropriate interface.
The prototype is finally linked to the environment interface. Abstractions are
reusable specification components that can be stored in a library. A similar
strategy is used in CORBA with IDL [MZ95].

Such a technique may also be used for separate modelling and code gen-
eration. The system is modelled through n submodels that are connected by
mean of specific interfaces. A team may work on a given module using the ab-
straction of other modules (for the team, they are pieces of the environment
execution).

A critical point is to decide what type of interaction should be provided
between the prototype and its execution environment. In [KE91], interaction
is considered by means of channel places only while [Bré93] prefers a com-
munication by means of transitions. Such choices arise from the underlying
software or hardware architecture: distributed Ada in [KE91] (channel places
are treated like RPCs), a network of transputers in [Bré93] (shared transitions
correspond to process communication in Occam). Such a choice determines
the way submodels should be connected, and may depend on a preferred
implementation strategy (according to the target language constraints)
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Fig. 21.15. Code generation procedure that integrates relations of produced pro-
grams with their execution environment

21.3.3 Mapping Processes Onto a Given Architecture

Both target hardware and application architecture must be exploited to
model distributed systems and their environment. Focusing only on appli-
cation architecture could cause a loss of the time gained by automatic code
generation for a distributed environment.

Thus, the prototype should be as flexible as possible to allow experimen-
tation over distinct hardware architectures (as a network of interconnected
machines or a multi-processor machine). The mapping can be done either in
the code or separately in a configuration file. The former is relevant when
the target language is dedicated to the execution architecture (e.g. Occam in
[Bré93]). The latter is easier to modify (no recompilation or code generation
needed after a modification). We will focus on the latter.

To map software onto a given hardware, it is necessary to be able to for-
malise both. We will first investigate some work that focuses on the hardware
description and then show how a software architecture can be deduced from
the partitioning obtained in the hybrid approach (Section 21.2). Finally, an
example of mapping is discussed.

The Hardware Model. Dealing with both fine- and large-grain descrip-
tions is difficult without a common hardware formalism. A multi-processor
or a network of interconnected workstations should differ only by the charac-
teristics of the medium. An ethernet brain connecting two workstations and
a bus connecting two processors are not equal in term of throughput and
reliability.

Distributed systems such as CONIC [MKS89] and parallel programming
languages such as DURRA [BDW+92], ARGUS [Lis88], and EMERALD
[JLHB88] provide a simple network description framework. Usually only con-
figuration and reconfiguration management are taken into account.

However, in [ST92] a very interesting network description language called
SySl (System Structure Language) is proposed. SySl enables the description
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of systems with hardware, software, and documentation components. En-
capsulation of system classes sharing some features is provided, as well as
dependencies between components. Genericity is used to describe each ob-
ject and its properties. For instance, a workstation has characteristics such
as processor, memory, and communication interface. Each attribute value is
specified when a system class is instantiated.

GATOS [FS93] focuses on the software application structure and works
directly on the executable prototype. Dynamic load balancing and fault toler-
ance are automatically provided. Distribution of parallel applications among
heterogeneous hosts and migration of processes are both possible. A config-
uration file describing the application architecture and the user constraints
must be created. The information about the underlying hardware, needed
to provide an automatic distributed execution, is not given by the system
designer.

In [Fer89], software systems and hardware architectures are both modelled
with the same formalism. A program resource mapping net (PRM net) is a
modular concept used for the modelling of parallel programs with a Petri net
(called the P-net). All resources and their dependencies are also described by
means of a Petri net (named the R-net). The mapping between P-nets and
R-nets is graphically performed by the designer.

Parallel Proto [Bur91] introduces a graphical hardware description, which
can be coupled with the application model to simulate placement effects. The
location of objects may be performed either manually or randomly. There is a
predefined library that includes some well-known architectures such as Intel
Hypercube and Encore Multimax. However, the tool uses this information
only for simulation purposes and no code is produced.

The hardware formalism proposed in [EKK94] defines two types of hard-
ware objects: H-Machines and H-Links. They are used to create a graph,
where H-Machines (nodes) are linked with H-Links (arcs). Hardware objects
are defined by means of attributes and their description may be graphical or
textual.

H-Links represent a network cable, a transputer channel, or any other
communication link. Characteristics are described by a set of attributes such
as:

• Identifier;
• Type: channel (local to a motherboard), local (local network), or distant

(external network);
• Effective throughput;
• Reliability (maximum bound for message delivery).

H-Machines are virtual workstations. Here are some attributes needed to
complete their description:

• Identifier;
• A list of H-link identifiers;
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• Technical information such as the current state (alive or dead), the host
machine address, and the average load;

• The machine characteristics (CPU type, reliability, speed, memory, disk),
needed to manage disparities between executable formats and incompati-
bilities in execution speeds.

The host machine address and its related links must be declared to allow
automatic location. The other parameters are necessary only for heuristic
computation and statistics purposes.

The Software Model. The software model is composed of elements that
can be distributed such as processes and communication mechanisms. Com-
munication mechanisms are as relevant as processes because they generally
hide data or managers. This is the case for both the synchronisations and the
channels which we get from our partitioning procedure.

It is relevant to consider a hierarchical description of the system architec-
ture in order to have a recursive integration of distribution criteria. To do this,
[EKK94] introduces the notion of Distributed Virtual Software Components
(DVSCs) that are either software-executable units or resources. DVSCs are
connected together and may contain sub-DVSCs.

A DVSC contains the following information:

• Identifier.
• Type: decomposable (it is a set of sub-DVSCs that can be assigned to

distinct processors) or indivisible (all DVSC components should remain
grouped on the same host).

• Behaviour: active (for processes such as a PN-process) or passive (for data
or resources such as a channel place).

• Attachments: these may be user-defined constraints that have to be re-
spected or the names of hosts or characteristics that are required (for ex-
ample, an executable file format).

• Ability to replicate: this is a boolean that is set to true when the object
can be replicated to distinct hosts without changing the behaviour of the
system. Replicability of such DVSCs implies that each copy is independent
of the others (in our software model, each instance of a replicable process
could be assigned to distinct processors).

• Internal description: the contained DVSCs if there are any.

DVSCs could be directly derived from the prototype objects that are
computed from the Petri net model:

• Each process becomes an active DVSC that can be replicated (each instance
may be located on distinct H-Machines).

• In the case of a distributed management of synchronisations, each is con-
sidered to be an active DVSC (a priori not replicable). Otherwise, all
synchronisations are grouped into one indivisible DVSC that includes sub-
DVSCs.
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• In the case of a centralised implementation, the channel manager is one
indivisible active DVSC. If the first distributed policy is selected, there
is one passive DVSC (a priori not replicable) per channel. If the second
distributed strategy is implemented, each set of channels is a passive DVSC
(a priori not replicable).

DVSCs are connected with links. Each link has a weight that expresses the
relative cost of an access or its frequency13. Such information can be deduced
from the communications between the two DVSCs. For example, communi-
cation through a channel should be weighted less than a synchronisation. It
is possible that two distinct policies lead to different values. This is a way to
customise the mapping procedure.

Mapping the Prototype Onto a Target Architecture: An Example.
Based on both the hardware model and the software model, it is possible to
compute a “good” allocation of prototype components (DVSCs) to processors
of a distributed architecture (an H-machine).

The partitioning Fd2 of our example (Figure 21.2) is used to illustrate the
procedure that is proposed in this section. We assume that the synchronisa-
tion manager is distributed as described in Section 21.3.1. We also assume
that the channel place manager is implemented using the second distributed
strategy (partition of channels depending on the pre-conditions in which they
are involved).

In this example, it is not necessary to take into account the implementa-
tion policies discussed in Section 21.3.1 because there is only one synchroni-
sation and one channel place. Thus, all proposed implementations lead to the
same prototype structure (Figure 21.16). Let us suppose that the valuation
of edges, for instance around getQ, are computed after the code generation
strategy of a given tool. These values could correspond to a usage rate (here,
one per connection to the communication mechanism).

s3/s4 s1/s2
getQ channel

21 1

Fig. 21.16. Initial software description of the prototype

Let us further suppose that there is no constraint from the system designer
forcing the allocation of any DVSC to a given host (such as an executable file
format). Some observations can be done according to the Petri net model.

13 Evaluation of the message rate can be done after some executions of the proto-
type.
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• Shared transition getQ manages a rendezvous between the instance of
s3/s4 and the three instances of s1/s2. Such an entity is indivisible because
no replication rule can be found.

• Channel place value and the instances of process s3/s4 do share a common
“key”:
– Variable i having colour user id for s3/s4 ;
– The second field of tokens (having colour user id) for channel value.
It is also useful to notice that both transitions inc and dec (they both have
value as a pre-condition) require in their guard, equality between context
variable i and the second field of value’s tokens.

Based on these observations, we finally get from the initial software ar-
chitecture of Figure 21.16 six DVSCs that are presented in Figure 21.17:

• One PN-process s3/s4 instance having the following characteristics:

type = indivisible,
behaviour = active,

attachment = empty,
replication = no,

internal description = empty.

• One synchronisation server for getQ having the following characteristics:

type = indivisible,
behaviour = active,

attachment = empty,
replication = no,

internal description = empty.

• Three PN-process s1/s2 instances having the following characteristics:

type = indivisible,

behaviour = active,
attachment = channel containing token i,

replication = no,
internal description = empty.

• One set of channels containing value having the following characteristics:

type = indivisible,
behaviour = passive,

attachment = PN-process s1/s2 number "second field of the token",
replication = upon colour user_id,

internal description = empty.

s1/s2

channel
s1/s2

channel

s3/s4

getQ
s1/s2

channel

i = M0#21 1

Fig. 21.17. Software architecture of the prototype after analysis
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Let us now assume that the hardware architecture is composed of a set
of workstations connected by a Ethernet bus14. Each machine has the same
characteristics.

The maximum number of machines required (five) corresponds to the
number of computed DVSCs. Table 21.3 shows a set of possible locations
computed according to the previously deduced software architecture. Table
21.2 defines the names of elementary DVSCs to be placed. By convention,
ai is an active DVSC and pi a passive DVSC. Subscript information (if any)
corresponds:

• For active entities, to the initial value for the context (it is then a PN-
process instance);

• For passive entities, to the initial information (it is then the marking of a
channel place).

Please note that, according to the remarks we have made about the po-
tential replication of channel place value, it corresponds to three elementary
DVSCs (p1, p2, and p3). Each is a replica of value having the appropriate
initial marking.

In Table 21.3, the allocation of passive entities p2 and p3 on machine 4
(line 5) means that there is one copy of channel value that contains both
tokens 〈40, 2〉 and 〈100, 3〉.

Location entity nameCorresponding DVSC

a1 s3/s4 .op=plus

a2 getQ
a3 s1/s2 .i=1,op=?

a4 s1/s2 .i=2,op=?

a5 s1/s2 .i=3,op=?

p1 value.M0={〈200,1〉}

p2 value.M0={〈40,2〉}

p3 value.M0={〈100,3〉}

Table 21.2. Correspondence table for DVSC

21.3.4 Place Invariants and Pipeline Detection

Pipelines are also an interesting configuration to detect because they may
provide a significant speed-up when spread over a set of hosts. In some cases,
some of the invariants that were discarded may outline a pipeline in a Petri
net model. The model of Figure 21.18 is obviously composed of five PN-
processes. It has six p-semiflows:

14 Please note that such a configuration generates no routing problem.
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number of machine 1 machine 2 machine 3 machine 4 machine 5
machines

1 host a1, a2, a3,
a4, a5, p1,
p2, p3

2 hosts a1, a2 a3, a4, a5,
p1, p2, p3

3 hosts a1 a2 a3, a4, a5,
p1, p2, p3

4 hosts a1 a2 a3, p1 a4, a5, p2, p3

5 hosts a1 a2 a3, p1 a4, p2 a5, p3

Table 21.3. Possible mapping from one up to five hosts

1. sf1 = p1,
2. sf2 = p2,
3. sf3 = p3,
4. sf4 = p4,
5. sf5 = p5,
6. sf6 = c1 + c2 + c3 + c4 + c5.

max_count
50

sort_out
f_range

<1><1>

fifo_content f_content

messageDB
message

<m1>…
<mn>

sort_in
f_range

C1

get

[c=y]P1
•••

send

Class
   f_range is 1 .. 50;
   message is [m1, ..., mn];
 Domain
   f_content is <message, f_range>;
Var
   x, c in f_range;
   m in message;

<m>

<m>

<x>

<m, x>

<x++1>

<x>

<x++1>

<m,c> ••

Producer and its DB ConsumerFifo

Fig. 21.18. Petri net model that can be implemented in a pipeline

There are two partitions: Fd1 = {sf1, sf2, sf3, sf4, sf5} and Fd2 = {sf6}.
Let us consider Fd1 . It discards invariant sf6 that corresponds to a data-flow.
Let us observe that it is the only PN-process of another partition (Fd2).

The problem is that such an configuration is not systematic. If we suppress
place c1 in the model of Figure 21.18, sf6 disappears and no extra information
is provided. The pipeline however remains. The conclusion is that unselected
p-semiflows, as well as unselected partitions, may contain useful information
for PN-process allocation.
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21.4 Code Generation from a High-Level Net

In the previous sections, after presenting a general view of code generation
from Petri nets, we focused on a way to produce efficient code. It is ob-
tained after a partitioning of the Petri net model into prototype objects that
prefigure the generated code structure.

We also outlined how the Petri net properties were able to help us to
extract some relevant information to produce distributed code. In particular,
place invariants should be used for the partitioning (see Section 21.2) or to
detect pipelines (see Section 21.3.4).

However, although they have may desirable features in the context of val-
idation, we do not think that Petri nets are a good entry point for efficient
code generation. Let us illustrate this with an example: a system composed of
two PN-processes (P and C ) communicating by means of a Unix fifo (pipe)
that can contain a maximum of 50 messages. Figure 21.19 shows such a
system. The submodel that corresponds to the fifo (places sort in, sort out,
fifo content, and max count) complicates the model and introduces many po-
tential PN-processes. It is then difficult to avoid complexity in the generated
code. A complex set of entities will be developed from parts that model the
fifo although it is a very simple object to model. Searching for specific Petri
net patterns (such as the one for a fifo in our example) is not a solution
because there are many ways to model such behaviour.

c1
c5c4c3c2

p5

t5

p4

t4

p3

t3

p2

t2t1

p1

p1 p2 p3 p4 p5

Fig. 21.19. Producer/Consumer model through a Unix fifo

However, while Petri nets enable the computation of relevant informa-
tion, they also hide some important high-level information. From the code
generation point of view, there are two problems:

• Petri nets may be useful for very detailed modelling as well as for high-
level modelling. The meaning and precision of a model is decided by the
designer. No tool can compute such information.

• There is a lack of structure and thus no guidelines for verification or iden-
tification of some specific configurations.
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Hence, interpretation of Petri net specifications is quite difficult because
relevant semantical information depends on the description level selected by
a designer. To compensate for the lack of Petri net structure, two research
strategies are usually considered:

• Integration of new high-level features, such as hierarchy: this approach
enables modelling of more complex systems but raises theoretical problems.
Some properties can no longer be computed. Not all properties extractable
from non-hierarchical nets can be computed either. Various proposals for
this approach can be found in [BFR92, SB94, Bak96, Bas95, LK95, Val98,
Lak96].

• Association between Petri nets and another high-level representation that
provides structuring capabilities. The idea is to produce a flat Petri net
from a semi-formal model. The Petri net specification could be enormous
but is hidden from the end user. Properties of this model are translated
back into the terms of the high-level formalism. Proposals for this approach
are discussed in [DG90, Pal91, KEK95, DK96].

Elements of both approaches were presented in Section 10.3 but they
mainly dealt with modelling. Elements of net execution by simulation were
presented in Chapter 20. This section describes how an association between
Petri nets and another high-level formalism can be relevant and can preserve
both advantages (computation of formal properties and optimised implemen-
tation of high-level mechanisms).

21.4.1 Association with a High-Level Formalism

Some early work proposed an association between Petri nets and an pre-
existing object-oriented model [DG90]. However, such an approach can not
provide a solution that covers all the high-level formalism capabilities because
they are too rich. Some mechanisms cannot be easily transformed into simple
Petri nets and thus the computation cannot be fully automated. In their
paper, the authors indicate that a modelling strategy should be respected.
This idea is of particular interest for solving the modelling problem and can
be expressed in:

• The definition of restrictions in the high-level formalism as in [Pal91];
• The definition of a high-level formalism that is dedicated to the modelling

philosophy, as in [BE94, KEK95, DK96].

21.4.2 An Example of Work Based on a Pre-Existing High-Level
Formalism

A very interesting proposal involving the HOOD specification is investigated
in [Pal91]. It proposes HOOD/PNO, a more “natural” method for building
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large models. The main idea is to use both formalisms: HOOD to decompose
the system into objects and then Petri nets to model the system behaviour
and deduce properties. This method is best suited for the design of flexible
manufacturing systems involving physical objects (for example, a robot or a
conveyer) driven by a distributed application.

The method has five steps:

• Describing the system environment;
• Deciding which physical objects of the PN-process to prototype;
• Attaching each physical object to its class;
• Describing each class;
• Deciding on software and object classes.

When the system is decomposed into modules, the behaviour of such ob-
jects is modelled using P/T nets. Each net is contained in a module. Modules
are connected. Three types of communications are proposed:

• Strongly or loosely synchronous;
• Asynchronous;
• Timed-out queries.

Code generation of Ada programs is performed using the information
provided by both HOOD and Petri nets. HOOD gives information that is
suitable for detecting genericity units, visibility clauses, and public parts of
a unit. Petri nets give information about the behaviour of the unit.

Such an approach has three major advantages:

• A complex partitioning algorithm is no longer needed because it is outlined
by the designer in the HOOD specification;

• Code generation benefits from HOOD information;
• The complete model may be generated and validated using a “flat” Petri

net made of object behaviour connected together according to the commu-
nication schemes that are available.

So, both HOOD and Petri nets benefit from this association. HOOD ac-
quires some validation capabilities and Petri nets are structured. A non-Petri-
net-expert designer may use such a method without the difficulty of managing
big models. The size of each Petri net specification (into a HOOD object) is
quite small and thus easy to understand and maintain.

21.4.3 An Example of a High-Level Formalism Dedicated to Code
Generation: H-COSTAM

Let us now investigate one dedicated formalism: H-COSTAM (Hierarchical
COmmunicating STAte Machine model) [KEK95]. This formalism does not
aim at the description of any type of application. It focuses on the modelling
of distributed applications for code generation purposes.
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It is basically nothing more than an “encapsulation” of coloured Petri
nets which supports the following features:

• A typed communication model is proposed in order to meet the needs of
distributed systems. Both asynchronous and synchronous communication
are provided.
Asynchronous communication is performed by means of passive media that
may behave as follows:
– FIFO: message order is preserved;
– LIFO: message order is inverted;
– Random: message order is not preserved15.
Synchronous communication is provided by means of active media. So far,
only one mechanism has been investigated: multi-rendezvous16.

• Processes are the elementary units composed of:
– A sequential automaton;
– A set of private variables (each process instance has its own copy);
– A typed interface to other units that corresponds to communication

links.
• Dynamic process creation in order to enable an adequate modelling of

distributed systems.
• Hierarchy to enable large-scale specification through modularity.
• Strong typing to enable verifications as soon as possible and then to derive

colour domains safely.
• Genericity to reduce the size of a specification and enhance the reusability

of modules.

Links to Petri nets are preserved but not only for validation purposes. The
computation of “good” properties could lead to optimisation of the system,
especially when considering process allocation over a distributed hardware
architecture. For example, properties such as the bound of places may be
useful for dimensioning some resources in the prototype. Techniques discussed
in Section 21.3.3 can be also applied to the Petri net model produced.

It is also possible to ease the calculus of such properties by having distinct
and adapted transformations to Petri nets. The procedure is illustrated in
Figure 21.20. For example, evaluation entity replication and resource dimen-
sioning do not depend on the same Petri net model. However, both models
come from the same high-level description.

Figure 21.21 corresponds to the H-COSTAM version of the system mod-
elled in Figure 21.19. The model is now split into three modules (called pages).
In this specification, the main page belongs to a macro-level description and
describes only the structure of the system. It is composed of two processes

15 Random links effectively have the same behaviour as channel places.
16 A multi-rendezvous is an extension of the “classical” rendezvous mechanism

[And91] that is commonly used in CSP [Hoa85] and Ada [DoD83]. However N
processes can synchronise on a multi-rendezvous. The rendezvous is a particular
case in which N = 2.
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••
•

Transformation dedicated to the verification of property 1

Transformation dedicated to the verification of property 2

Transformation dedicated to the verification of property N

High level
model

Fig. 21.20. Distinct and property-oriented transformations to Petri nets

(Prod and Cons) that share a fifo link (same behaviour as a Unix pipe).
Process Prod also has access to a database of messages. Please note that it
is possible to define types and constants.

M icro

declaration

Macro

Prod

MessageDB
message

<m1>, <m2>, <m3>

unix_fifo

message
$MAX_MSG

   type message is (m1, m2, m3);
   type f_range is 1.. 50;
   constant MAX_MSG : fifo_range := 50;

Cons

MessageDB

message

Send

%unix_fifo := %message;
%message := %message;

p1 unix_fifo

message

declaration
   none;
context
   none;
initial_state
   3 instances has state => p1;

Prod
M icro

unix_fifo

message

c1Get

declaration
   none;
context
   none;
initial_state
   2 instances has state => c1;

Cons

Fig. 21.21. The H-COSTAM version of the producer/consumer model presented
in Figure 21.19

Each elementary component (here, boxes Prod and Cons) is separately
defined in other pages. An elementary process should have a micro-level de-
scription that defines its behaviour by means of an automaton. Both macro
and micro pages may introduce new declarative items (types or constants).
A page also inherits declarations from higher levels. Pages that are hierarchi-
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cally enclosed in other communicate through interfaces that are communica-
tion media (for example, unix fifo). In the micro-level page describing Prod,
no local declaration is performed but types messages and fifo range, as well
as constant MAX MSG, are visible.

Transformation of this specification into Petri nets produces the model
shown in Figure 21.19. Please note that this example involves neither gener-
icity nor dynamic process creation (all processes are statically instantiated).

Such models are quite easy to transform because the possible operations
(composition, communication, variable assignment or manipulation) can be
expressed using Petri net terms. Transformations from more complex high-
level formalisms (such as Shlaer & Mellor in [LK95] or HOOD in [Pal91]) are
more difficult if we want to preserve some analysis capabilities. This means
that only subsets of such high-level formalisms can be exploited.

21.4.4 Implementation of Enhanced Prototype Objects

The main advantage of using a high-level formalism that is dedicated to code
generation, such as H-COSTAM, is that its entities are closer to prototype
objects than are Petri net entities. Thus, the generic architecture associated
with a high-level formalism, such as the one presented in Figure 21.1, only
has to be slightly adapted to fit the new concepts.

Dedicated unit

Generic unit (contains dedicated data)

Prototype manager

Active
media

manager
Process

Type manager

Passive
media

manager

Fig. 21.22. An example of adapted generic architecture (for H-COSTAM in this
case)

Figure 21.22 presents a possible adaptation for H-COSTAM of the generic
architecture proposed in Figure 21.1. The passive media manager is an ex-
tended version of the channel manager able to handle distinct communication
behaviour (for FIFO, LIFO, and random links).

Genericity can be supported using the corresponding feature on target
programming languages (such as Ada or C++). Otherwise, a rewriting mech-
anism similar to the one for macro functions can be implemented.

Dynamic process creation should be taken care of by the prototype man-
ager itself. Specific messages are dedicated to this purpose. A process that
has to create another process sends a message to the prototype manager
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which then creates it. Thus, a safe separation between user-defined functions
and the prototype runtime is ensured. Such an implementation can be either
centralised or distributed.

21.5 Conclusion

In this chapter, after presenting some key issues of code generation from
Petri nets, we focused on a particular code generation technique which has
been implemented and tested. The approach presented is well suited to the
implementation of message-passing-based distributed software systems.

Code generation is a technique that cannot be considered as a final goal.
This procedure is part of a prototyping process involving several other op-
erations such as: modelling of a system, evaluation of the system model (by
simulation or verification), evaluation of the final application (whether or not
it has been automatically generated).

It is difficult to consider the Petri net level as an entry point for code
generation. It is quite satisfactory in some cases (flexible manufacturing sys-
tems for example), however it may not be so accurate for other applications
(distributed systems). Here are the two major problems of Petri nets for code
generation:

• The lack of high-level structures (such as FIFOs, LIFOs, and multicast
mechanisms);

• The lack of structuring.

The first point is very technical (it is difficult to obtain optimised code
and many simple software objects correspond to complex submodels). The
second point prevents a modelling/prototyping approach of systems based on
design patterns [Coa92, Oza96], and makes modelling of large systems more
complex.

However, solutions to these problems are being investigated:

• Extension of the Petri nets formalism [SB94, Lak96];
• Association of Petri nets with another structuring formalism (object-

oriented representations are good candidates) as in [DG90, Pal91, Hul97];
• Encapsulation of Petri nets using a structured language that tracks useful

information for code generation [KEK95, Hul97].

The first approach is more likely a long-term solution in which Petri net
extensions are traded with the capability of computing formal properties.
In contrast, the other two solutions propose a shorter-term solution to this
problem.

However, a Petri-net-based approach is valuable in the design of (even
complex) systems because it enables the use of formal validation techniques.
Such a property gradually becomes a very important point for checking the
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safety (structural, behavioural, etc.) of applications. The validation of large
complex applications should be a major issue of the next century.
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Validation can be seen as one of the central tasks of systems engineering. It
provides the means to check whether the described, planned, or built system
fulfils the expectations of the user, customer, or client. These expectations
cover all aspects of a system, be it static or dynamic in nature. In this part of
the book some critical parts of systems engineering have been described and
some major areas of Petri nets have been presented, namely prototyping, net
execution, and code generation.

Chapter 19 discussed prototyping as an approach that is a quite natural
way to perform systems engineering, especially in the early phases of the
development process. In combination with Petri nets, prototyping is very
powerful since the operational semantics can be used to execute the nets and
therefore provides a good insight into the behaviour of the model developed
so far. In several areas the prototype can also directly be used as the final
system. However, this depends on many different factors. In this part of the
book the use of models dominates, and these are transformed into prototypes.

The importance of supporting approaches in software engineering by tools
is well known. Petri nets in particular are well known for their considerable
requirements with respect to hardware and software support. In recent years
enormous progress has been made, since the graphical interfaces can be built
much more easily today than some years ago. The necessary support is now
widely available and the great potential of current hardware and software is
used more and more by Petri net tool developers.

In Chapter 20 a distributed implementation of Petri nets in a simulation
framework was presented. Some technical algorithms, which give a good in-
sight into the underlying ideas, were discussed. Simulation takes place within
a certain context. The underlying system components, such as the operating
system viewed as a technical aspect or the overall architecture viewed as a
conceptual aspect, and their relevance for the simulation were mentioned.

Chapter 21 about code generation presented some key issues that are
related to Petri nets. Fundamental questions related to automatically gener-
ating code from Petri nets must be solved. The chapter presented an approach
that has been implemented and used in several experiments. Prototype ob-
jects were deduced by complex algorithms and problems related to colours
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were mentioned. Furthermore, the importance of a proper integration into an
overall prototyping approach was stressed.

Many questions related to the validation of complex systems have been
left open. However, an approach based on Petri nets, and its potential within
software engineering have been presented. The operational semantics of Petri
nets allows for a specific way of prototyping. Models that directly cover cen-
tral complex issues in an application domain are built and then transformed
into a prototype. This prototype can be either the interpreted net itself or
generated code. The possibility for users, customers, and developers to choose
in a flexible manner the right and appropriate way to develop complex appli-
cations is one of the important advantages of Petri nets. Relations to Java,
CORBA, Enterprise Java Beans (EJB) etc. – as indicated in Chapter 20
– are of practical importance. The commercial sector requires appropriate
approaches and modelling techniques, which can be found in this book. A
detailed discussion of some specific application areas will come in the next
part (Part V) where some specific approaches for the use of Petri nets in
general will be demonstrated.
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Application Domains





23. Introduction

23.1 Putting Petri Nets to Work

Petri nets have existed for over thirty years. Especially in the last decade,
Petri nets have been put into practice extensively. Thanks to several useful
extensions and the availability of computer tools, Petri nets have become a
mature tool for modelling and analysing industrial systems. This part de-
scribes how and when Petri nets can be used to model and analyse a variety
of systems in application domains ranging from logistics to office automation.

Since the introduction of the classical Petri net by Carl Adam Petri in the
’60s, Petri nets have been used to model and analyse all kinds of processes
with applications ranging from protocols, hardware, and embedded systems
to flexible manufacturing systems, user interaction, and business processes.
In the last two decades the classical Petri net has been extended with colour,
time, and hierarchy. These extensions facilitate the modelling of complex pro-
cesses where data and time are important factors. There are several reasons
for using Petri nets:

• Formal semantics
A process/system specified in terms of a Petri net has a clear and pre-
cise definition, because the semantics of the classical Petri net and several
enhancements (colour, time, hierarchy) has been defined formally.

• Graphical nature
Petri nets are a graphical language. As a result, Petri nets are intuitive
and easy to learn. The graphical nature also supports the communication
with end-users.

• Expressiveness
Petri nets support all the primitives needed to model processes. All the
constructs that are needed are present.

• Properties
In the last three decades many people have investigated the basic properties
of Petri nets. The firm mathematical foundation allows for reasoning about
these properties. As a result, there is a great deal of common knowledge,
in the form of books and articles, about this modelling technique.

• Analysis
Petri nets are marked by the availability of many analysis techniques.
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Clearly, this is an important factor in favour of the use of Petri nets.
These techniques can be used to prove properties (safety properties, in-
variance properties, deadlock, etc.) and to calculate performance measures
(response times, waiting times, occupation rates, etc.). In this way it is
possible to evaluate alternative designs.

• Vendor independent
Petri nets provide a tool-independent framework for modelling and
analysing processes. (This is in contrast to the techniques promoted by
vendors of CASE, WFM, ERP, and simulation tools.) Petri nets are not
based on a software package from a specific vendor and do not cease to
exist if a new version is released or when one vendor takes over another
vendor.

23.2 Domains of Application

In this part, we focus on three application domains: (flexible) manufacturing,
telecommunication, and workflow management.

23.2.1 Manufacturing

Factory automation is probably one of the oldest application domains of Petri
net theory. Since the early ’70s, Petri nets have been used to model and anal-
yse manufacturing systems. Most applications in the field of manufacturing
deal with discrete production systems. The number of applications in the field
of continuous production is limited. The discrete nature of Petri nets causes
some problems with respect to the modelling of continuous flows of materi-
als (e.g. paper mills and oil refineries). Note that many production systems
are hybrid, i.e. continuous production flows are made discrete by producing
in batches. In this part, we focus on manufacturing systems from a strictly
discrete perspective.

A manufacturing system is composed of a physical subsystem and a con-
trol subsystem. The physical subsystem is composed of physical components
such as conveyors, robots, buffers, and work stations. The control subsystem
controls the physical subsystem in order to organise and optimise the pro-
duction process. When modelling a manufacturing system, both subsystems
and their relations need to be specified. Note that the control subsystem has
several levels: planning, scheduling, coordination, and local control.

Flexible manufacturing systems (FMS) in particular appear to be an in-
teresting area of application. These systems are characterised by flexible,
concurrently operating, and mainly automated elements, such as a produc-
tion controller, a machine, an automated guided vehicle, and a conveyor.
This results in high productivity, short throughput times, and a high degree
of diversity in output (i.e. the resulting products).
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There are several reasons for using Petri nets in the domain of (flexible)
manufacturing. Petri nets allow for the modelling of resource sharing, con-
flicts, mutual exclusion, concurrency, and non-determinism. Moreover, the
well-defined semantics allows for both qualitative and quantitative analysis.
In particular, Petri net theory can help to detect potential deadlocks and
construct control policies for deadlock prevention.

23.2.2 Workflow Management

In former times, information systems were designed to support the execution
of individual tasks. Today’s information systems need to support the busi-
ness processes at hand. It no longer suffices to focus on just the tasks. The
information system also needs to control, monitor, and support the logistical
aspects of a business process. In other words, the information system also
has to manage the flow of work through the organisation. Many organisa-
tions with complex business processes have identified the need for concepts,
techniques, and tools to support the management of workflows. Based on this
need the term workflow management was born.

Until recently there were no generic tools to support workflow manage-
ment. As a result, parts of the business process were hard-coded in the ap-
plications. For example, an application to support task X triggers another
application to support task Y. This means that one application knows about
the existence of another application. This is undesirable, because every time
the underlying business process is changed, applications need to be modified.
Moreover, similar constructs need to be implemented in several applications
and it is not possible to monitor and control the entire workflow. Therefore,
several software vendors recognised the need for workflow management sys-
tems. A workflow management system (WFMS) is a generic software tool
which allows for the definition, execution, registration, and control of work-
flows. At the moment many vendors offer workflow management systems.
This shows that the software industry recognises the potential of workflow
management tools.

The main purpose of a workflow management system is the support of the
definition, execution, registration, and control of processes. Because processes
are a dominant factor in workflow management, it is important to use an
established framework for modelling and analysing workflow processes. In
this part we show the application to the workflow domain of a framework
based on Petri nets. Petri nets are a good candidate for the foundation of a
unified workflow theory.

23.2.3 Telecommunications

Telecommunications has become a dominant factor in today’s information
society. People and industry rely on telecommunications systems in order to
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exchange information. Over the last decade the number of services has in-
creased. The ability to forward calls and GSM cellular phones are examples
of the new services offered. The statement “The Network is the Computer!”
illustrates the emerging role of telecommunications services. A telecommuni-
cations system is no longer only a network that transports data and imple-
ments protocols. It also provides advanced services. Therefore, the focus is
shifting from protocol engineering to service engineering.

A telecommunications system consists of two subsystems: a transport sub-
system and a processing subsystem. The transport subsystem is the network,
i.e. the communication resources. The processing subsystem is the set of
computing resources and programs that control and manage the transport
network on the one hand, and that implement the communication software
on the other hand. The complexity of the two subsystems and the interaction
between them may lead to design errors and performance problems. There-
fore, a rigorous approach to modelling and analysis needs to be implemented.
In this part, an approach based on Petri nets is presented.

23.2.4 Other Application Domains

There are several other application domains where Petri nets have turned
out to be a useful design/analysis tool:

• Distributed software systems;
• Logistics (materials handling, production logistics, physical distribution);
• Multi-processor systems;
• Software engineering;
• Asynchronous circuits;
• (Distributed) protocols;
• Hardware/software architectures;
• Embedded systems; and
• User interfaces.

It is important to be aware of the trend that today’s enterprises are fo-
cusing on business processes. Therefore, enterprises are in need of a good
formalism for modelling and analysing these processes. There are several rea-
sons for the increased interest in business processes. First of all, management
philosophies such as Business Process Re-engineering (BPR) and Continuous
Process Improvement (CPI) stimulated organisations to become more aware
of business processes. Secondly, today’s organisations need to deliver a broad
range of products and services. As a result, the number of processes inside
organisations has increased. Consider for example mortgages. A decade ago
there were just a few types of mortgages, whereas now numerous types are
available. Not only has the number of products and services increased, but
also their lifetime of has decreased in the last three decades. As a result, to-
day’s businesses processes are also subject to frequent changes. Moreover, the
complexity of these processes has increased considerably. All these changes in
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the environment of the information system in an average organisation, have
made business processes an important issue in the development of informa-
tion systems. Therefore, there is a clear need for techniques to model and
analyse processes. Clearly, Petri nets are a good candidate.





24. Flexible Manufacturing Systems∗

24.1 A Brief Overview of the Domain

A manufacturing system involves manufacturing activity which, as defined
in [VN92], is “the transformation process by which raw material, labour,
energy and equipment are brought together to produce high-quality goods”.
A manufacturing system is composed of two main subsystems:

• The physical subsystem, composed of the physical resources (hardware com-
ponents) such as conveyors, robots, buffers, work stations, etc.

• The control subsystem, also called the Decision Making Subsystem
(DMS) [SV89], which determines how to use the physical subsystem in
order to organise and optimise the production process.

Usually, manufacturing transformation processes are classified into con-
tinuous (chemical and oil industries, for instance) and discrete (consumer
goods and computer industries, for instance). According to the type of trans-
formations to be carried out during the manufacturing process, discrete man-
ufacturing systems are classified into assembly and non-assembly processing.
The assembly processes combine several components to obtain a different
product, while the non-assembly processes concern the transformation (ma-
chining, moulding, painting, etc.) of raw materials.

In order to address some problems related to mass manufacturing sys-
tems (very efficient for large production of a small number of products, but
inflexible when faced with a changing market), and in parallel with the devel-
opments in computer and automation technologies, a new type of production
system appeared: the Flexible Manufacturing System (FMS). Using the def-
inition in [PHB93], an FMS is “a computer-controlled configuration of semi-
independent work stations and a material handling system (MHS) designed
to efficiently manufacture more than one part type from low to medium vol-
umes”. The adjective “flexible” indicates the ability of the system to respond
effectively to changes in the system. These changes can be internal, break-
downs or quality problems for instance, or external, changes in the design
and demand for instance. In [BDR+84] eight different types of flexibility are
summarised: machine flexibility (which refers to the time required to change
∗ Author: J. Ezpeleta
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the machines necessary to produce a new type of part), process flexibility
(related to the mixture of jobs that the system can produce simultaneously),
product flexibility (the ability to produce new types of products), routing
flexibility (the ability to route parts via several routes), volume flexibility
(the ability to operate at different production volumes), expansion flexibility
(the ability to expand the system in a modular way), operation flexibility
(the ability to interchange the ordering of several operations for each part
type) and production flexibility (the set of part types that the system can
produce).

Figure 24.1 depicts a typical plant of an FMS [VN92]. The global coordi-
nating system communicates, via a local area network, with the controllers
of each cell. Each of these cell controllers is in charge of the control of the
programmable controllers (PC) that are in charge of the control of each of
the physical hardware components in the cell. As will be detailed later, the
complexity of these systems makes the hierarchical organisation of the control
system necessary.

Central Computer

DBMS

Cell Controller

PC Machine

PC Machine

Cell Controller

PCMachine

PCMachine

AGVC

Fig. 24.1. An abstract view of a Flexible Manufacturing System

FMS hardware components are typically a set of work stations; an au-
tomated material handling system (conveyors, industrial robots, automated
guided vehicles, etc.) allowing a flexible routing of parts through the differ-
ent work stations; a load/unload station for the entry/exit of parts; some
storage means for the work-in-process part storage; some (local and central)



24.1 A Brief Overview of the Domain 481

tool magazines; and a computer control system that is usually organised in
a hierarchical way.

To introduce these systems in a more detailed way, let us present, in an
intuitive and informal way, a small FMS.

M1 M2

R

I O

M3

Fig. 24.2. A small manufacturing cell

Consider the manufacturing cell whose physical layout is depicted in Fig-
ure 24.2. The cell is composed of three machines, M1,M2, and M3, and a
robot R, whose role is to load and unload the machines. The robot can also
pick up parts from conveyor I , where parts arrive in the system, and unload
parts into conveyor O, where the parts processed in the cell are unloaded.
Let us assume that the flexible machines can carry out different operations
on the incoming parts. Let us also assume that M1 can process three parts
at a time, while machines M2 and M3 can process only two parts at a time.
In what follows, we call the elements composing the cell (machines, stores,
robots, buffers, etc.) “resources”.

Finally, we consider that in this cell two different types of parts must be
processed. Parts of type one must be processed first in either machine M1
or M3 and then in machine M2; parts of type two must be processed first
in M2 and then in M1 (at the moment, we are not considering what kind of
processing operation must be carried out in each machine and for each type
of part).

This system exhibits some important characteristics that are common to
almost all FMSs [ZD93]:

• It is event-driven. The system behaviour consists of a discrete state space
where a change in the state occurs when certain events are triggered (a
new part enters or leaves the cell, a machine loads a part, etc.).

• It is asynchronous. Some events in the system occur in an asynchronous
way: the end of the processing of a part in machine M1 is asynchronous
(in time) with respect to the loading of a new part in machine M2.
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• It has sequential relations. Some events must occur in a sequential way.
For a part to be unloaded from machine M1, this machine must have been
previously loaded and the processing of the part must be finished.

• It has concurrency. The processing of a part in M1 and a second part in
M2 can be done concurrently, and these two actions do not interact with
each other.

• It has conflicts. A part of type one that has been held by the robot can be
loaded either into M1 or into M3 (assuming that both machines have free
slots for new parts). So a decision must be taken.

• It has non-determinism. As a consequence of conflicts, some non-
determinism can appear. In the previous situation, we cannot a priori
predict which action will be taken: either the part is loaded into M1 or
into M3.

• It has deadlocks. In the case in which all three machines are fully busy and
the robot holds a raw part that must be loaded into one of the machines, the
system is in a (total) deadlock situation: no action can be executed since no
machine can be unloaded (the robot is busy) and the robot cannot release
the part (since it has to go to a machine).

• Mutual exclusion. Let us consider the processes corresponding to the pro-
cessing of a part of type one and a part of type two. These processes cannot
be simultaneously in the state “the part is being held by the robot”. So
this state implies a mutual exclusion for these two processes.

We can conclude that the design of manufacturing systems is a very com-
plex task: many different elements have to be combined, and many different
aspects must be taken into account. This complexity has raised two impor-
tant needs: 1) The design of the production control system in a hierarchical
way. 2) The use of formal methods in order to validate the system.

As summarised in [SV89], the DMS is usually split into the following
levels:

• Planning. This considers both the whole plant and the estimated demand.
It considers the production on a long time horizon, establishing the way in
which the products needed will be produced during this time interval.

• Scheduling. Going down in the DMS hierarchy, this level establishes when
each operation on each product must be carried out.

• Global coordination. This level must have an updated state of the workshop
and must also make real-time decisions taking into consideration the state
of each resource and the state of the parts being processed.

• Subsystem coordination. The global coordination system can be decom-
posed into modules specialised for the coordination and supervising of
subsystems: a transport system, a robot, a buffer, etc.

• Local control. This is the lowest level of the hierarchy, and it is in charge
of the interaction with sensors and other low-level components.
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The second important need was the use of formal methods. As stated
in [JMSW95], the use of a formal framework has some important benefits:
1) In the process of formalising the system requirements omissions, ambigu-
ities, and contradictions can be discovered. 2) A formal method can allow
automatic system development. 3) Mathematical methods can be applied to
verify system correctness. 4) A formally verified subsystem can be incorpo-
rated into larger systems with greater confidence. 5) Different designs for the
same system can be compared.

However, the use of different formalisms (e.g. Markov chains, queuing net-
works or simulation for performance evaluation, mathematical programming
for planning, Petri nets for modelling and analysis) for the different problems
generates a “Babel Tower” where communication among people working at
different stages in the design process is very difficult [ST97].

As proposed in [ST97], a good solution is to use a family of formalisms
which, sharing the basic principles, allows the transformation (in an auto-
matic way if possible) from one formalism into another. The family of Petri
net formalisms is a good choice for the manufacturing system environment.
This family has the following advantages [SV89, ZD93]: 1) Easy representa-
tion of concurrency, resource sharing, conflicts, mutual exclusion, and non-
determinism. 2) Application of top-down and bottom-up design methodolo-
gies, and the possibility of having different levels of abstraction of the system.
3) Ability to generate control code directly from the Petri net model. 4) A
well-defined semantics that allows qualitative and quantitative analysis for
the system validation. 5) A graphical interface that allows an intuitive view
of the system.

The use of Petri nets in manufacturing systems has been extensively dealt
with in literature (see [SV89, ST97] for a large set of references) and many
relevant text books have appeared in the last few years [VN92, DHP+93,
ZD93, DAJ95, PX96]. Petri nets have been used in all aspects of the design
and operation of FMSs: modelling and verification, performance analysis,
scheduling, control, and monitoring.

The present chapter studies some problems related to the design and con-
trol of discrete non-assembly FMSs using Petri nets as a family of formal
models. Here, we focus on a class of problems that arise at the global coor-
dination level.

The chapter is divided into three main sections. The first one shows how
some Petri net elements (tokens, places, transitions, and arcs) can be mapped
to FMS concepts. The second one deals with the problem of system mod-
elling. This is not a simple task. Computer-aided design tools are used to
make models as well-structured as possible. The section presents a modelling
methodology for a wide class of systems. This modelling methodology relies
on a clear differentiation between the model of the system layout and the
models of the types of parts to be produced. From these inputs, and in an
automatic way, a coloured Petri net can be obtained. The section shows the
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input data models and also explains the process from its first step to the
statement of the final model.

As stated previously, one of the advantages of formal models is that sys-
tem properties can be studied in the model. The second part of the chapter
shows how the structure of the Petri net model can be used to deal with
one of the main problems in automated manufacturing systems, the dead-
lock problem. First, we present the place/transition models corresponding
to the coloured models obtained by the modelling methodology. Secondly,
it is shown how deadlock problems can be characterised in terms of Petri
net structural elements called siphons (also called structural deadlocks in the
literature). The structural deadlock characterisation is used to get a control
policy for deadlock prevention, and this control policy is also implemented
by means of Petri net elements (i.e. the addition of some new arcs and places
to the model).

Throughout the chapter the same “toy example” will be used. More in-
teresting and complex models can be found in the literature. The aim of this
chapter is to show the use of Petri nets (both ordinary and coloured) for
modelling and analysing flexible manufacturing systems. In this sense, this
chapter is not a survey of all the different approaches that have been proposed
for the use of Petri nets in this domain; it presents just one of them. In [ST97]
a complete set of references related to this subject can be found. The chapter
considers only qualitative aspects of the domain. For quantitative aspects,
the reader is referred to [VN92, DHP+93, DAJ95].

24.2 Using Petri Nets in FMS

To get an insight into the use of Petri nets in the domain considered, we will
present a series of models corresponding to some basic components of FMSs,
such as machines and buffers or stores.

• Figure 24.3 depicts abstract models for three different transportation sys-
tems. In the three cases the interactions with the rest of the system are
represented by means of the transitions tI and tO, which model the loading
and unloading of parts in the module.
Figure 24.3a is a model of a buffer (also a store) with capacity for k parts.
Notice that if we take k = 1 this PN can also model a robot for instance.
Figure 24.3b is a model of a FIFO queue with capacity for three parts:
there are three positions that are accessed sequentially in an ordered way.
Finally, Figure 24.3c models a LIFO module. This module represents the
set of states that can be reached, but not the firing sequences. Notice
that nothing prevents the sequence (t12t21)

∗ which, of course, must not be
allowed. In all the examples we introduce, nothing is said about control; we
are concentrating only on the modelling of the structure of the component.



24.2 Using Petri Nets in FMS 485

In all these cases we are assuming that the time necessary for the execution
of the operations related to each transition is negligible.

• Figure 24.4a shows a model of a reliable machine (breakdown is not consid-
ered). When the part is loaded into the machine (transition tLM is fired)
the processing starts and, once the machine has finished, a token is put in
place pAP and then transition tUM can be fired. Notice that in this model
two different types of transitions appear. Thick black transitions represent
“immediate” actions (here, immediate transitions model system actions
whose time execution is negligible); square white transitions model system
actions whose execution time can be modelled by means of a probability
distribution function. Usually, this function is taken to be an exponential,
and the λ parameter which appears near the transition is the firing rate
(1/λ is then the mean time needed for the processing of the part).
Figure 24.4b shows a model of the same machine, but here the possibility
of a breakdown has been considered. In this model, in order to load or
unload a part it is necessary that the machine be in the OK state (there
are arcs joining tLM and the OK place and also tUM and the OK place).
The machine breaks down with a rate λf and is repaired with a rate λr .

• Finally, Figure 24.5 shows a model of an unreliable assembly machine.
Notice that in order to start the assembly, it is necessary to have loaded
a part into pT1 and another one into pT2. Here λ is the time needed to
carry out the assembly. The model for a disassembly machine is almost the
same: it suffices to reverse the arcs related to transitions tL1, tL2, tA, and
tU .

As we have seen, when using ordinary Petri nets for the modelling of flex-
ible manufacturing systems, the main Petri net elements (places, transitions,
arcs, and tokens) can have different meanings:

• A place can be used for the modelling of different elements. 1) States in
which a part that is being processed can stay. Let us consider, for instance,
place pBP in Figure 24.4a. It represents a part of a given type that has
been loaded into the machine and is being processed there, whereas place
pAP is used to model a part in the same machine for which processing
has already finished so it is ready to be unloaded. 2) A partial state of a
resource. Place kM in Figure 24.4a models the free state of the machine;
hence, this place does not contain “physical” items, but is used instead for
a “logical” interpretation.

• A transition usually models a sequence of system actions that changes the
state of some system elements. For instance, transition tA in Figure 24.5
models the sequence of system actions by which the parts modelled by
the tokens in places pT1 and pT2 are assembled in order to produce a
new product (modelled by means of the new token that is put into place
pA). Another action that is usually modelled by means of the firing of a
transition is the movement of a part between two different locations in
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Fig. 24.3. a) A generic model for a storage device b) A model for a FIFO device
c) A model for a LIFO device
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Fig. 24.4. a) A model for a reliable machine b) A model for an unreliable machine
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Fig. 24.5. A model for an unreliable assembly machine

the system (for instance, transition t12 in Figure 24.3). Also, a transition
can model the change in the state of a system resource, as is the case
for transition tF in Figure 24.4b: it models a breakdown of the machine
modelled in the figure.

• Usually, an arc models either a pre-condition or the flow of parts among re-
sources. The arc joining transition kM and transition tLM in Figure 24.4a
is an example of the first kind of arc. It models the need for a free posi-
tion in the machine in order to load a new part. Arcs from pT1 and pT2
to transition tA in Figure 24.5 fall into the second class. They model two
elements that are withdrawn from the two buffers. The arc joining pA and
transition tU in the same figure also belongs to the second class. It models
the flow of an assembled element to the output of the assembly machine.

• Tokens can also have different meanings. In Figure 24.4a, the token in
place kM models the availability of the machine (the machine is non-busy),
whereas a token in place pIB in Figure 24.3a represents a product that is
stored in the buffer. In the case of coloured Petri nets, a token can carry a
great deal of information, as will be shown later on.

As stated previously, one of the main problems when dealing with real
applications is the complexity of the model. From the design point of view,
different approaches have been adopted:

• Hierarchical/compositional approach: The idea behind these approaches is
the modelling of the systems in an structured way. Using the first approach
(also called top-down) the modelling is carried out in several steps. At each
step more detailed elements are considered. In general, the process consists
of the replacement of some net elements (place, transition, path, sub-net)
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by some sub-net in which the replaced elements have been refined [Val79,
SM83, ZD91].
When using the compositional approach (bottom-up) the global model
is obtained by means of simpler models that are combined using some
composition mechanism: fusion of places common to a set of submodules
(and modelling the same elements), synchronisation of a set of transitions,
and fusion of common paths [ACA78, NV85, KB86, Val90a, BC92, Feh93];
see Section 9.2.
Although the two approaches below help in the design process, both present
one important drawback: it is very difficult to ensure that in the modelling
process (either compositionally or in a hierarchical way) desired system
properties (such as boundedness, reversibility, deadlock-freeness, liveness)
are preserved from one step to the next. This means that, for instance, we
can have two live modules whose composition is non-live. The same is true
of a hierarchical approach. It can happen that at a given abstraction level
the system behaviour is live, but when a new refinement is given the new
“view” of the system is not live.
To cope with this problem two different solutions have been adopted: 1)
The kit of refinement/composition mechanisms is restricted. This means
that composition of modules or refinement must be done only when some
special conditions hold, and 2) The work is restricted to some special sub-
classes such as free-choice nets [ES90], marked graphs [Mur89], modules
synchronised by means of (restricted) message passing [RTS95] or (re-
stricted) resource sharing [ECM95, JD95].
However, in both cases the modelling power is decreased.

• High-level Petri net approach: high-level Petri nets, and coloured Petri
nets ([Jen94], Section 4.3) as a particular case, are a very useful tool for
modelling complex systems in which different components have analogous
behaviour. One of the main advantages of this class of nets is the compact-
ness and the clarity of the models generated [CMS87, MMS87, VMS88,
GBK88a, GBK88b, EM92, Jaf92]. However, usually, they have the draw-
back that it is difficult to analyse properties.

• Object-Oriented (OO) and Artificial Intelligence (AI) ap-
proaches(Section 10.3). Much work on the use of Petri nets in man-
ufacturing systems has tried to extend the capacity of Petri nets for the
modelling of systems with the capacity of AI techniques for reasoning
about properties. Here too different approaches have been adopted. In
some papers [BE86, CCG85] elements of AI are used to implement and
control the Petri net.
Other work, such as [VA87, SACV87, Rib88, VM94], uses AI elements to
implement the Petri net (tokens or places as frames and transitions as
rules, for instance), and uses the semantics of the underlying Petri net for
simulation and control of the system.
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The use of one of these approaches does not exclude the use of another.
For instance, we can adopt both a hierarchical approach [HJS90] and a com-
positional approach [Che91] in order to obtain a coloured Petri net model.

However, once we have obtained a Petri net model for the system we
want to study, what Petri net properties are interesting for our model? Let us
enumerate some important behavioural properties. It is important to notice
that some of the following properties are related: one property can be deduced
from others.

• Reachability. From the model point of view, this property determines
whether a given (vector) marking is reachable from the initial marking.
From the real system point of view, this property indicates whether a sys-
tem state is reachable from the initial configuration. It can be used to
answer questions such as the following: Is it possible to reach a state where
machine M is processing two parts while robot R is busy and machine M ′

is free? Is it possible to reach a state in which buffer B is full? The answers
to a set of well-defined questions can be used to establish a correct system
design. Notice that if, for instance, the answer to the second question is
NO, then the designer can decide whether to use a buffer with less capacity,
which could make the system less expensive. A second related property is
coverability. From the Petri net point of view, this determines whether a
reachable marking is greater than or equal to another given marking. From
this kind of property, less complete information can be obtained; but this
information can be used in a similar way to that provided by reachability
properties.

• Boundedness. This property determines whether the number of tokens in
a given place is always smaller than or equal to a given constant k (see
Section 15.2.1). Usually in FMS domains, using the possible meanings of
a place as stated previously, all places must be bounded. Thus, if in the
analysis of the Petri net model we realise that a place is not bounded, the
model is, perhaps, incorrect. However, if the model is correct and a place
is detected to be unbounded, some overflow problems may arise. A related
property is safeness (1-boundedness).

• Reversibility. (see Section 15.2.4). When verified, this property dtermines
that the initial state can be reached from each reachable state. In the
application domain considered, this property means that each possible er-
roneous situation has been considered by means of some error recovery
strategy. These erroneous situations include the case of system deadlocks
and the case of resource failures.

• Deadlock-freeness/liveness . (see Section 15.2.2). These properties will be
discussed in more detail in Section 24.3.3.

As has already been intuitively shown by the models of components in an
FMS, Petri nets have also been used for performance evaluation of FMSs. To
do this, the notion of time has been added to the Petri net models. Introducing
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time constraints is necessary if we want to consider performance evaluation
or the scheduling of real-time control problems.

Usually, time has been introduced in one of two different ways: either
associated with places or with transitions. The second way is more natural
since transitions usually model system activities (which need some time to
be executed). In this approach, time is considered as follows: a transition can
fire some time after it is enabled with respect to the number of tokens in its
input places. This time can be either deterministic, as in timed Petri nets, or
random, as in stochastic Petri nets (see [VN92, DHP+93, DAJ95] for a clear
introduction to these concepts).

In FMS domains the different quantitative measures that can be obtained
from the Petri net model have specific and clear meanings: probability of a
resource being non-busy, mean number of parts in a machine or buffer, mean
waiting time of parts in an input buffer, production rates of parts, mean time
of parts in in-process states, etc.

In this chapter we will concentrate on qualitative analysis using structural
methods.

24.3 A Design Approach

In this section we will present a particular approach to the design and control
of FMSs using Petri nets. As stated in section 24.1 many different approaches
have been adopted. The reader is referred to the literature cited in this chap-
ter for a comprehensive study of the different approaches. The presentation
of the method is carried out in an intuitive way following a simple example.
A formal presentation can be found in [EC97].

This section is organised as follows. First, we introduce the
place/transition model corresponding to the system in Figure 24.2; then we
ahow how an equivalent model can be obtained in an automatic way; finally,
we show that structural analysis of the Petri net can be used to establish a
control policy for deadlock prevention in order to ensure good behaviour.

24.3.1 An Intuitive Introduction to a Class of Nets

Let us consider the model in Figure 24.4a once again. If we are not inter-
ested in performance evaluation we can model each action by means of an
immediate transition. This change gives a simpler model. For instance, let us
consider a general model of a reliable machine of the figure. If we apply a
reduction rule (see Section 15.1), the path pBP, tEP, pAP in the figure can
be replaced by a unique place, giving an equivalent model1. This approach
1 When talking about “equivalence” we must specify the type of equivalence. Here,

as will be stated later, we are interested in liveness properties. In this case the
transformation maintains the liveness of both models: the original one and the
transformed one.
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will be used below. Since only one kind of transition will be considered, all
transitions will be drawn as white rectangles.

Let us consider the manufacturing cell, shown in Figure 24.2, that was
described in section 24.1. Each part belongs to a different part type. The
type of the part establishes the correct sequences of operations. In a first
step, these sequences are established in terms of transformations to be carried
out on parts. For the cell, these sequences of operations are transformed into
sequences of pairs (resource,operation) which establish, for each operation,
the resource where the operation has to be carried out. Each part type can
be modelled by an acyclic graph. Figure 24.6 represents the operation graphs
corresponding to two different process plans. Parts of type W1 have to be
processed first in either machine M1 or M3, and then in machine M2. Parts
of type W2 have to be processed in machine M2 and then machine M1. Since
parts must be loaded (unloaded) into (from) the system, each process plan
needs more information than provided by the operation graph. Thus a process
plan must be completed with two sets. The first one represents the system
actions that load parts of the corresponding type into the system. The second
set represents the system actions that unload parts of the corresponding
type from the system. So, in the example, we define W1 = 〈G1, I1, O1〉
where I1 = {fromI}andO1 = {toO}; and W2 = 〈G2, I2, O2〉 where I2 =
{fromI}andO2 = {toO}.

(M1,op1)
(M3,op1)

(M2,op2)root

G1

(M2,op3) (M1,op4)root
G2

Fig. 24.6. The models of process plans for two types of parts to be processed in
the system in Figure 24.2

Each process plan model has an initial node root (as shown in Figure 24.6)
that models the raw state of parts. The other nodes correspond to the label
of the transformation resources which the part can visit during its processing.

From a process point of view, let us show how the processing of parts of
type 2 is carried out. The sequence of steps that one part of this type must
execute is as follows. The part is held by the robot, loaded into machine M2,
held once again by the robot, loaded into machine M1, held a third time by
the robot, and finally unloaded from the system. These different states are
modelled in Figure 24.7b by means of the thick places. A place p0(2) (called
the idle state place) has been added to introduce a notion of repetitive process,
modelling the repetitive nature of the processing of different parts of the same
type. The initial marking of this place establishes the maximum number of
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parts of type 2 that are allowed to be concurrently processed in the system.
Notice that if the initial marking is large enough (as in the example), this idle
place becomes implicit (see Section 15.1.2), and has no effect on the model
behaviour.

The transitions in this figure model the system actions that perform
the state changes of this type of part. The net belongs to the class S2P
in [ECM95] and, essentially, is the same as a job sub-net in [HC94b]. It is
usually required that all the cycles of the S2P (and analogous classes) contain
the idle state place. This implies that no cyclic behaviour is allowed during
the processing of a given part: once the processing of a part has started, the
part cannot change its state infinitely often without terminating its process-
ing.

Notice that we have one of these nets for each type of part to be processed.
How can these nets be obtained? The process is as follows. Let us classify
the set of system resources into two classes: those resources that make some
transformation of parts, called processors (e.g. lathes, milling machines, saws,
grinders) and those which do not transform the parts, called handlers (e.g.
robots, stores, buffers, conveyors). Notice that since in the operation graphs
only part transformations are established, these nodes are always labelled
with processors. Let us concentrate once again on parts of type 2. A part of
this type, once loaded into the system, must be driven to M2 from one of its
corresponding loading actions (established by I2). Thus all the possibilities
for driving the part from the input to M2 using only handlers (the first trans-
formation on this part must be performed inM2) must be computed. Accord-
ing to the plant layout depicted in Figure 24.2, the only possibility is that the
part is held by R and loaded into M2. This means that we need an interme-
diate state (the part is held by R), and also the transitions modelling the flow
of the part from fromI to R and from R to M2. In this way we obtain the
path fromI(2, s)R(2, s)toM2(2, s)M2(2,M2) in Figure 24.7b. Now we must
consider the arc (M2,M1) in the operation graph. The part must be driven
from M2 to M1 using only handlers. The only way to do that is to use R
once again. Thus the path fromM2(2,M2)R(2,M2)toM1(2,M2)M1(2,M1)
is added to the model. From M2, the part must be unloaded. So, we must
find all the possibilities for the part to be driven to the output of the system
using only handlers. The only possibility is that the part is held a third time
by the robot. Notice that this process must be repeated for each processing
sequence taken from the operation graph of each part. It is also important
to point out that in this process both the system layout and the process
plans are involved. It can also happen that some operation sequences es-
tablished by the operation graph are not executable because of the layout
architecture (no path joining two machines Ma and Mb exists, when the arc
(Ma,Mb) belongs to some operation graph). This justifies the following defi-
nition [EC97]: a process plan is executable for a given architecture if for each
arc (〈p1, op1〉, 〈p2, op2〉) in the operations graph there exists at least one path
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from p1 to p2 using only handlers. In what follows, we will call the places that
are generated during this process state places, in order to distinguish them
from the places that model the resource capacity constraints, called resource
places, which will be introduced below.

At this level, the system resources that are used in the processing of
parts have not yet been considered. This means that the constraints which
the resources impose on the concurrent processing of parts have not been
considered. So it is necessary to model these constraints. In order to deal
with them, a place is added for each system resource: one place for each
machine, with initial marking equal to the number of parts that the machine
can process concurrently, and one place for the robot, with initial marking
equal to one (we have assumed that the robot can hold one part at a time).
The loading of a part into a machine requires at least one of the machine
positions to be free (an arc from the resource place to the transition modelling
the system actions that load a part into the machine is added). In contrast, the
unloading of a part from a machine increases by one the number of non-busy
positions in the machine. Thus an arc is added from a transition modelling
the unloading of a machine to the resource place. The net in Figure 24.7b
depicts the whole model corresponding to the processing of parts of type 2. In
the same way, the net in Figure 24.7a models the processing of parts of type
1. These two nets belong to a special class of nets, called S2PR in [ECM95].

toO(2,M1)
R(2,M1) M1(2,M1) R(2,M2) M2(2,M2) R(2,s)

kM1 kM2

kR

fromI(2,s)

fromM2(2,M2)toM1(2,M2)fromM1(2,M1)

6
p0(2)

toM2(2,s)

a)

R(1,s) R(1,M2)

M2(1,M2)

R(1,M1)

R(1,M3)

M1(1,M1)

M3(1,M3)

kR

kM3

kM1

kM2

fromM2(1,M2)

toM2(1,M3)fromM3(1,M3)
toM3(1,s)

toM1(1,s) fromM1(1,M1)

toM2(1,M1)

toO(1,M2)

p0(1)

fromI(1,s)

8

b)

Fig. 24.7. The models corresponding to the processing of the two types of parts
under consideration
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Finally, the interactions among different types of parts must be con-
sidered. The complete system model corresponds to a fusion of the places
that the models of the two types of parts have in common, i.e. the
places modelling the system resources (in the example considered, places
kM1, kM2, kM3, andkR). This is quite natural: the interaction of the pro-
cessing of different parts is done by means of the system resources since all
the parts in the system must compete for the same resources. Figure 24.13
depicts the final model once the composition of the sub-models corresponding
to the types of parts has been carried out. This net belongs to a class of nets
called S3PR in [ECM95]. This class is analogous to the notion of production
sequence in [BK90] or production Petri net in [HC94b].

24.3.2 Automation of the Modelling Process

In this section we will show that it is possible to adopt a more abstract view of
the system, and that this view allows us to obtain easily the Petri net model
presented previously. First, we show how the plant layout can be modelled
by means of a place/transition Petri net. Secondly, we consider the models of
the process plans as introduced above. Finally, we show that the two models
can be integrated to obtain the complete model. This final model, which can
be obtained in an automatic way from the inputs (the model of the plant
layout and the models of the process plans), will be a CPN.

As stated previously, from an abstract point of view, the state of a resource
can be modelled by means of two places: 1) The resource capacity place,
modelling the remaining capacity of the resource for new parts. In the case
of multiple copies of identical resources, the marking of this place models
the number of copies of the resource that are not engaged in a processing
operation. 2) The resource state place. Each token in this place models a
part that is using either the resource or a copy of the resource in the case
of multiple copies of identical resources. For instance, consider machine M1
in Figure 24.8. This machine is modelled by places M1 and kM1. When
considering a state reachable from a given initial state, the tokens in place
M1 model the parts that are being processed in the machine. The tokens in
kM1 model the parts that can still be loaded into machine M1. Notice that
the sum of the number of tokens in M1 and the number of tokens in kM1
must always be equal to three, the capacity of machine M1 that we have
assumed.

Let us now show how the possibility of part flow among resources is
modelled. Let us consider the resource places R and M1. Since the physical
layout allows the flow of a part from R to M1, transition toM1 is added
between these two resources. Also, since this flow is from R to M1, an arc
from R to toM1 and an arc from toM1 to M1 are also added. Since the
capacity constraints must also be considered, two more arcs are added: one
from kM1 to toM1 and one from tomM1 to kR. This must be done for every
pair of resources that are directly connected.
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M3

M1 M2R

kM3

kM2kM1

kR

fromI toO

toM3 fromM3

fromM2

toM2

toM1

fromM1

Fig. 24.8. PN layout model of the cell from Figure 24.2

Given the previous considerations, the PN model of the cell considered is
depicted in Figure 24.8. Robot R is modelled by places R and kR; machine
M1 by places M1 and kM1; machine M2 by places M2 and kM2; and
machine M3 by places M3 and kM3 (places whose name starts with ‘k’ are
capacity places). In this PN each directed path between places R, M1, M2,
and M3 avoiding capacity places kM1, kM2, kM3, and kR models a possible
path which a part can follow inside the cell. Since machine M1 can process
three parts at a time, the initial marking must be m0[kM1] = 3, while for
the other machines m0[kM2] = m0[kM3] = 2 and for the robot m0[kR] = 1.

In the next step we need to integrate the model of the cell layout with
the models of the process plans in Figure 24.6. The modelling of the state of
a part in the system is carried out as follows. Each part in the Petri net is
modelled by a token. The token has two components, so it will be modelled by
a coloured token. The first component identifies the part type, i.e. its process
plan. The second component identifies the last node of the process plan model
which the part has visited during its processing. Let us consider, for instance,
a raw part of type W1, as considered in Figure 24.6. The part is modelled
by a token 〈W1, root〉 when it is in the system and no transformation has
been carried out on it. When the part has already visited machine M1, and
not yet machine M2, the part is modelled by a token 〈W1, (M1, op1)〉 (since,
(M1, op1) is currently the last node of the operation graph “visited” by the
part). When the part has been processed in machine M2, it is modelled
by the token 〈W1, (M2, op2)〉. Since (M2, op2) is one of the “leaves” of its
operations graph, we understand that the processing of the part in the system
is finished, and so the part must leave the system.

The PN models in Figures 24.9 and 24.10 indicate what parts of type
W1 and W2 respectively supply to the system PN model. In order to make
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Fig. 24.9. Partial PN model considering only parts of type W1
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Fig. 24.10. Partial PN model considering only parts of type W2

the figures more readable, the operation component does not appear. Thus
(M1, op1) is represented as M1, while the process plan W1 is represented as
1. For the same reason, the root node is represented by the letter s. Notice
that if an idle state place is added to the net in Figure 24.9 we have exactly
the same net as in Figure 24.7a. This is also true for the nets in Figures 24.10
and 24.7b.

In the final model, the different “small” transitions will be modelled by
the colour domains of transitions in the global PN model, while “small”
places will be modelled by colour domains of places. The arcs joining a
place p (transition t) and a transition t (place p) will be modelled by
a function defined over the colour domain of transition t and whose im-
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ages belong to the colour domain of place p. For instance, the colour
domain of place M1 in the (coloured) global model will be cd(M1) =
{〈W2, (M1, op4)〉, 〈W1, (M1, op1)〉}, the colour domain of transition toM1
will be cd(toM1) = {〈W1, root〉, 〈W2, (M2, op3)〉}, and the colour domain
of capacity places will be the “neutral colour”. In this case, cd(kR) =
cd(kM1) = {•}.

The function labelling the arcs connecting the previous places and transi-
tions will be the following. Post[M1, toM1] = SM1 is defined from cd(toM1)
to cd(M1) as:

• SM1(〈W1, root〉) = 〈W1, (M1, op1)〉
• SM1(〈W2, (M2, op3)〉) = 〈W2, (M1, op4)〉
• Post[kM1, toM1] = Pre[kR, toM1] = 〈•〉
• Pre[R, toM1] = Id

where 〈•〉 represents the constant function that always returns the neutral
colour (“neutral function”) and Id is a symbolic representation of the Identity
function in its “liberal” meaning; i.e. Id(x) = x, even if the origin and final
sets are not the same. Figure 24.11 shows the arcs and functions related to
transition toM1 that the CPN model would have. Figure 24.12 shows the final
CPN model for the example considered. The other functions are as follows:

• SM2(〈W1, (M1, op1)〉) = 〈W1, (M2, op2)〉
• SM2(〈W1, (M3, op1)〉) = 〈W2, (M1, op4)〉
• SM2(〈W2, root〉) = 〈W2, (M2, op3)〉
• SM3(〈W1, root〉) = 〈W1, (M3, op1)〉

We have shown in an intuitive way how the CPN model can be ob-
tained from the input data considered. In [ECS93] algorithms that obtain
this coloured model in an automatic way, together with their complexity, are
presented.

toM1

M1 R

kM1 kR

<•>
<•>

Id
SM1

Fig. 24.11. A (partial) view of the arcs and functions surrounding transition toM1

24.3.3 Using Structural Analysis for System Control

Structural elements (p-semiflows and t-semiflows, for instance) (see Sec-
tion 5.2.2) have been widely used to get information from the model. In
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Fig. 24.12. The coloured Petri net obtained applying the proposed methodology.
All arcs related to capacity places must be labelled 〈•〉

the example considered (this is also valid for all nets belonging to the S3PR
class), much information about model correctness is given. Let us now con-
sider, once again, the Petri net in Figure 24.13.

• It is easy to prove that we have two kinds of (minimal) p-semiflows. For
each resource, the sum of the number of tokens in the resource and its
holders is always equal to the initial marking of the resource. A state
place is a holder of a resource r if the resource is used in this state. For
instance, M1(1,M1) is a holder of the resource M1 since the marking
of M1 decreases when a token enters M1(1,M1) (i.e. place M1(1,M1)
“uses” M1). Notice also that when a token leaves M1(1,M1), the marking
of M1 is increased. The set of holders of a resource r is denoted as H(r)2.
{r} ∪ H(r) induces the following (minimal) p-semiflow: at each reachable
marking m, m[r] +

∑
p∈H(r) = m0[r]. In our example we have:

– H(M1) = {M1(1,M1),M1(2,M1)}, which induces the p-semiflow
m[kM1]+m[M1(1,M1)]+m[M1(2,M1)] = m0[kM1] = 3. What is the
interpretation of this p-semiflow? Notice that tokens in placesM1(1,M1)
and M1(2,M1) model parts that are being processed in machine M1.
The p-semiflow states that the number of parts in M1 plus the number
of free positions in M1 is always 3. This is a necessary condition for our
model to be correct.

– H(M2) = {M2(2,M2),M2(1,M2)}, which induces the p-semiflow
m[kM2] + m[M2(1,M2)] + m[M2(2,M2)] = m0[kM2] = 2.

– H(M3) = {M3(1,M3), which induces the p-semiflow m[kM3] +
m[M3(1,M3)] + m[kM3] = m0[kM3] = 2.

2 For a set of resources S, we extend the definition of set of holders as follows:
H(S) =

⋃
r∈S

H(r)
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– H(R) = {R(1, s), R(1,M1), R(1,M3), R(1,M2), R(2, s),
R(2,M2), R(2,M1)}, which induces the p-semiflow m[kR]+m[R(1, s)]+
m[R(1,M1)]+m[R(1,M3)] +m[R(1,M2)]+m[R(2, s)]+m[R(2,M2)]+
m[R(2,M1)] = m0[kR] = 1.

There is a second type of p-semiflow: for each S2P , at each reachable
marking, the sum of the number of tokens in its places is equal to the
initial marking of the idle place. For the example we have:

– m[p0(1)]+m[R(1, s)]+m[M3(1,M3)]+m[R(1,M3)]+m[M1(1,M1)]+
m[R(1,M1)] + m[M2(1,M2)] + m[R(1,M2) = m0[p0(1)]

– m[p0(2)]+m[R(2, s)]+m[M2(2,M2)]+m[R(2,M2)]+m[M1(2,M1)]+
m[R(2,M1)] = m0[p0(2)]

The general interpretation of the p-semiflows is easy. p-semiflows of the
first type state the correctness of the model with respect to the resources.
This means: 1) A resource can be neither created nor destroyed. 2) At
each reachable state, the sum of the available free positions/copies of each
resource and the parts that use it is always equal to the total capacity of the
resource. p-semiflows of the second type establish correctness with respect
to the types of parts. The initial marking of the idle places establishes,
for each type of part, the maximal number allowed to be concurrently
processed in the system. The p-semiflow for a type of part states that the
total number of parts that are concurrently processed plus the number of
parts of this type that can still be accepted is constant.

• It is also very easy to prove that each cycle of each S2P forms a t-semiflow.
The interpretation of these t-semiflows is intuitive: each t-semiflow estab-
lishes a possible processing sequence for a part. This means that when the
firing of a t-semiflow corresponding to an S2P is completed, the processing
of a part of this type has been finished.
When the processing of all the parts inside the system finishes (every
t-semiflow, once started, is completed), the initial state of the system
is reached. Considering parts of type 1, for instance, we have two t-
semiflows related to it. The first one, σ1, is as follows: σ1[from(1, s)] = 1,
σ1[toM1(1, s)] = 1, σ1[fromM1(1,M1)] = 1, σ1[toM2(1,M1)] = 1,
σ1[fromM2(1,M2)] = 1, and σ1[toO(1,M2)] = 1 with σ1[t] = 0 for any
other transition.
Analogously, the second one is the following: σ2[from(1, s)] = 1,
σ2[toM3(1, s)] = 1, σ2[fromM3(1,M3)] = 1, σ2[toM2(1,M3)] = 1,
σ2[fromM2(1,M2)] = 1, and σ2[toO(1,M2)] = 1 with σ2[t] = 0 for
any other transition. Given C the net incidence matrix, it is verified that
C · σi = 0, i = 1, 2. Notice that the firing of any of the two previous
t-semiflows models the completion of the processing of a part of type one.

Now, we will concentrate on another kind of structural element, the
siphons (see Section 15.3), and show that, for this class of nets, the siphons
are related to system liveness. In Petri net theory there are two main con-
cepts related to the existence of system activities. The first is the concept
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of deadlock-freeness, while the second is the concept of liveness. Let us now
consider these concepts in our application domain.

• Deadlock-freeness. Recall (section 15.2.2) that a Petri net system (i.e. a
Petri net with an initial marking) is said to be deadlock-free if at each
reachable marking there exists at least one transition that is enabled. In
our application domain this means that it is always possible to make some
production activity (for instance, executing a new step in the production
sequence of a part, or introducing a new part into the system).

• Liveness. Deadlock-freeness is not enough for this domain: it is possible
to have a part of the system that can always run correctly, but also an-
other part of the system that is in a deadlock. For instance, it is possible
to have one type of part being correctly processed, as well as other parts
whose processing has been started but cannot be finished. Thus deadlock-
freeness is not strong enough for highly automated systems; liveness is a
stronger property. A Petri net system is said to be live if from each reach-
able marking it is always possible to fire any transition (see Section 15.2.2).
In the application domain considered, this means that it is always possible
to execute the system actions modelled by any transition. As a consequence
the processing of each part, once started, can always be finished: the tran-
sitions “driving” a token (modelling a part) to the system output can be
fired. Thus the processing of the part can be finished. This also means that
if there are always new raw materials, their processing can be carried out.

In some cases, e.g. free-choice nets [ES90], the previous properties are
equivalent. But this is not the case for the class of nets we are considering.

When building automated systems, deadlock problems are very impor-
tant issues. If we want a system to be highly automated, we must deal with
deadlock [BK90, ECM95, VN92]. As stated above, a deadlock indicates that
the processing of a part has been started, but cannot be finished. There-
fore, the part can stay in the system for a long period of time (until some
recovery strategy is applied). During this time, the part is using system re-
sources and the system performance decreases. In systems where deadlocks
can appear, two different approaches have been adopted: the deadlock preven-
tion/avoidance approach and the deadlock detection and recovery approach.
In the first approach a deadlock prevention/avoidance control policy is ap-
plied in such a way that the system evolutions are controlled in order to
ensure that no deadlock is reached. In the second approach, when a deadlock
is detected a recovery strategy is applied to change the system state into a
non-deadlocked state.

For the general class of nets we are considering, different control policies
can be found in [BK90, VN92, ECM95, XHC96]. Let us show how the struc-
ture of the net allows us to establish a deadlock characterisation which can be
applied to get a control policy for deadlock prevention. Let us consider the net
in Figure 24.13. From the initial marking shown in the figure the firing of se-
quence σ = (fromI(1, s)toM1(1, s))3fromI(2, s)toM2(2, s)fromM2(2,M2)
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yields a marking m (m0[σ〉m) such that m[kM2] = m[kM3] = 2,
m[M1(1,M1)] = 3, m[R(2,M2)] = 1, m[p0

1] = 3, m[p0
2] = 5, and m[p] = 0

for any other place p. Notice that this state is a deadlock: the parts modelled
by the tokens in place M1(1,M1) cannot change the state. This means that
these three parts will remain in machine M1 (forever if nothing is done!).
The same goes for the part modelled by the token in place R(2,M2). A
question arises: Is there any information in the Petri net structure allow-
ing the characterisation of deadlock situations? The answer is “yes”. For
the considered marking m the set of heavily shaded places in Figure 24.13,
S = {R(1, s), R(1,M3),R(1,M1), R(1,M2), R(2,M1),R(2, s), kM1, kR}, is
a siphon and it is unmarked. Remember that one of the most important
behavioural properties of a siphon is that once it becomes unmarked, it
remains unmarked. Hence no transition in S• can now fire. So, neither
fromM1(1,M1) nor toM1(2,M2) can fire, and the tokens considered will re-
main in their places. Therefore, the processing of the parts considered cannot
be finished.

R(1,s) R(1,M2)

M2(1,M2)

R(1,M1)

R(1,M3)

M1(1,M1)

M3(1,M3)

kR

kM3

kM1

kM2

fromM2(1,M2)

toM2(1,M3)fromM3(1,M3)
toM3(1,s)

fromI(1,s)

toM1(1,s) fromM1(1,M1)

toM2(1,M1)

toO(1,M2)

R(2,M1) M1(2,M1) R(2,M2) M2(2,M2) R(2,s)

fromI(2,s)

fromM2(2,M2)toM1(2,M2)fromM1(2,M1)

toO(2,M1)

toM2(2,s)

8
p0(1)

6
p0(2)

Fig. 24.13. A S3PR

The following theorem establishes the liveness characterisation.

Theorem 24.3.1. [ECM95] Let 〈N ,m0〉 be a marked S3PR, let m ∈
RS(N ,m0), and let t ∈ T be a dead3 transition for m. Then, there exists

3 To say that a transition is dead for a reachable marking m is equivalent to saying
that the transition cannot be fired at any state reachable from m.
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a reachable marking m′ ∈ RS(N ,m) and a (minimal) siphon S such that
m′(S) = 0.

Therefore we can deduce the following corollary.

Corollary 24.3.2. [ECM95] Let 〈N ,m0〉 be a marked S3PR. Then,
〈N ,m0〉 is live if and only if for every reachable marking m ∈ RS(N ,m0)
and every (minimal) siphon S, m(S) 6= 0.

p q

r s

t

t1

t2

t3 t4

Fig. 24.14. The property a dead transition implies an empty siphon is not true for
general nets: t is dead, but no siphon is empty.

This liveness characterisation is not true for general nets. The net in
Figure 24.14 is a clear example: transition t is dead for the marking shown.
However, the only siphon in the net, {p, q, r, s}, is always marked. Below we
will see how this deadlock characterisation can be used to establish a control
policy for deadlock prevention. The aim of the control policy is to add some
constraints to the system in such a way that no deadlock state is reached.

Let us distinguish two classes of minimal siphons: those which are the sup-
port of a p-semiflow and those which are not. Considering the set of minimal
p-semiflows (previously presented) and the class of initial markings, siphons
of the first class always remain marked, and therefore they are not involved in
deadlock problems. Thus only siphons of the second class are related to dead-
locks. We will refer to this second class of siphons as “dangerous siphons”.
A dangerous siphon S can be written as S = SR ] SP , where SR = S ∩ PK ,
SP = S \SR = S∩PS

4. The set of holders H(SR) can be partitioned into two
subsets: those holders that belong to the siphon S (heavily shaded holders
in Figure 24.13) and those that do not (light shaded places in Figure 24.13).
Notice that, for a token to enter one of these holders, a token needs to have
been previously “stolen” from the siphon. For instance, the firing of transition
toM1 decreases the marking of siphon S by one token. This means that a
token in place M1(2,M1) implies one token fewer in kM1, and so one token
fewer in S.
4 For a given S3PR, PK denotes the set of resource places, PS the set of state

places and P0 the set of idle states.
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The control policy for deadlock prevention established in [ECM95] uses
this property. For each dangerous siphon, a structurally implicit place (see
Section 15.1.2) is added to ensure that at any reachable state, the number
of tokens in the system that can reach siphon holders which “steal” tokens
from the siphon considered is smaller than the initial marking of the siphon.
In this way it is ensured that the marking of the siphon is always ≥ 1, i.e.
the siphon cannot be emptied.

For the siphon considered, the control policy will add a place S1 (see Fig-
ure 24.15) such that •S1 = {fromM1(2,M1), fromM1(1,M1), toM3(1, s)}
and S1

• = {fromI(1, s), fromI(2, s)}. Since m0[S1] = 4, it is enough to set
m0[S1] = 3 (for short, we also call m0 the initial marking of the extended net)
to ensure that S cannot be emptied. Of course, any value m0[S1] ∈ {1, 2, 3}
will be valid. However, we take the largest in order to have as much par-
allelism as possible using this control strategy. Notice that the addition
of this new place generates a new p-semiflow: for each reachable marking
m of the controlled net, we have m[S1] + m[R(1, s)] + m[M1(1,M1)]+
m[R(2, s)] + m[M2(2,M2)] + m[R(2,M2)] + m[M1(2,M1)] = 3. From
this invariant relation it is deduced that m[M2(2,M2)] + m[R(2,M2)] +
m[M1(2,M1)] + m[M1(1,M1)] ≤ 3, and then, since no more than three
tokens can be stolen from the siphon, it cannot become unmarked.

toM2(1,M3)fromM3(1,M3)

toM3(1,s)

fromI(1,s) toM1(1,s) toM2(1,M1)

toO(1,M2)

fromI(2,s)
fromM2(2,M2)toM1(2,M2)

fromM1(2,M1)

toO(2,M1) toM2(2,s)

fromM1(1,M1) fromM2(1,M2)

S1

Fig. 24.15. The part of the control policy for deadlock prevention generated by
the siphon in Figure 24.13

The same goes for the remaining dangerous siphons of the example. These
are the following:

S2 = {R(1, s), R(1,M2), R(2,M2), R(2,M1), kM2, kR}

S3 = {R(1, s), R(1,M2), R(2,M1), kM1, kM2, kR}

S4 = {R(1,M3), R(1,M1), R(1,M2), R(2, s), R(2,M1), kM1, kM3, kR}

S5 = {R(1,M2), R(2,M1), kM1, kM2, kM3, kR}
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The added elements are the following:

• S2
• = {fromI(1, s), fromI(2, s)}

• •S2 = {fromM2(2,M2), fromM2(1,M2)}
• S3

• = {fromI(1, s), fromI(2, s)}
• •S3 = {fromM1(2,M1), fromM2(1,M2)}
• S4

• = {fromI(1, s), fromI(2, s)}
• •S4 = {fromM1(2,M1), fromM1(1,M1), fromM3(1,M3)}
• S5

• = {fromI(1, s), fromI(2, s)}
• •S5 = {fromM1(2,M1), fromM2(1,M2)}

Let us now return to the coloured Petri net model of the example in order
to integrate the deadlock prevention control policy. To do this, a new place
called CP (Control Place) is added to the coloured model. The colour domain
of this place is a set bijective with the set {S1, . . . , Sk} of control places to
the underlying S3PR model added by the control policy. Let cd(CP ) =
{V1, . . . , Vk} be such a set. The arcs which the control policy has added to
the underlying S3PR are represented by the arcs and functions which must
be added to the final coloured model.

kM1

fromI toO

toM3 fromM3

toM1

fromM1

CP
Ψ2

Ψ1

Ψ3

Ψ4

toM2

fromM2

Fig. 24.16. Elements added by the control policy

The elements added in Figure 24.16 are as follows:

cd(CP ) = {V1, V2, V3, V4, V5}

m̂0[CP ] = 3V1 + 2V2 + 5V3 + 7V4 + 7V5

Ψ1(〈W1, root〉) = V1 + V2 + V3 + V4 + V5

Ψ1(〈W2, root〉) = V1 + V2 + V3 + V4 + V5

Ψ2(〈W2, (M1, op4)〉) = V1 + V3 + V4 + V5

Ψ2(〈W1, (M1, op1)〉) = V1 + V4

Ψ3(〈W1, root〉) = V1



24.4 Conclusion 505

Ψ4(〈W1, (M2, op2)〉) = V2 + V3 + V5

Ψ4(〈W2, (M2, op3)〉) = V2

A question arises. In the previous sections no constraint has been imposed
on the system layout. However, in the definition of an S3PR a termination
property has been imposed (see the introduction of S2P in Section 24.3).
So, in order to ensure that the underlying system belongs to the S3PR class
we need to constrain the system layout to acyclic handling. This means that
in the layout model no cycle is possible using only handlers. This ensures
that there is no cycle without transformation, and then in the underlying
model each production sequence eventually reaches the idle state. From the
application domain point of view, Flexible Manufacturing Cells and Flexi-
ble Manufacturing Lines (as considered in [PHB93]) correspond to this class
of acyclic handling systems. However, systems where the layout contains a
carousel do not fit into this class: a carousel allows parts that can complete
cycles with no transformation, which would violate the termination property
imposed on the S2P .

It must be pointed out that the control policy applied is maximally per-
missive (“maximally permissive” means that only markings related to dead-
locks are prevented by the control policy). For the general case of the systems
under consideration, to find a maximally permissive control policy remains an
open problem. However, for some restricted cases solutions have been found
[XHC96].

24.4 Conclusion

The chapter has shown how Petri nets can be applied to Flexible Manufactur-
ing Systems. This is a domain whose complexity and inherent concurrency
requires the use of formal methods to deal with very important problems,
such as the design and control problems, in order to synthesise the software
that ensures a correct system behaviour.

With respect to the first problem, we have introduced a design methodol-
ogy which, given the input data describing both the structure of the system
architecture and the logic of the processing of different types of parts, obtains
in an automatic way a coloured Petri net model of the entire system. The use
of a high-level Petri net model has the advantage of compactness. Also, the
model obtained by this methodology shows in a clear way the structure of
the system: the skeleton of the net has the same form as the configuration of
the hardware components. Since the different processing sequences are mod-
elled by colour domains of places and transitions and the functions labelling
the arcs, the introduction/withdrawal of types of parts does not change the
“look” of the model.

With respect to the control problem, we have studied the ordinary
place/transition nets corresponding to the coloured models synthesised by
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the modelling methodology presented. This has allowed the study of dead-
lock problems for these systems from a structural perspective. One of the
advantages of Petri net models is that they allow the study of certain prop-
erties using structural techniques, avoiding the computation of the reachabil-
ity graph and, indeed, avoiding the state-space explosion problem. Unfortu-
nately, structural techniques characterising liveness have not been developed
for general Petri net models, but only for special subclasses (e.g. state ma-
chines, marked graphs, free-choice nets, choice-free systems). However, the
special syntactic structure of the class corresponding to the systems we are
considering allowed us to establish a deadlock characterisation. As has been
shown, this characterisation was used to establish a control policy for dead-
lock prevention which constrains system evolutions to ensure the liveness of
the controlled system.

From the material in the chapter, some general conclusions can be drawn:

• Petri nets are a family of formalisms well suited for application to FMS
environments.

• The results obtained by the general Petri net theory are not sufficient for
dealing with all the problems that arise in application domains. Therefore,
it is necessary to develop specific new results for these domains. However,
Petri nets provide a powerful framework which allows such developments.

• These specific results must not be ad hoc for each problem, but must
concentrate on certain modelling/programming paradigms. For the class
of nets considered in the present chapter, we apply the case of sequen-
tial processes using monitors (in a restricted way). Natural extensions to
this case, applicable to general manufacturing systems, operating systems,
databases etc., use monitors in a general way as well as communication
through buffers [Sou91, RTS95, TCE99].

• The use of coloured Petri nets, and high-level Petri nets in general, has
some important advantages for the modelling. However, we are faced with
another problem: symbolic processing of these nets is not complete, and so
must be developed. The steps given for some subclasses of coloured Petri
nets make this approach look promising.



25. Workflow Systems∗

25.1 An Overview of the Domain

In this chapter an approach is outlined to support the definition of business
processes with Petri nets . Today, business processes are defined using specific
business applications called Workflow Management Systems (WFMS). They
support workflow management which can be broadly defined as office logis-
tics. A definition of WFMSs is given by the Workflow Management Coalition
(WFMC) [Coa94]: “A Workflow Management System is the computerised
execution of a process definition.”

This definition contains two key phrases. The first is process definition and
the second is computerised execution. They define workflow management, as
shown in Figure 25.1, and are elaborated upon below.

Business Processes: Recently many works have appeared on the subject of
business process optimisation, including business process re-engineering
and total quality management. Although these writings lack a uniform
approach in their definitions of business processes and improvements,
most observe a difference between ad hoc and structured business pro-
cesses.
The former refers to business processes that largely involve informal
communication. These processes are typically supported by groupware
applications that enable all participants to access and update a shared
information base.
The latter type of business processes is supported by WFMSs because
they can be structured. A structured business process can be designed
before it is put into practice. During the design, the ordering of tasks and
operations is defined. In this chapter the concepts of structured business
processes are discussed.

Computerised execution: A Workflow Management System (WFMS) is
a generic software package that supports the definition, management, and
execution of workflow management. Although it needs a common infor-
mation infrastructure, as do Groupware tools, a WFMS has an explicitly
defined process definition for describing the ordering of activities within

∗ Authors: W. v.d.Aalst, M. Graaf
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Fig. 25.1. Workflow Management defined according to process and execution char-
acteristics

a business process. The pre- and post-conditions of activities can be de-
fined and coordination of work can take place via this WFMS. Humans
execute their work in close cooperation with the WFMS, which appears
to them as an electronic mail basket containing their work. The WFMS
helps humans to collect applications and data for their work. When the
execution is dominated by systems there is little or no human labour.
Examples are money transfers and inventory management processes. Al-
though not discussed here, notice that there is a continuous drive towards
executing business processes with systems rather than humans.

WFMSs aim to define business processes in order to support their com-
puterised execution. To implement this functionality, the WFMC defined a
WFMS architecture that is now widely adopted by all vendors of WFMS
(and related) products. The WFMS architecture is shown in Figure 25.2. A
brief overview of the WFMS architecture is given below.

• Workflow Engine: The workflow engine is the heart of a WFMS. It
maintains all the data about available and running processes. It interacts
with invoked applications and contacts humans by means of dedicated
workbaskets.

• Process Definition Tools: The tools that are available support the
graphical design of a business process. Other tools support the definition
of the organisation in terms of resources. These tools are integrated to link
resources to specific activities in the process definition. Ideally the pro-
cess definitions can be analysed for the fulfilment of structural as well as
dynamic properties. However, currently most vendors offer tools for simu-
lation with a restricted set of parameters.

• Monitoring Tools: A monitoring tool allows one to query the detailed
results from the workflow management database. All data from the busi-
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Fig. 25.2. Workflow Management Systems architecture

ness processes are stored in it for analysis. A ideal monitoring tool can give
selective views of performance in the past and handle predictions. Stand-
alone monitoring tools for WFMSs are only useful when the WFMSs are
standardised. Currently, most WFMS manufacturers have their own mon-
itoring tool integrated in the product.

• Applications: Business processes are made up of many different functions,
as stated earlier. These functions, performed with the help of applications,
must communicate their state to the workflow engine. A specific set of
functions is defined for applications that are invoked . This means that
they operate under the control of the workflow engine.

• Other Workflow Engines: Like DBMSs, the future of business processes
will be heterogeneous WFMS-support. Therefore it is important to define a
common interface to translate all information at run-time from one WFMS
to another.

The WFMS architecture is implemented on different formalisms and plat-
forms by more than 250 vendors. Examples of WFMSs that appear in prac-
tice are Staffware (Staffware), FlowMark (IBM), Plexus FloWare (Recog-
nition International Inc.), ActionWorkflow (Action Technologies Inc.), LEU
(Verbacom Services) and COSA (Software-Ley) [Act96, Pal97, Sof96, Law97,
Bak96]. The process definition tools of the latter two are based on P/T nets.
There are also vendors that offer process definition tools only and provide
an interface (WFMC standardised) to other WFMSs. Examples of such tools
are: Structware (IvyTeam), Income (Promatis), Protos (Pallas Athena) and
Meta-Software (Design IDEF).

In this chapter an approach is outlined to support the definition of busi-
ness processes with Petri nets . There are several reasons for this approach.
First, since currently more than 250 vendors offer workflow management soft-
ware [Aal96], the functionalities are hard to compare, let alone interchange. In
fact, most of these WFMSs are not based on an explicitly defined conceptual
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model and therefore are incomplete in their specifications. The second need
for conceptualisation emerges from the need for businesses to share informa-
tion across multiple WFMSs. How can they be integrated if the conceptual
models from the WFMS engines do not match? A third important reason is
that a workflow needs to be proved correct before any organisation will allow
it to support their core processes. If these should fail to operate correctly,
organisations would cease to exist.

Petri nets have been applied to business processes for many years. Ladd
and Tsichritzis [LT80] proposed an office form flow model and used a graph
theoretic approach to define interrelated tasks. In that same year, Cook
[Coo80] presented the information control net to streamline office procedures.
Information control nets were first described by Ellis [Ell79]. Although both
used Petri net dialects, Cook describes activities and repositories, such as
the transitions and places of the classic Petri net. Later articles such as
Voss [Vos86] and Nierstrasz [Nie85] used Petri nets explicitly in the field
of office automation. Recent works that have appeared in this field are
[WR96, MEM94, She96, Aal97a, Aal97b, AB97a, AH97, AHV97, Aal98b,
Aal98a, Law97].

The elements and properties of business processes are defined using elabo-
rate Petri net constructs, such as those defined in the previous chapters of this
book. Colour is added to model complex real-world objects and time is added
because business processes have time constraints imposed on them. Although
hierarchy is useful for defining business processes, it is not exploited in this
chapter; it is however useful when the methodological aspects of constructing
business processes with Petri nets are discussed.

This chapter is organised as follows. Section 25.2 elaborates on the main
concepts of business processes and computerised execution. The main con-
cepts of business process definitions are given informally. Section 25.3 focuses
on formal concepts of WFMSs and shows results for an example business
process. This business process serves as a running example throughout this
chapter. Section 25.4 shows some Petri net analysis techniques that are ap-
plied to workflow management, and Section 25.5 gives a brief summary of
a real-world application. A summary of this chapter is given in section 25.6
which also lists some topics of future research.

25.2 Motivation

Research in the area of Workflow Management Systems (WFMSs) originates
from both an application and a technology domain. This is in line with the
definition of WFMSs, which states that business processes (application do-
main) are supported by computerised execution (technology domain). Typical
WFMS functionalities are derived from combined developments in these two
domains. An example of the former is the need to control business processes
to make them more cost effective; an example of the latter is the widespread
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availability of client/server platforms, large business and common networks,
and shared databases.

The application domain is manifested through an increasing need to pro-
duce more products with a shorter life-cycle. The only way to do this in a
cost-effective manner is to re-use tasks in multiple business processes and to
manage the design process. The product variety can be stretched by cou-
pling tasks in different ways, i.e. designing processes in a modular sense. It
is expected that a WFMS contributes to a more flexible business process
design.

Essential technological functionalities have arisen from the evolution in
information systems. Traditionally, information systems consisted of a large
number of applications. In the ’60s, each application defined its own data
structures, user interface and business logic. Of these three, the first to be dis-
carded were the data structures, replaced by Database Management Systems
(DBMSs) in the ’70s. The DBMSs served as a central repository for applica-
tions. This relieved the application builders of extensive data management.
Secondly, the user interface was replaced by a User Interface Management
System (UIMS). This happened in the ’80s. Every application that is built
on a certain platform can now use standard UIMS functionality. Figure 25.3
shows this historical perspective.
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Fig. 25.3. Evolution of information technology

At present the third item, the business logic, is being replaces by a WFMS.
This leads to the development of applications that perform only narrowly
defined tasks, leaving the control of the business process to dedicated business
logic that is defined in a WFMS. Because this is a new development, many
vendors, techniques, and concepts are appearing. A similar case in the recent
history of information systems is that of the first introduction of DBMSs.
Many different techniques for defining a DBMS emerged and application
builders had to write just as many interfaces. It was Codd’s relational model
which ended this situation. From then on each DBMS was specified in a
generic manner, displaying just one interface to applications. This introduced
the possibility of interchanging data in a uniform way between databases and
applications.
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The WFMS provides a generic set of functionalities for implementing
business logic. It defines which application can start its execution, supplies
it with the correct data from a database and handles all extra inputs that
fall within the business logic domain, such as the availability of a human or
other real-world entity.

At the current stage of WFMS development, two topics are of major
interest: 1) constructing a single formal language upon which WFMSs are
built, to verify the business process specification, and 2) providing analysis
techniques to support business process performance analysis. Petri nets are
proposed here to fulfil both requirements. The single formal language also
enables the use of a wide range of analysis techniques. These techniques
provide the added value of WFMS formalisation with Petri nets.

25.2.1 Formal Language

A common way to define business processes in today’s WFMSs is via an
event-driven specification. The business processes are specified as events that
signal other events. For example, when one activity is completed another
is immediately signalled. This approach is useful when the interrelation of
activities is supported. It is, however, not the best way to model WFMSs.
Some of the reasons are listed below:

Life-cycle specification: The work that flows through a business process
is the product under transformation. Think for example of a form that
lists your tax or insurance policy. When this product is in between tasks,
it is in a certain state. A logistical perspective is to view these states
as queues. Event-driven specifications do not define states explicitly and
therefore lack an essential real-world concept for modelling and specifying
business processes.

State-based action: All event-driven specifications assume that after com-
pletion of a task the succeeding task can be scheduled immediately. How-
ever, it happens frequently in business process scheduling that the subse-
quent task is not known a priori. It has to be chosen from a set of tasks.
The choice can depend on many parameters, such as time, messages re-
ceived from the environment, or related data. When this parameter is
not known the product has to wait at a certain state that is monitored
by all preceding tasks.

Fail-safe: Workflow Management Systems are embedded in an environment
where errors occur. In order to roll-back to a situation before the error
occurred, one must know the last proper state of the process. In an event-
driven approach, one must maintain a complete history of events in order
to get to the event that failed.

Interchangeability: A WFMS has to be able to communicate with other
WFMSs while supporting a business process. These different WFMSs
have their own span of control. Therefore, they are specified in terms
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of input/output systems. It is this input/output that is not specified
explicitly in an event-driven approach.

The theory of Petri nets is a combination of an event-driven and state-
driven specification. When used to specify WFMSs, it provides the function-
ality that is lacking in current purely event-driven specifications. Moreover,
it has good graphical properties, making it a useful candidate for a process
definition tool. In the next chapter it is shown that business processes can
be mapped to the elements of Petri nets. The result is a unifying conceptual
model of business processes, which can be analysed according to different
properties.

25.2.2 Analysis Techniques

When business processes are specified in terms of Petri nets, many Petri-net
analysis techniques become available. These analysis techniques, which are
listed in this book and in for example [Mur89], are applied to the domain of
workflow management in Section 25.4. Analysis of workflow management is
divided into two areas, known as:

Structural analysis: When a business process is specified many of its
properties can be checked based on its structure. The advantage of this
feature is the availability of a collection of fast and powerful construction
mechanisms to build correct business processes.

Performance analysis: The designer has to test the business process on
expected behaviour before the business process is put into practice. With
these tests the behaviour of the business process can be analysed accord-
ing to business properties, such as throughput, occupation rates, and
manufacturing costs.

25.3 Design Methodology

The semantics of a Petri net defines the meaning of the elements in a specific
system. The general concepts of places, transitions, and tokens are translated,
or applied to specific areas. Without knowing their specific meaning, one
would not see the difference between a Petri net for a nuclear plant and
that for a detailed specification of operations in a bakery. Furthermore, when
the meaning is defined clearly, the analysis techniques of the next section
can be placed into a workflow management perspective. Below, the basic
concepts for the construction of Workflow Management Systems (WFMSs)
are introduced.

An important initial assumption of the design methodology is that a Petri
net is constructed for products produced by the business process in isolation.
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This means that they do not interact1. When the business process is de-
signed and the behaviour is analysed for multiple products flowing through
the business process, they have different colours to separate them.

case logistics/routing

taskstate

Fig. 25.4. Mapping of business process elements onto a Petri net

The elements that are defined formally in the next section are introduced
in Figure 25.4 and described informally below.

Case: The case is the product that is produced by the business process
and the main objective of the WFMS is the proper management of this
case during its processing. Examples of cases are insurance claims, tax
bills, and student registration forms. A case is identified uniquely by its
identifier. In the above examples these are the insurance number, social
registration number, and student number. The WFMS will manage the
life-cycle of each case. It will maintain its attributes, the conditions placed
on it, and (an entry to) its data. A case colour defines the logistical
properties of the case. For example, if the insurance claim is larger than
amount x, it should be handled by a senior manager and otherwise by
a junior. Another example is that a student who started in year x loses
governmental support after year x + 4. These attributes can change the
state of the case.
Case data is not maintained by the WFMS. A case can exist in a number
of documents, files, databases, etc. Only by the unique colour of a case
does the WFMS maintain a link to this data. For operational practice
this is a necessity.

State: The state of a case in the business process is defined by the states of
the Petri net. Examples of relevant states for WFMSs are for the insur-
ance cases: claim received, large claim, and claim denied. The stu-
dent has states such as receives support or no support. These states

1 This aspect implies some special properties for the structural analysis of business
processes.
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provide natural implementation of the business process and allow for au-
tomatic actions which can be defined on them. They are also the essential
feature for synchronising the flow of work, as will be shown later in this
chapter.

Task: A task is an elementary action, also referred to as a logical unit of
work. Although a task is an elementary action within a business process,
it can maintain many subtasks on a lower level. For example, for a su-
pervisor the execution of a task by an employee is a logical unit of work,
while the employee views the same task as being composed of a number
of tasks [AH97].
Examples of tasks are: typing a letter, reviewing a document, filling an
insurance claim, or writing an exam. Tasks can be divided into man-
ual, automatic, and semi-automatic (or semi-manual) types. The manual
task is executed without the interference of computers, e.g. inspecting
damage or lecturing2. A task that is executed completely automatically
has no human interference. Based on the available data and instructions,
an application can create, update, or delete case data. When both hu-
man input and applications are needed to execute the task, it is called
semi-automatic. Examples of semi-automatic tasks are: the management
of documents with a word processor, or the calculation of the annual
budgets with spreadsheets.

Logistics: The life-cycle of a case is the path which it takes through the
tasks in order to complete. The life-cycle of a case is maintained by the
WFMS. Therefore the WFMS sends the case to appropriate tasks and
signals the appropriate resources (to be discussed later). This function
is referred to as business logistics or routing. The elementary logistical
function is called the sequence, meaning that one task precedes another
task. More elaborate logistical functions enable work to be executed in
parallel or allow selective routing . The former implies that tasks can be
executed at the same time and the latter that one task to be executed is
chosen from a set of tasks. Repeating a (set of) task(s) is called iteration.
Logistical functions play an important role in the Petri net constructs
that will be defined in the remainder of this section.

The interpretation of Petri nets for Workflow Management Systems
(WFMSs) will be discussed in detail. First a task is identified with a transi-
tion in Section 25.3.1. Additional triggers to start a task are viewed as extra
input conditions that have to be fulfilled. They are exploited in this section.
Section 25.3.2 shows the logistical functions that provide the basis for coordi-
nation of a case. Finally, section 25.3.3 shows the equivalent of a case, which
is a (set of) tokens. The case concept is defined by a Petri net for WFMSs.
Therefore it is discussed after all the elements have been introduced.

2 However, experiments with computer-based training have proved to be effective
and will be more common in the near future.
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25.3.1 Tasks and Transitions

The first Petri net element that is discussed is the transition. A transition
represents a transformation of a case between consuming it from an input
place and producing it into an output place. The transition therefore is an
abstraction of a task executed in a business process.

Normally a token (which represents a case) is modified by applying some
function to it. These functions can be seen as applications and therefore
pure transitions mimic automatic tasks. As was showed previously, other
tasks require human input and therefore these transitions require an external
event to occur. In a Petri net these events can be simulated as an extra input
condition to a task. For structural analysis they are discarded. They play
an important role when the Petri net is interpreted by business employees,
simulated by staff employees, and finally implemented. The events show the
type of external event that needs consideration.

In Figure 25.5 four types of triggers are shown. These events are extra
conditions that have to be satisfied to enable a task. The meaning of each
condition is explained below. Note that a detailed description of trigger man-
agement and the interaction with tasks is more complex and beyond the scope
of this introduction. A more detailed analysis of triggers and their application
to WFMSs is given in [Gra96, GK95, MS95].

Message

Time

Automatic

User

Fig. 25.5. Four external triggers placed on tasks

Message: When a task can be executed after another system signalled it,
the message icon is placed on the transition. An example of a message
trigger is that a task can start when a specific document has arrived in
another department. Thus, even if tokens are available at the input place
they are not consumed. This introduces the possibility of a delay in the
execution (i.e. tasks are not eager) and the input place becomes an input
queue. In logistics this queue is termed a complementary queue [Pla96]
since the task needs an additional event from another system in order to
complete.

Time: Some tasks start after a certain time has passed. Time-based signals
can be given for a single case or for a number of cases. The former can be
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seen as a time stamp t on a case when it is produced in a place. A task is
enabled after t+4t. Because this time-based task depends on the time
the case is placed in the place, it is called a relative time signal. Another
relative time signal is implemented by a time stamp t as an attribute of
a case. Enabling a task is now controlled by this attribute. An example
of this is an arrival date that orders cases.
When the task is enabled at fixed time intervals for a number of cases
it is called an absolute time signal. An example of this is that order
picking starts at 8:00pm each day. When the task is disabled due to this
absolute time trigger a queue of cases appears at its input place. These
queues have their equivalent in logistics, where they are termed platform
queues .

Automatic: In general, when all pre-conditions of an automatic task are
satisfied the task fires instantly (i.e. it is eager). Firing an automatic task
means that an application program is invoked which transforms the case.
The task is non-eager when the availability of this application is limited,
e.g. when there is a bound on the number of application licences. To show
graphically that there is a resource dependency, the icon is placed on the
task.

User: Many tasks require the input of a user to execute. Thus the WFMS
has to receive a signal from a user stating that this task can be started.
There are many pragmatic solutions which support this type of inter-
action between users and WFMSs. Basically the concept of in-baskets ,
defined for example in [Coa94, AAM+95], is introduced for communi-
cation with (groups of) persons. As with applications and their WFMS
interaction, this topic is not further detailed.

Extra task conditions in Petri nets are used to model these triggers, shown
in Figure 25.5. In the following section these tasks are structured so as to form
a business process. The structuring of tasks follows the logistical primitives
that were outlined at the beginning of this section.

25.3.2 Logistics and Transitions

A case flows through a Petri net by means of logistical properties, which are
defined below as pre- and post-conditions of tasks (transitions). There are
four basic logistical properties, also identified by the WFMC [Coa94]. They
are divided into parallel, mutual exclusive, splitting, and joining properties.

First the logistical property that enables parallel execution is depicted. A
case is split into a number of case tokens that enable tasks for that case at
the same time. Thus multiple tasks are enabled for the same case at the same
time and can be executed in unrelated order. The AND-SPLIT provides this
parallel split for a single case. All case tokens must at some point be joined
again with an AND-JOIN (see section 25.4). Both AND constructs are shown
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in Figure 25.6. The upper two nets show the P/T net representation and the
lower two the counterpart for WFMS design.

a

b

c

a

b

c

AND-SPLIT

a

b

c

AND-JOIN

a

b

c

Fig. 25.6. AND-SPLIT and AND-JOIN in Petri nets

This new representation is introduced to make clear to a designer that this
is a logistical task, i.e. the case is not transformed. The AND-JOIN is enabled
if two tokens from the same case (based on its unique colour when multiple
tokens flow through the Petri net) are available in the input; it produces one
case token in its output.

A brief note on parallel work is made here. Traditionally cases were lim-
ited to sequential routing due to the physical constraints of the case. These
have been removed by the widespread availability of shared databases and
networks that store cases and enable widespread access to them. An example
of parallel case assignment for the insurance claim is that it can be reviewed
by an office worker while another employee is checking the actual damage.
One need not wait for the other to start, but they must both be finished be-
fore the next task for this case can be executed, which introduces interesting
new ways of conducting business [HC94a].

The mutual exclusion logistical property also has a split, known as the
OR-SPLIT, and a join called the OR-JOIN. In Figure 25.7 both are repre-
sented in the P/T net representation (upper two figures) and their WFMS
counterpart (bottom figures). Again the new representation is introduced
to show a designer that a case is only routed and not transformed by this
transition.

An OR-SPLIT takes a case from its input and places it in one of its
output places based on a logical function. This function is based on the case
attributes. With this construct a decision can be implemented. For example,
every insurance claim for which the amount x falls within a certain domain
DOM is handled separately from other claims, as Figure 25.7 shows.
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not(DOM(x))

OR-SPLIT OR-JOIN

Fig. 25.7. OR-SPLIT and OR-JOIN in Petri nets

At some point the separate paths of the OR-SPLIT have to be merged
again and this happens with an OR-JOIN. This transition is empty, i.e. it
does not contain any logical function; every case that appears in one of its
input places is sent to an output place. No synchronisation on a case attribute
is needed because a case is not multiplied by the OR-SPLIT.

The OR-SPLIT is used when the outcome of the decision is known a
priori. This is called an explicit OR-SPLIT . However, sometimes a decision
is known only a posteriori, which requires an implicit OR-SPLIT . Such an
OR-SPLIT can be defined on a state in the Petri net.

wait

time passed

event happened

Fig. 25.8. An implicit OR-SPLIT

An example of an implicit OR-SPLIT is shown in Figure 25.8. This ex-
ample shows two tasks with extra triggers, a message and a clock. The idea
is that a case is flowing through the upper path (with the message trigger).
However, since time is an important parameter in business processes, a timed
action is also placed on it. If the case is not handled by the upper path before
time δt (which can be absolute or relative to the case) the case flows through
the lower path and is executed by other means. Because the decision is known
a posteriori an implicit OR-SPLIT is used instead of an explicit OR-SPLIT.
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25.3.3 Case and Tokens

Earlier it was mentioned that a case is analogous to a product. In the Petri
net the tokens therefore reflect the case that flows and also reflect the features
of the case (by the colours). Since a case is handled separately from other
cases, the set of tokens in the Petri net at any time represents the state of that
single case. Properties of a case are defined in this section. A case c always
is an instance of a class type C. The business process is designed to produce
cases of type C. A case type contains the following elements: C = {A,M,P}.

First, A represents a set of colours that provide the logistical values for
each case c. The logistical values, defined in the previous section, correctly
route a case through the process.

Secondly,M is a set of colours that list case properties used for efficiency of
operations. It has information for both simulation and real-time scheduling.
Think for example of information about the added costs of the case and its
due dates. Typically this information is maintained in separate databases
to obtain aggregate information over a selection of cases. For example, one
might be interested in the average cost structure of all cases that have the
logistical properties: amount>1,000, date>01-01-98.

P is the set of actual product data of the case and in practice it falls
outside the WFMS scope. The data undergoes transformation by tasks, i.e.
creation, updating, and deletion. Product data is not a primary concern dur-
ing the formal modelling of WFMSs. However, it is important to order the
tasks of the business process. A designer has to know where data is created
and where it is needed (the pre-condition) before a task can start. Therefore
the specification of product data is of importance for the method of design-
ing the formal model. Note that there can be a logistical colour that is also
product data A∩P 6= φ. When the P/T net of a WFMS is put into practice,
this overlap causes synchronisation questions to be answered since P resides
in another domain than A.

Each case cεC consists of these three elements. When multiple tokens of
a case are distributed over a set of states of the Petri net, together they rep-
resent the total state for the case c at a certain point in time. The examples
that are used in this chapter will outline the usage of the elements A for rout-
ing c through the Petri net, M for simulation and management information,
and P for product data.

25.3.4 Case Study: Justice Department

To illustrate the use of Petri nets to model business processes a real world
example is presented here. It is an example obtained from the Dutch Justice
Department. First the informal description is given and after that the formal
model is derived from it. Note that the identified tasks are modelled at a high
level of abstraction and have to be detailed in further studies.
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When a criminal offence happens and the police have a suspect an
official record is made. This is printed and sent to the secretary of
the Justice Department. Extra information about the history of the
suspect and some data from the local government are supplied. Mean-
while, the information on the official record is verified by a secretary.
When these activities are complete, a prosecutor determines whether
the suspect should be summoned or charged, or the case should be
suspended.

Po

complete

verify

examineprint charge

summon

suspend

ver

com

vok

cok

sum

cha

sus

Pi

record

rok

sok

chok

suok

or-join

Fig. 25.9. Case study example for a Petri net

Based on the analysis of information manipulation in the informal de-
scription, a corresponding Petri net is depicted in Figure 25.93. It is shown
that a case starts when the task record is enabled by the first case token in
Pi. The types of external triggers are shown in the graphical representation.
In this case the record can be made only with the input of a user (from the
police department). Printing is an automatic task handled by a dedicated
application and once completed it enables both verification and completion
by the Justice Department. The AND-SPLIT symbol is placed in this task.
The examination of the case by the prosecutor can start only after both tasks
have been completed (AND-JOIN). This is a manual task and it enables one
of three tasks: summon, charge, or suspend. The OR-SPLIT is also placed in

3 This initial Petri net is derived from the informal description. After analysing its
properties we may change the model. The sequence of information manipulation
is, however, a process constraint that has to be obeyed in any improved model.
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this task. If the enabled task is completed the case is closed and placed in
the Po state. Points of importance are:

• The business process has a start and an end state, called Pi and Po respec-
tively.

• The logistics of the business process can be placed on a task, as for the
print task, or as a primary logistic task, such as the or-join.

• The external triggers are obtained from another domain (information sys-
tems design) and are a given factor for formal modelling.

This case will be used as a running example in the remainder of this
chapter. Some parts of it will return when specific issues of modelling and
analysis techniques are explained. Several proposals for changing this business
process in order or improve the performance are suggested in section 25.4.2.

25.3.5 Business Process Definition

A Petri net that defines a business process is defined. The fundamental con-
cepts are explained in detail in [Aal95]. These concepts are introduced here
and are elaborated upon in the next section.

Petri Net

Pi Po

*t

Fig. 25.10. A strongly connected Petri net

Start and End: A formal model of a business process has two special places,
pi and po. A case starts at the input place which has the property •pi = ∅.
This means that this place has no incoming arcs, i.e. it is a source place.
A case always ends in the output place which has the property po• = ∅,
meaning that this place has no outgoing arcs thus representing a sink
place. In the example of the Justice Department these places are called
start and end.

Strongly connected: If the transition t∗ is added to a Petri net connecting
po with pi, the Petri net is strongly connected. This property states that
every transition (task) t is in a direct path leading from pi to po via t∗.
This requirement is added to avoid dangling tasks, i.e. tasks which do
not contribute to the processing of a case. Figure 25.10 shows a Petri net
with the t∗ added.
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25.4 Workflow Analysis

Building a WFMS using the Petri net concepts described above enables a
wide variety of Petri net analysis techniques to be used. When WFMSs are
designed they are analysed according to process, resource, and case dimen-
sions, see Figure 25.11.

resources

cases

process

Fig. 25.11. Dimensions of Workflow Management analyses

The first aim of analysis is to guide a WFMS designer in building correct
specifications of business processes. Therefore in Section 25.4.1 the structural
analysis techniques of Petri nets are described since they cover the process
dimension. These structural analysis techniques are described for a special
marking of cases in the net: only one case token is assumed at pi, i.e. M = i.
This means that we can use the analysis techniques developed for P/T nets,
since CA = φ.

Resources are not analysed when the structural properties of the model
are proved. Adding resources makes this task computationally harder to solve
since resources violate some rules that will be defined for models constructed
for single-case Petri nets. The abstraction of resources can safely be done
because we assume intelligent resources (i.e. humans). Therefore, it is always
possible to recover from a deadlock [Lom80]. Furthermore, for some structural
analysis techniques the availability of resources would not even make sense,
as will be shown.

The second aim of analysis techniques is to help a designer find an optimal
solution for modelling tasks and resources. Guidelines are proposed for the
choice of different correct models and their resource distributions. This is
called dynamic or performance analysis, and it is discussed in section 25.4.2.
Since the solution space is limited to constraints from the outside world (the
availability of resources, the product structure of the case, etc.) only a local
optimum can be found.

The third dimension is the case dimension. The structural properties
are proved for single-case business processes, whereas dynamic analysis in-
troduces multiple cases into a business process to analyse its behavioural
aspects.
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25.4.1 Structural Analysis

An interesting feature of Petri nets in the design of WFMSs is that design
errors can be detected before a specification is put into execution in the
workflow engine. As explained earlier, when a model is made, the structural
analysis techniques apply for each individual case (meaning M = i).

Structural analysis resembles the analysis of a business process because
it is assumed that tokens which represent a single case do not interfere with
tokens from any other case. The example of the Justice Department case will
be used to clarify these topics when needed.

Properties: Safeness. A business process is designed to produce a certain
case type. Therefore, each case instance is manipulated in isolation. This
implies that the effect of every single token that is assigned to pi can be
analysed. This token in pi results in a number of tokens that are distributed
over the Petri net according to the logistical properties that were defined in
the previous section.

Since a single case is analysed, it makes no sense to have multiple tokens
in the same condition at the same time. A condition is either true or false.
Thus, a Petri net designed for a single case must be safe, i.e. it can hold a
maximum of one case token in each place at the same time. In the Justice
Department example it makes no sense to enable a task twice at the same
time for the same record. This would mean that for one and the same record
two similar tasks have to be executed at the same time. This undesirable
situation is prevented by proving the safeness property for the model.

Boundedness. Since a business process has to be safe for each case it is 1-
bounded. Safeness is a special case of boundedness, meaning that a maximum
of one case token per place is allowed.

Reachability. A business process is designed to deliver output based on
some input. A general check after designing a business process therefore is
that a case that started in place pi results in a token in place po, the end-state.
Place po may be unreachable if errors occur in the design, such as deadlocks
by the omission of certain transitions. The possibility of certain tasks that
are enabled at the same time is also shown with this type of analysis.

A designer also wants to know which sequences of tasks can appear. In this
way the causal effects that exist in a business process can be analysed. Thus,
given a marking M ′ of the business process (for a single case), is a certain
marking M ′′ reachable? This analysis helps a designer to find causal effects
and also helps users in a later stage to query their own business process.
The question that can be answered is: if a certain task is executed, is it still
possible to execute another specific task?

Deadlock. A deadlock occurs when a business process is not terminated and
no transitions (tasks) are enabled. In practice this can occur when a critical
resource is not available, but again, we abstract from resources in this section.
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For a single case, a deadlock can occur when the logistical properties are not
applied correctly. Suppose a designer places an OR-SPLIT in the model and
(by mistake) synchronises both branches with an AND-JOIN for completion.
This example is given in Figure 25.12.

OR-SPLIT AND-JOIN

exa

examine

eok

sum

cha

sok

chok
summon

charge

end

Fig. 25.12. Deadlock caused by incorrect place synchronisation

In this example the path of the tokens is shown by depicting them in
grey. After the examination is completed (eok), either a summon or a charge
task can start according to the OR-SPLIT. In the example the first option is
chosen and completed, and a token is placed in (sok). Now the AND-JOIN
can not fire, since a token has to arrive in chok as well, and a deadlock
is the result. Therefore po is not reached and the business process can not
terminate. In the following a subclass of Petri nets is proposed that is based
on correct synchronisation of tasks.

Liveness. A designer of a WFMS wants a guarantee that a case token always
enables a task in the business process model. The task can fire immediately
(it is eager) because resources are not considered here. Thus, once a token is
generated in pi, there has to be a firing sequence σ that leads to this task.
The t∗ property ensures that from each marking of the Petri net all other
markings are reachable. Even when an OR-SPLIT enables task-a it is always
possible to enable task-a again or enable task-b.

In the Justice Department case, once an official record is made, all tasks
in the process can be enabled. Some tasks are enabled simultaneously, while
others are disjunctive. Via the task t∗ there is always a path leading an initial
marking to all possible markings of this business process.

Soundness. The last property discussed here is called soundness. A business
process has to terminate by placing a token in po and at the same time leave
all other places empty. This means that each task is disabled from that time
on. This requirement is placed on business processes because it is illegal for a
business process to be ended and at the same time have some tasks enabled.
This would mean that one case token, started in pi, results in multiple end
tokens in po. To implement soundness in business processes the underlying
formal model must therefore prevent this situation from happening.

In the Justice Department case the violation of this property would intro-
duce a WFMS that allows the possibility of assigning a criminal offence that
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has already formally ended in for example a summons, to tasks such as the
printing of the record. Violating this property therefore implies a violation of
proper logistics and presumably the data manipulation: the printed record is
needed before it can be handled.

The foregoing properties of business processes have to be analysed in
the formal model. The following techniques are introduced to guarantee the
properties.

message

Absorb

absorbing

arrived

Fig. 25.13. A token absorber is a trap

Techniques: Siphons and Traps. Formally defined, a siphon is a set of
places S which is a subset of all places P in the model and •S ⊆ S•. Thus,
when the case leaves this siphon it can never enter again. Similarly, a set
of places S which is a subset of all places P in the model is a trap when
S• ⊆ •S.

The techniques of siphons and traps can be used to analyse the Petri net
that specifies a WFMS. Both are found for initial markings of the Petri net
M = i. In Figure 25.13 an example of the use of a trap is shown. In this case,
a designer wants to get rid of external messages. This situation sometimes
occurs in practice. Places Absorb and arrived have a set of input tasks:
•S = {message, absorbing} and a set of output tasks S• = {absorbing}.
This makes S• ⊂ •S. Note that place Absorb is also safe.

An example of the use of siphons is shown in Figure 25.14. When a case
starts flowing through the business process, all other places are empty. There-
fore, when a siphon is found in this situation it means that those places remain
empty. Their usage can then be questioned. In the example two places S1
and S2 are highlighted that are supposed to make up a siphon. A designer
of this business process is now supported by a system-executed check on the
business process, and can focus on S1 and S2 to remodel the business process.

Reachability Graph. The reachability graph is a basic analysis technique
for the problem of reachability. In the foregoing the properties of a good
Petri net for business processes were described. A business process that is
constructed with Petri nets can be analysed with a reachability graph.
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Pi
S1

S2

Po

Fig. 25.14. Siphons that show parts of a business process that will remain empty

In this topic an initial marking is needed similar to that for a single
case which enters the business process in pi. Then a reachability graph is
constructed to analyse the properties of the Petri net. In Figure 25.15 a
simple graph is shown for the example from Figure 25.12 with one case token
assigned to place exa that enables the task examine. Each place that can
hold a case token after this state is depicted in the graph.

end

eok

sum

choksok

cha

che

eok

Fig. 25.15. Reachability graph of a single case

This reachability graph shows that there exist two paths from eok to
end, either via sum, sok, i.e. via the task summon, or via places cha, chok
executing the task charge.

For this simple Petri net the reachability graph shows some properties
discussed previously. However if the number of tasks grows, i.e. a complex
business process is modelled, the reachability graph can help a designer to
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find possible flaws in the model. Note that a typical reachability graph can be
very large for these complex business processes. A reachability graph analysis
of a partial Petri net is then a practical solution to this problem.

Invariants. Invariants, either place or transition, are used to analyse sta-
ble properties of the Petri net. Place invariants give information about the
weighted sum of tokens in a Petri net, and transition invariants show which
firing sequences lead to its initial state. Both are discussed for business pro-
cesses.

A case is always started with one token placed in pi. Then the case can
be split into many tokens that signal a task to start. However, there are
execution paths in a business process that have their tasks sequentially linked.
An important design implication for place invariants is that the token sum
on this path always equals 1, i.e. in a sequential flow of tasks there is always
one and only one task enabled.

The Justice Department example of Figure 25.9 has the following place
invariants when one token in pi is assumed:

1. Pi + rok + ver + vok + sum + sok + cha + chok + sus + suok +

Po = 1

2. Pi + rok + com + cok + sum + sok + cha + chok + sus + suok +

Po = 1

3. ver + vok - com - cok = 0

4. com + cok - ver - vok = 0

On one path it is not possible to have more than one case token, i.e. the
possibility of two case tokens in the same place is excluded. As mentioned,
this safeness or 1-bounded property serves an important practical goal: for
one case a task can not be enabled more than once at a time.

The transition invariants help a designer to list all possible execution
paths from the start of the business process to the end. Possible dangling
tasks can be detected and the designer gets an overview of the allocation of
tasks.

The transition invariants of the Justice Department example show that
only three tasks are case dependent; the rest have to be executed for all
cases. This is important information when the business process is large and
statements about the number and size of its components must be given.
In the Justice Department case of Figure 25.9 the transition invariants are
(assuming t∗):

1. record + print + verify + complete + examine + summon + or-join
2. record + print + verify + complete + examine + charge + or-join
3. record + print + verify + complete + examine + suspend + or-join

These analysis techniques help a designer to construct proper business
processes. In the following some subclasses are introduced that preserve these
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properties and analysis techniques but also have good computational proper-
ties. Limiting the model for a business process to such a subclass is therefore
advisable; however, some circumstantial design requirements need elaborate
models that fall outside the scope of these subclasses.

Subclasses: Well-structured. The first subclass of Petri nets ensures a
correct specification regarding the logistical properties . As mentioned, the
logistical properties that are used (AND and OR) always come in pairs, i.e.
after each SPLIT there is a JOIN of the same type. A well-structured Petri
net has its logistical properties correctly paired. Further, the rules that apply
are the same as those for the use of braces. For example, an AND-SPLIT can
be followed by a Petri net as long as it is closed by an AND-JOIN. In this
Petri net new logistical properties can be nested.

Petri Net

Petri Net

Correct Wrong

Petri Net

Petri Net

Fig. 25.16. Examples of well-structured nets

A design error occurs when this synchronisation property is violated.
When an OR-SPLIT is closed by an AND-JOIN (upper right corner), the
resulting specification leads to a deadlock (see also Figure 25.12). When an
AND-SPLIT is synchronised by an OR-JOIN (lower right corner) the result-
ing specification violates the safeness property. One case enters the process
and multiple case tokens will leave it. Every task that is linked to this speci-
fication receives multiple case tokens of exactly the same real-world customer
order. This is an unwanted situation.

The well-structured property therefore helps to design good processes in
terms of synchronisation of all branches that occur.

Free-Choice Petri Nets. A second subclass that is recommended for busi-
ness process design is the (extended) free-choice Petri net, which has either
pa• = pb• or pa • ∩pb• = ∅. Free-choice Petri nets have been studied in,
for example [DE95], because they seem to be a good compromise between
expressive power and the need for analysis.

Once a case token in a free-choice business process reaches po it means
that all other places are empty. The main result is that a decision on the
logistics of a case is not biased by previously (not) executed tasks.
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Both subclasses ensure the expressive power to define business processes.
The advantage of both subclasses is that the important property of sound-
ness can be proven for a business process in polynomial time. This is an
important aspect if the designer wants to check the specification in an inter-
active manner.

25.4.2 Dynamic Analysis

Dynamic analysis is used when a new business process is analysed for a num-
ber of cases that have to be handled. It must deliver a statement of the imple-
mentation of business performance goals. In analogy with industrial design,
the behaviour of the business process should conform to the specifications . To
achieve this a designer wants to test different options and choose an optimal
procedure for a given situation. The behaviour of a business process is tested
with Petri net techniques on the following properties.

Simulation. The behaviour of a business process is investigated by
analysing, for example, accumulated waiting time, service time, throughputs,
and costs. Recent studies have shown that on average more than 95% of the
time a case spends in a business process is ‘wait-time’ leaving the reminder
for the activities. Simulation is a practical way to obtain information about
the behaviour of a business process. Although it lacks a mathematical proof,
the results of simulation can be of great value when used correctly.

Simulation is used to analyse the behaviour of a specification for different
combinations of market demand, structure, and resource management. The
question to be answered is: what is the throughput4 of a certain combination,
and is that desirable or should improvements be made? The throughput is
the total time it takes to get an individual case from pi to po. The following
parameters are required during simulation:

• The expected market demand, used to generate a specific number of cases
that arrive with a certain distribution. This is a statistical function based
on historical or other data.

• The structure of the specification in terms of a business process definition.
Different structures change the throughput, e.g. a sequential execution of
tasks is probably more time-consuming than parallel execution.

• The required resources and their expected operation time per activity tran-
sition.

Why are resources important? Since resources provide input to tasks they
are therefore another pre-condition from a conceptual point of view [AHH95].
If resources, such as humans, forms, computers, or telephones are analysed
during simulation, they are added to a model as outlined in Figure 25.17.

4 Throughput is often mentioned as an important performance indicator for the
dynamic behaviour of business processes.
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ver vok
finish

Busy

Resources

start

verify

Fig. 25.17. Resources modelled in a Petri net

Here, task verify has a start that is enabled when there is a case in its logical
in-basket (ver) and a proper resource is available (Resources). During the
execution of this task the resource is kept in Busy. It is now no longer available
for other incoming cases. Once completed, i.e. when finish fires, the resource
is put back and is available for a new case. The case that was handled is
placed in the out-basket (vok).

The use of resources decreases the ability to analyse the business process
when one resource place can enable multiple tasks. It violates the free-choice
property and solutions will therefore be harder to find.

RM1 RM2

ver vok cok
verify complete

2 2

Fig. 25.18. Scenario-1

Next some examples illustrate the use of simulation in business process
design. Suppose a designer creates scenario-1 , shown in Figure 25.18. This is
the Justice Department example in its initial state with two tasks verify and
complete that are specified to be sequential. This is the structure that is
specified. The market demand is stated here as 24 cases that arrive in pi per
hour (according to a Poisson process). Both tasks verify and complete have
two resources available, shown in their Resource Managers (RM1, RM2 ).
The operation time is 4 minutes for each task and is independent of the
resource.
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When this situation is simulated, a large number of cases are generated
according to the market demand. The simulation shows that the average
throughput of scenario-1 is 22.2 minutes, meaning that on average a case
will spend 22.2 minutes in the model from its start at pi to completion in
po. The actual operation time of this model is 8 minutes when each case can
be handled without delays. Thus scenario-1 has a large amount of overhead
time, i.e. time other than execution time spent on the case.

A designer therefore wants to test other possibilities in the search for an
optimal solution with these constraints. In scenario-2 another model is tested
that executes these tasks in parallel, while both the market demand and the
resources are kept constant. Thus, a change in structure is made based on the
AND-SPLIT concept, shown in Figure 25.19. Simulating this model shows
that the throughput is decreased to 15.0 minutes, an improvement of 7.2
minutes over scenario-1. Parallel execution of tasks is one of the main contri-
butions of workflow management in decreasing the throughput of cases, since
tasks have no physical limitation on their ordering (in contrast to the pro-
cesses based on physical document flows). Therefore this result is interesting,
however if other parameters are changed further performance improvement
may be possible.

vcok

RM

verify & complete
v_plus_c

4

Fig. 25.19. Scenario-2

In scenario-3, shown in Figure 25.20, the market demand and sequential
structure are kept constant and the resources are assigned differently. In this
case, the resources can perform either activity and the total operation time
is the same. Simulation shows that the throughput is decreased to 14.0 min-
utes. In this scenario the resources are flexible as opposed to the specialised
resources of the previous scenarios.

This scenario introduces the possibility of scenario-4, shown in Figure
25.21. In this scenario the two tasks are executed in combination. This elim-
inates set-up time between verification and completion and decreases the
total operation time to 7 minutes. The elimination of set-up time is also a
major time saver, however, when tasks are integrated the ability to switch
between tasks is lost and this loss of flexibility can introduce a scheduling
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ver vok cok

RM

verify complete

4

Fig. 25.20. Scenario-3

problem. When the resources are assigned to tasks as displayed in scenario-4,
the throughput is decreased to 9.5 minutes on a total operation time of 7
minutes.

ver

com

AND-SPLIT AND-JOIN

v_and_c

complete

verify

RM1

RM2

vok

cok

vcok

2

2

Fig. 25.21. Scenario-4

It has been shown that the initial business process model can change either
in structure or resource management in order to achieve better dynamic be-
haviour. The changes in structure are facilitated by the use of different logis-
tical properties. These transformations can be applied automatically without
changing the properties of the initial business process, as stated in [Aal95].
The resource management policy influences performance. As showed, general
resources allow a lower throughput than specialised resources. The choice
between generalised resources and specialised resources follows from organ-
isational debate and normally is a given input for the designer. However,
suggestions for changing this resource distribution can be given based on
expected performance indicators that are found using simulation.

The final example of simulation uses a token colour to make a distinction
between difficult and standard cases. The business process is shown in Fig-
ure 25.22 and splits the task verify into two different subtasks. The figure
also shows some windows obtained from a simulation run using the business
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ScenarioDescription throughputservice timewaiting time
1 sequential 22.2 8.0 14.2
2 parallel 15 4(8) 11(7)
3 compose 9.5 7 2.5
4 flexible resources 14 8 6
5 triage 27.8 6.6(12) 21.2(15.8)

Table 25.1. Results from the simulation studies

Fig. 25.22. Simulation screen for scenario-5

process definition tool from COSA with ExSpect as simulation environment.
The business process is explained first, followed by some details shown in the
simulation screens.

Cases are generated in the first task, called Start . This task is added to
our example to set the simulation parameters for the throughput, resources
etc. In the following task, Distribute, 25% of all cases that pass are marked
as difficult and the remainder as standard . The difficult cases are sent to
Secretary and will take on average 8 minutes to process. The standard cases
flow to Clerck and will take on average 2.6 minutes to process. The OR-
SPLIT is thus based on the case colour defined in M , stating its level of
difficulty.

The branches are merged using an OR-JOIN and then Completion, which
will last about 4 minutes, is enabled. For task Clerck one resource called
clerck is available. This is not shown in the model; it is placed in the data
specifying each task. Similarly, Secretary has one resource called secretary
and Completion has two resources called manager .
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The simulation windows show the following information. The window on
the right shows a part of the business process model that is explained in
the foregoing. The circles are the states and the squares represent the tasks.
During simulation one can see cases moving through the model from state to
state. The three upper left windows show resource occupation rates for the
subruns of this simulation. Using the simulator in this way, one can zoom
into the performance of subprocesses (using the hierarchy) and change the
resource distribution before performing a re-run. Underneath the resource
occupation windows, a window displays for each subrun the number of cases
that reached the end of the business process (completed) and the average
time that these cases spent in the process (throughput).

The result of this simulation is that the use of triage is not as straightfor-
ward as one may expect. Because the resources that operate on the subtasks of
Verify are specialised, the total throughput of the process increases. Changing
the level of difficulty and the resource sharing can change the performance.
Better solutions are found interactively by rerunning the simulation with
different parameters.

Scheduling Principles. In Figure 25.4 the relation between a case, a task,
and logistics is shown. When a designer of a workflow specifies a business
process, priority rules have to be used to assign cases to tasks. These priority
rules specify which case is handled by a resource at a certain time. The prior-
ity of a case can be adjusted by employees, and cases are ordered according
to this priority. The order depends on the scheduling principle that is used
and this can differ for each resource.

Which scheduling principle is preferred is not known a priori. Simula-
tion can be used to test different scheduling principles when all other pa-
rameters are kept constant. Note that the scheduling principle may differ
for each resource manager. This topic is not further addressed here. Below
some scheduling principles are listed, based on a complete overview given in
[Hau89].

First-In-First-Out (FIFO): The most simple and effective scheduling
principle is to assign a resource to the first case available. The cases will
thus be ordered by arrival at the task. This is an attractive rule since no
additional information is needed to make a decision and it is therefore
easy to implement.

Last-In-First-Out (LIFO): If the scheduling principle chooses the last
case arrived, one speaks of LIFO queuing. In some situations this can
lead to a higher service-level, i.e. more cases reach po before their due
date (at the cost of some other cases which are delayed longer).

First-At-Shop-First-Served (FASFS): When resources must be as-
signed to tasks based on their ordering at their entrance in pi, the FASFS
base priority rule is chosen. Here a resource is assigned to the oldest case
in the business process. FASFS can be considered as an overall FIFO
scheduling principle for the process.
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Shortest-Processing-Time (SPT): If the amount of labour required for
each case is known a priori, the case with the smallest processing time
gets the resource first. In general, the average throughput decreases when
this base priority rule is used. It is based on the assumption that the
throughput of a case should be proportional to the expected processing
time. If the case with the longest processing time gets the resources first,
the rule is called Longest-Processing-Time (LPT).

Shortest-Rest-Processing-Time (SRPT): If the amount of labour re-
quired for a case is decreased by the amount of processing time already
consumed, the result is an ordering of cases by shortest remaining pro-
cessing time. This scheduling principle minimises the work in progress.
Note that operations have to occur on the management data of a case,
which makes this solution computationally more demanding.

Earliest-Due-Date (EDD): If the due date on which the case has to be
ready (i.e. has to be in place po) is entered in the management information
part, the policy can be to choose the case with the earliest due date.

These scheduling principles have an impact on the total throughput of a
business process. Combinations are found in many ways, e.g. with resource
management functions or with transitions that balance the workload by as-
signing the case to groups of people with the lowest level of work in progress.
However, typical Workflow Management Systems are constrained in their
scheduling of resources by other considerations.

• Function separation: When two tasks for one case are not allowed to be
handled by the same person, this constraint is applied. It limits the number
of available resources. In the financial industry in particular, this is an
important constraint.

• Case workers: Opposed to function separation is this constraint which ap-
plies when sequential tasks must be handled by the same person. This
reduces set-up time and leads to a reduction of time and errors.

• Special assignments: Similar to the case worker constraint, this constraint
assigns people to particular tasks for particular cases. For example, follow-
ups of the cases handled by person p are also handled by p.

Animation. When a model is animated, some real-world aspects are visu-
alised during simulation. The use of animation is especially helpful when the
model must be validated by end users. Thus, animation helps to clarify the
underlying formal definitions.

Within the field of workflow management, the following aspects are gen-
erally seen during animation:

Forms flow through a Petri net instead of the token ‘bullets’. When different
colours are assigned to forms, a different priority is assigned to them.

People are substituted in and managed by a resource manager. This re-
sources manager assigns resources when cases appear. Resource managers
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can manage different classes of people, for example clerks, typists, and
office managers.

Places and arcs are removed from a model for animation. One sees forms
‘flowing’ from one activity to the next without the enabling places in
between. If places are visualised it is done to show a queue.

Colours and signs denote performance indicators such as wait times and
occupation rates. The colours and signs change depending on values of
the model. For example, the colour of a resource manager is red when
understaffed and blue when overstaffed. When the number of tokens in
a place has reached a maximum it can change shape.

Plant layouts are scanned and placed in the background of the screen.
Each location now gets either its queues (places) or tasks (transitions)
assigned. If the animation options above are added, the screen come to
life.

Although the display of the elements is conceptually irrelevant, it is im-
portant for validating the model. Note that system engineers have a different
perspective on the workflow management world than participants from the
user organisation. Animation can bridge the gap between these groups to
obtain a vision shared by both designers and users.

25.5 Lessons Learned: The Sagitta-2000 Case

Both the technological and organisational advantages of workflow manage-
ment concepts have been recognised by the Dutch Customs Department. In
1994 the Customs Department started the development of a nationwide in-
formation system for handling customs declarations, known as Sagitta-2000 .
A primary goal of this project is to define the core customs declaration pro-
cesses and implement them in workflow software. The estimated number of
customs declarations per year is 10 million, with some peak days when more
than seventy thousand declarations must be handled. The number of direct
customs officers is well over five thousand. The complexity of this type of
process (an average customs declaration can take up to fifty activities to
complete), combined with a frequent change in government regulations for
customs declarations, makes Sagitta-2000 a very ambitious project.

The approach taken was to separate information on the logistics of decla-
rations from information on task execution. A Workflow Management System
(WFMS) incorporates logistical data and was therefore a possible solution
from the start of the project.

To allow implementation on any future platform, the business processes
were modelled with a diagramming technique based on Petri nets. The de-
signer team consists of system engineers, management consultants, staff mem-
bers, and end users, and the current number is close to one hundred. The
number of business process models constructed is very large, and each model
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Fig. 25.23. An example of the Sagitta-2000 workflow model

is very complex. Although the concepts of tasks, cases, and resources are
used there is much specific terminology for each model. Figure 25.23 shows
an example of the diagramming technique, obtained from the Sagitta-2000
project.

This part of the process shows the ordering of tasks for checking individual
customer declarations. The descriptions are given in Dutch. The meaning of
the elements is given below.

1. Tasks are modelled as transitions. To close the gap between conceptual
modelling and implementation, the activities are defined with a trigger
type. This trigger is used to couple the supporting application in a later
stage. The number of the task corresponds to the mainframe application
which supports the task.

2. Tasks are assigned to work-stores. These work-stores correspond directly
to places, since they enable activities when filled with a token. They are
depicted by a triangle for other reasons.

3. Routing of tasks is based on the building blocks presented in the WFMC
Glossary [Coa94]. Thus the modelling technique shows ANDs, ORs,
SPLITs, and JOINs.
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During the modelling process the selection of WFMSs to support the im-
plementation was made. The complexity of the process led tor a client/server
architecture. After careful evaluation it became clear that both local Work-
flow Management Systems, based on client/server technology, and the
mainframe workflow engine had to be Petri-net-based. Although standard
client/server-software based on Petri nets is available, a Petri-net-based main-
frame workflow engine is being developed since no available product has the
required functionality. At present the mainframe workflow engine is being
built according to the Petri net concept described above.

This practical experience supports the perspective of Petri-net-based stan-
dardisation of workflow management concepts. These are preliminary results
from the Sagitta-2000 project which is not yet complete. When the project is
finished the results concerning cost savings, development time, performance
indicators, etc. will be published.

25.6 Conclusion

The concepts that define workflow management can be specified by Petri nets.
This provides an essential function for verifying the correctness of Workflow
Management Systems. The easy translation of workflow concepts, such as
tasks, cases, logistics, and resources, to the Petri net model enables both
specification and the use of a wide range of analysis techniques. The analysis
techniques are valuable if the translation makes sense to the people designing
and using the Workflow Management System. Three reasons to use Petri nets
for workflow management are summarised here:

1. Formal semantics combined with a graphical nature. The formal
semantics guides designers to build business processes that are correct.
This is a necessity because the specifications are used to execute the
business process. The user organisation therefore must also participate
in the design of the business process. Many users appreciate the Petri
net approach and in the Sagitta-2000 case it helped both engineers and
large user groups to communicate their goals.

2. State-based instead of event-based. The explicit representation of
states plays an important role in the design of WFMSs. Besides the clear
meaning in relation to real-world entities, such as mail-baskets or batches,
it also provides an essential control property. When it is not known a
priori where a case should be routed to, its state defines all possible
alternatives, as shown in Figure 25.8. It is not possible to represent this
control property with event-based techniques.

3. Abundance of analysis techniques. Analysis techniques are available
to check properties of the specification based on its structure. Therefore
errors are reported to the designer before the specification is put into
practice. When dynamic analysis techniques are used, the specification is
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tested on different (expected) market demands, structures, and resource
management. The abundance of analysis techniques enables the design
of a correct business process that also has expected dynamic properties.

These three reasons summarise the need for Petri-net-based Workflow
Management Systems. This research will be extended in many ways, such as:
adaptation of workflow process models to new (enhanced) models without
violating correctness; enhanced modelling techniques for defining tasks in a
generic way; and using simulation to find new and better ways to execute
business processes. The Petri-net-based approach has been proved to be an
enabling technology for workflow management.



26. Telecommunications Systems∗

26.1 Overview of the Domain

A telecommunications system enables communication between remote en-
tities in order to exchange information. It is composed of two subsystems,
namely the transport network and the processing system. The transport net-
work is the set of communication resources that enable information transfer
between the communicating entities. The processing system is the set of com-
puting resources and programs that control and manage the transport net-
work on the one hand, and that implement the communication software on the
other hand [SKL94]. This software is designed according to syntactic and se-
mantic rules called protocols. The development of these protocols constitutes
protocol engineering, which can be defined as the specialisation of software
engineering for communication software. Protocol engineering encompasses
the set of techniques, methods, and tools that enable the production and ex-
ploitation of communication software with an industrial control [Raf95]. This
process of production is organised according to the classical stages of the de-
velopment cycle, namely specification, design, implementation, deployment,
and maintenance.

In order to ensure software quality, validation and formal verification are
required. Validation consists of verifying the global coherence of the spec-
ification and design, while verification consists of formal proof of expected
structural and behavioural properties. Validation and verification must be
applied to each step of the development process, since the later an error is
detected, the harder its correction [Boe84].

In the case of protocol engineering, these activities are strongly depen-
dent on the complexity of the telecommunications system. Examples of this
complexity are the system size, the hardware and software heterogeneity, the
real-time aspect since the system has to operate and to be available perma-
nently, and the guarantee of a correct operation. Moreover, the evolution of
the telecommunications system is also a factor of complexity because it ex-
tends the system functionality. From the provision of voice-transport-oriented
service, i.e. the basic call service, telecommunications services have evolved
to include today services such as freephone or call forwarding. Nowadays,
∗ Author: M.-P. Gervais
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a telecommunications system is a service network. As the number of these
telecommunications services grows, and increasingly complex interactions ap-
pear among them, the architecture of the telecommunications system has to
be adapted in order to provide adequate support. Therefore a new architec-
ture known as Intelligent Network (IN) has been created.

IN is an architectural concept allowing the rapid introduction of new
telecommunications services in any kind of network. Its goal is to provide a
flexible and open architecture that facilitates and accelerates service imple-
mentation and provisioning in a cost-effective manner, and in a multi-vendor
environment. A first set of recommendations concerning the IN, named IN
Capability Set 1 (IN-CS1) [ITU93], has been produced by the International
Telecommunication Union (ITU), and a second one is ongoing (IN-CS2).

Before detailing the current IN architecture that is used in the remainder
of this chapter, it should be mentioned that studies are ongoing to define the
long-term IN architecture. The Telecommunications Information Networking
Architecture (TINA) is one of the most promising conceptual frameworks
[DNI95]. TINA studies are performed by the TINA Consortium (TINA-C)
which is a worldwide consortium of network operators, and telecommuni-
cations and computer equipment suppliers. Its aim is to define and vali-
date an open architecture for telecommunications service that provides a
set of concepts and principles to be applied in the design, processing, and
operation of telecommunications software. Telecommunications services are
treated as software-based applications that operate on a distributed comput-
ing platform, which hides the details of underlying technologies and distribu-
tion concerns. TINA makes use of recent advances in distributed computing,
especially the Open Distributed Processing (ODP) standardisation works.
ODP is a standard developed by the International Standardization Orga-
nization (ISO) and the ITU. Its aim is to provide a conceptual framework
for rigorously specifying a distributed system architecture in heterogeneous
environments. ODP makes use of object-based and client-server approaches
and defines a reference model [ITU96]. So TINA is a specialisation of this
RM-ODP to the telecommunications domain.

26.1.1 The IN Architecture

The IN architecture defined by ITU is in keeping with the Plain Old Tele-
phony System (POTS) context dedicated to voice transport. Its principle is
separation between service control and call control. It is composed of func-
tional entities that are mapped onto physical entities. The description here
is limited to the entities that are relevant for the case study presented in
section 26.3. According to the separation principle, some functional entities
are related to call control, namely the Call Control Function (CCF) and
the Service Switching Function (SSF), whereas others are related to service
control, namely the Service Control Function (SCF) and the Service Data
Function (SDF).
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• The Call Control Function (CCF) is responsible for the call processing. It
corresponds to the classical functionality of a switch.

• The Service Switching Function (SSF) is the interface between the CCF
and the SCF. It enables the CCF to be controlled by the SCF.

• The Service Control Function (SCF) contains the service logic, i.e, the
programs performing the service functionality. It is responsible for their
execution.

• The Service Data Function (SDF) stores and manages data services, i.e.
data related to the services.

Functional entities can be mapped onto physical entities in different ways.
Typically, the Service Switching Point (SSP) implements the CCF and the
SSF. This is an IN switch. The Service Control Point (SCP), which imple-
ments the SCF, is a real-time computer with a very high availability. The
Service Data Point (SDP), which implements the SDF, is a database system.
However, the SCF and SDF can be implemented together in the SCP (see
Figure 26.1). Relations between SSP and SCP are based on the Common
Channel Signalling #7 (CCS7) [ITU88].

SSP

SCP

SSP

CCS7

voice

SDF
SCF

Fig. 26.1. IN simplified architecture

26.1.2 The IN Service Processing

The IN services are built upon the basic call service. This means that they
offer advanced functionality based on and enhancing the basic call, and that
they follow the basic call processing of the telephony service. Examples of
IN services are the freephone, credit card calling, and the virtual private
network. An IN service is processed as follows. The user picks up the phone
and dials a number. The SSP performs the basic call processing. During this
processing there are some points, the Detection Points (DPs), at which the
SSP can detect that the call contains an IN service demand. Then it suspends
the basic call processing and transfers the control to the SCP, which performs
the service logic. Then the SCP sends back instructions concerning further
processing of the call in the SSP.



544 26. Telecommunications Systems

The SSP is then a switch that is able to detect a service demand through
the DP processing. DPs are located at stages in the basic call processing
where events can be detected. Several types of DPs are defined. Here, the
description is limited to the types of DPs that enable the SSP to identify an
IN service demand1 and to request the SCP for invoking the corresponding
service logic. Several DPs of this type are defined depending on the stage at
which they occur in the basic call processing. They are identified by a number
and a name. For example DP3, named Analysed Information, corresponds to
the point located at the stage where the SSP has analysed the dialled number.
The number dialled by a user can be an ordinary phone number or a specific
number corresponding to an IN service demand. For instance, a freephone
number is a logical number identifiable by a special prefix (e.g. 800 in the
USA or 0800 in France and Germany). Then DP3 processing enables the SSP
to recognise such special numbers.

DPs are characterised with attributes that determine their types. More-
over, a DP has a state, and some criteria are associated with a DP. The state
of a DP is armed or disarmed. A DP must be armed in order to be processed.
If it is not, the SSP continues the call processing. The DP is armed through
service provisioning. The criteria are conditions that must be met in order
to suspend the basic call processing and to notify the SCP that the DP was
encountered. Examples of criteria are prefixes (e.g. 800) and specific calling
or called numbers. So the DP processing performed by the SSP for a given
call consists of checking, at each stage of the basic call processing at which
a DP is located, if the DP is armed and if the criteria are met. In the latter
case, the basic call processing is suspended and the SSP transfers control to
the SCP by providing it with parameters related to the requested service.
Examples of these parameters are the service key, i.e. an identifier of the
requested service, the calling number, and the called number.

The SCP is responsible for executing the program corresponding to a ser-
vice, namely the Service Logic Program (SLP). The SCP can be dedicated
to one service, i.e. it performs only the SLP related to this service, or it
can implement several SLPs corresponding to different services. The SCP is
composed of several modules, including a library of SLPs, but in order to sim-
plify the description, it will be considered that an SSP request is processed
as follows: Based on the service key contained in the SSP request, the SCP
calls the appropriate SLP to execute the service logic. During this execution,
a dialogue may be needed with the user to get information such as an au-
thentication code. In this case, the SCP controls the SSP by giving it orders
related to the actions needed for establishing such a dialogue. At the end of
execution, the SLP returns a result to the SCF, which it uses to transmit an
order to the SSP concerning the basic call processing. Three types of orders
are identified:

1 These DPs are named Trigger Detection Point-Requests (TDP-R) in the IN
terminology.
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• Continue with same data: the service execution has not modified the initial
data. The SSP can resume the basic call processing with the same data,
i.e, the calling number and the called number.

• Continue with new data: the service execution has provided new data by
modifying the initial ones. So the SSP has to resume the basic call pro-
cessin, taking into account these new data.

• Clear the call: following the service execution, the call must be cleared by
the SSP. This response is provided for example in case of errors occurring
during the service execution.

26.1.3 Conclusion

IN constitutes an important evolution of telecommunications system func-
tionality since it is a service-oriented architecture. A telecommunications
system is no longer simply a network that transports information and im-
plements protocols. It now provides advanced services, i.e. applications that
improve the basic call. So it is no longer concerned only with protocol engi-
neering, but also with service engineering.

The next section examines the way in which formal methods are used in
such an architecture.

26.2 Motivation

Formal methods have been used ever since the activity of designing proto-
cols appeared. In fact, a formal description is required to express the system
functions unambiguously, to analyse and to validate the description in order
to detect design errors, and to develop software tools resulting from the for-
malism. Generally speaking, two types of formal techniques can be identified
[Jua95]:

• The models represent the main mechanisms but do not totally represent a
specification. On the other hand, an exhaustive analysis of the represented
mechanisms (verification) is feasible. Petri nets are an example of such
models.

• The languages represent all of the mechanisms, but do not enable an ex-
haustive analysis of the specification, instead just simulation or test se-
quences. Examples of languages are Estelle [BD87] and LOTOS [BB88]
developed at ISO by the Formal Description Techniques working group or
SDL [Bra96] developed at ITU-T. It should be noticed that in the telecom-
munications context, the term Formal Description Techniques (FDTs) is
commonly used to refer to these three languages.

These two types are not opposed, but each of them addresses a specific
scope of concerns. Modelling enables the verification of the basic mechanisms
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of communication, especially synchronisation. For that purpose, Petri nets
have been widely used in the protocol engineering area since they have a
very good expressive power for specifying parallelism, synchronisation, and
causality [Dia82, JAD84]. Moreover, they enable verification properties re-
lated to control and synchronisation. On the other hand, using FDTs enables
the representation and testing of implementation-oriented mechanisms for
which modelling would be not suitable. Thus FDTs are also widely used in
the protocol engineering field.

SDL is a Specification and Description Language standardised by ITU.
The basis for the description of behaviour is communicating Extended State
Machines that are represented by processes. Communication is represented
by signals and can take place among processes, or between processes and the
environment of the system model. Data are represented by algebraic abstract
types. Estelle is close to SDL since it also uses Extended State Machines
communicating through FIFO channels, but the language Pascal is used to
represent data. LOTOS is based on the CCS (Calculus of Communicating
Systems) formalism and the abstract types of data ACT ONE.

As mentioned in the previous section, due to the evolution of telecommu-
nications systems, service engineering is an emerging domain of interest. The
aspects related to telecommunications service provision pose new problems,
especially in terms of compatibility and interactions among services. When a
new service is introduced into an operational telecommunications system, one
must be able to evaluate its impact on the system and the existing services. A
question to be addressed is: “Are the features of this new service compatible
with the existing ones, or do they create conflicts?” So the specification and
design of the services require undertaking validation and formal verification
to manage their quality assurance.

For specifying telecommunications services, SDL has proved to be a popu-
lar language. However, object-oriented (OO) approaches are being used more
and more. According to the ODP reference model, a telecommunications ser-
vice is designed as a set of interacting objects. Actually, the most recent
version of SDL integrates the OO paradigm. However, both SDL and the OO
approach are hampered by the lack of analysis tools for evaluating and vali-
dating the dynamic aspects of the system at the specification stage. They do
not provide validation and verification features to evaluate the correctness
and compliance of the model. Motivation to use Petri nets is the need for
the designer to have a validation and verification of his specification. Some
versions of Petri nets adapted to object-oriented features are proposed, such
as interacting modular nets and hierarchical nets. Combination of the OO
paradigm and Petri net concepts produces a modelling tool that has prof-
itable aspects of both. So the use the Object Formalism Class (OF-Class),
presented in Section 10.3 of Part II, and which integrates the Petri net prov-
ing power with an OO methodology is proposed.
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The next section is devoted to a description of a case study illustrating
the design methodology of an intelligent network telecommunications system
into which a new service must be introduced.

26.3 Design Methodology

We address the problem of the introduction of a new telecommunications
service into an operational telecommunications system. The example is an
Intelligent Network (IN) telecommunications system that provides the Call
Forwarding Unconditional (CFU) service and into which a new service is
added, namely the Terminating Call Screening (TCS) service. With such an
example, it is possible to illustrate one of the benefits of formalising appli-
cation creation,i.e. the ability to detect errors that can occur during such a
process. It is considered that a telecommunications service is a distributed
application composed of a collection of interacting objects. The description of
the environment supporting the application is also object-based. This allows
one to have a modular representation of system components.

In order to be able to validate and to verify a telecommunications system
described with an OO approach, the design methodology used is the Object
Formalism Class (OF-Class) already mentioned. Our example is composed
of three steps. Firstly a basic telecommunications system that provides the
most elementary service, namely the basic call, is modelled. Then this model
is modified to introduce the Intelligent Network (IN) capability, which is the
ability to detect an IN service demand, and a telecommunications system that
provides the IN Call Forwarding Unconditional (CFU) service is specified.
Finally this model is made richer by the introduction of the Terminating Call
Screening (TCS) service in order to get an IN Telecommunications System.

Once a syntactically correct OF-Class model of this system is obtained, it
is automatically transformed into OF-CPNs. This process is recalled at the
end of this section.

26.3.1 The OF-Class Model of a Basic Telecommunications
System

A telecommunications system provides the users with the ability to com-
municate. The users manipulate phones that are attached to the network,
which is composed of lines and switches (Figure 26.2). The telecommunica-
tions system operation is based on the exchange of messages or signals. The
specification of such a system allows for the validation of these exchanges and
for verification that the system behaviour is in conforms to the requirements.

• The user initiates or receives calls, i.e. he2 is the caller or the callee.
The user behaviour is described independently of the telecommunications

2 “he” should be read as “he” or “she” throughout this chapter and indeed through-
out the book.
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Fig. 26.2. Global view of the system

system since the user does not belong to the system. He can pick up the
phone and dial digits if he is the caller, or pick up the phone when it rings
if he is a callee. Another action is to hang up the phone either by choice
or because he receives a busy tone.

• The phone, also named the terminal, is the interface between the user
and the network. It represents the access point to the network for the user:
from the terminal, the user can send or receive calls. The terminal must
provide the user with the ability to perform the actions mentioned above.

• The network is a graph composed of switches and lines. The switch enables
a connection between two users. It must be available in order to capture a
call demand coming from a terminal. It must also control the establishment
and release of the connections, and manage the lines.

• The line is represented by the messages and signals exchanged between
the terminal and the switch. One line per terminal is modelled.

Communication between two users encompasses three steps: establish-
ment, transfer, and termination. The communication progress described here
corresponds to a simplified scenario (Figure 26.3). It is assumed that the
network is composed of a single switch and two lines. Hence, no routing func-
tion is taken into account by the switch. Other assumptions are that a party
corresponding to the dialled number always exists, and that the user dials
correctly. So the switch does not manage dialling errors. Moreover, charging
aspects are omitted. Finally, a unified process for call termination is adopted
as explained below.

• The establishment phase deals with the connection of two users, the caller
and the callee. The caller picks up the phone, which sends an off-hook signal
to the switch. The switch answers by sending a dial tone signal. Once
the user hears the dial tone, he dials the number, which is transmitted
by the terminal to the switch. Based on this number, the switch selects
the corresponding line while sending back a routing signal to the calling
terminal. If the called-line state is free, the switch sends a ring to the called
terminal and a ringing back tone to the calling terminal. Once the called
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Fig. 26.3. An example of the three steps of a communication

user picks up the phone, the switch establishes the connection, i.e. changes
the line state. No connection is established if the line is not free, or if
the called user does not answer the ringing phone after a period of time.
In both cases, the switch sends a busy tone to the calling terminal. The
actions of a user during this phase are pick-up and dial. The exchanges
between the terminal and the switch are:
– off-hook : from the calling terminal to the switch, following a user request

for a call;
– dial-tone: from the switch to the calling terminal after receiving the off-

hook signal;
– connection request : from the calling terminal to the switch, once the user

has dialled the number;
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– connection response: from the switch to the terminal, in response to a
connection request;

– routing signal : from the switch to the calling terminal while establishing
the connection and selecting the called line;

– ring : from the switch to the called terminal to inform it of an incoming
call;

– result-ring : from the terminal to the switch, in response to the ring;
– ringing back tone: from the switch to the calling terminal while estab-

lishing the connection.
• The transfer phase takes place once the connection is established. It cor-

responds to conversation between the users, represented by the talking
exchange. This phase ends as soon as one of the two users hangs up his
phone.

• The termination phase deals with the release of the connection. In normal
cases, it begins when the transfer phase terminates because a user hangs
up. But it can also occur during the establishment phase since the caller can
hang up at any time. The following description of the termination phase
is a simplified one, since it does not deal with the asymmetrical aspect
of the call termination. It is assumed here that the switch processes the
termination in the same way whether the caller or the callee first hangs up.
So once one of the two users hangs up his terminal, an on-hook signal is sent
by the terminal to the switch. This one looks for the other party of the call.
This party exists if there is a connection, i.e. if the user hangs up during
the transfer phase. Then the switch sends to this party a break command.
This party must hang up, and then the switch releases the connection. If
there is no connection, i.e. the caller hangs up during the establishment
phase, then only the calling-line state has to be changed by the switch. So
the action of a user during this phase is hangup. The exchanges between
the terminal and the switch during this phase are:
– on-hook : from the terminal to the switch, following a user request for a

call termination;
– break : from the switch to a party involved in a call to alert it that the

other party has hung up;
– disconnect : from the switch to the terminal that has requested a call

termination and from the other terminal to the switch.

The OF-Class model for the telecommunications system described above
contains two OF-Classes, namely the OF-Class Terminal and the OF-Class
TSwitch. The user is not modelled since he does not belong to the system.
His interaction with the system will be treated as an external entity that
constitutes the environment of the system. The OF-Classes interact through
their interfaces in order to perform the system function. The set of possi-
ble interactions between a terminal and a switch reflects the communication
progress and is expressed through operational, signal, and stream interfaces,
which constitute the macro-level description of the OF-Class. Moreover, each
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of these OF-Classes owns resources. For example, a switch manages a set of
lines, and a set of connections that result from the ongoing association of
two lines. Finally, some triggers can be identified for an OF-Class to enable
automated processing such as sending or receiving signals. The micro-level
description of an OF-Class contains the definition of its instances, resources,
operations, and triggers.

The OF-Class Terminal. The OF-Class Terminal models a terminal, i.e.
the means by which the user accesses the system. It interacts with the user
and with the switch through an operational interface, a signal interface, and
a stream interface. Thus the exchanges described in Figure 26.3 are expressed
through these interfaces. Some of these exchanges are expressed as operations
while others are signals or streams.

• The operational interface of the OF-Class Terminal is the set of the im-
ported service from the switch and the exported services to the user and
to the switch. The service imported by this OF-Class is the OutgoingCall

service, by which a calling terminal can request the switch for a connection
with another terminal. It includes the operation ConnectionReq.
The services exported by the OF-Class Terminal are defined as follows:
– The UseTerminal service is used by the user to place a call or to an-

swer a call. It is composed of four operations that reflect the actions
performed by the user: the PickUp operation, the Dial operation, the
Talk operation, and the HangUp operation. The usage pattern of the
service describes the allowed chaining of operations and is illustrated in
Figure 26.4. The user picks up the terminal to initiate a call or to receive
a call. If he is the callee, he talks immediately, else he must first dial,
then talk. He hangs up to terminate the call. He can also hang up at any
time once he has picked up. The invocation mode of the UseTerminal

service is synchronous, i.e. blocking for all the operations.

Dial

PickUp

PickUp

HangUp

Connect

Talk

HangUp

HangUp

Fig. 26.4. The usage pattern of the UseTerminal service
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– The EndConnection service is used by the switch to alert a party that
the conversation is broken because the other party has already hung up.
The service is composed of the Break operation. The invocation mode
of this service is synchronous.

– The IncomingCall service is used by the switch to alert the called
party. It is composed of the Ring operation. Its invocation mode is asyn-
chronous because the switch does not need to block until the return from
Ring operation. It can perform other tasks meanwhile.

• The signal interface of the OF-Class Terminal is the set of signals ex-
changed between the terminal and the switch. Two signals are syn-
chronously transmitted by the terminal, namely the OffHook signal and
the OnHook signal. The signals expected by the terminal are DialTone,
RoutingSignal, RingingBackTone, and Disconnect.

• The stream interface of the OF-Class Terminal is the voice flow exchanged
between the users during a conversation.

• The instances of the OF-Class Terminal used correspond to the simplified
scenario described above. Two instances are declared, identified by a num-
ber that is assumed to be the terminal number and identifier of the switch
to which the terminal is attached.

• The resources of the OF-Class Terminal are the state of the terminal
tstate and the identity of the switch to which the terminal is attached.
The evolution of the terminal state during a communication is illustrated
in Figure 26.5. The default state is disconnected. When the user picks
up the phone to initiate a call, the state shifts to the calling value. Then
the user dials a number, so the state shifts to the dialling value. If the
connection can be established with the other party by the switch, then the
state of the calling terminal shifts to the connected value. When the user
picks up the phone because it is ringing, the state shifts from the ringing

value to the connected value. It is possible to shift from any of the previous
states to the state disconnected.

Dialling

Calling Ringing

Connected

Disconnected

Fig. 26.5. The states of a terminal
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• The trigger CallRequest of the OF-Class Terminal is used by the terminal
as soon as its state shifts to the calling value, to wait for the signals
RoutingSignal and RingingBackTone sent by the switch.

The OF-Class TSwitch. The OF-Class TSwitch models the switch, which
must be permanently available to detect the user requests coming through the
terminals that are attached to it. Its macro-level description is related to the
macro-level description of the OF-Class Terminal. In fact, the operational
interface of the OF-Class TSwitch contains the services that it imports from
the Terminal, namely the IncomingCall and the EndConnection services.
These services correspond to those exported by the OF-Class Terminal. This
interface also contains the OutgoingCall service that the OF-Class TSwitch
exports to the Terminal (which imports it). The signal interface is composed
of the signals provided by the switch, namely DialTone, RoutingSignal,
and RingingBackTone, and of those expected by the switch, i.e. OffHook
and OnHook signals. At the micro-level, the resources described are the set of
lines managed by the switch, and the ongoing connections that result from
the association of two lines. In order to simplify the description, a line is
characterised by an identifier and a state. The line identifier corresponds to
the terminal number. In our example, the line state is free, calling, or
called. The switch is then able to identify the calling line from the called
line in a given connection and in the set of lines. Two triggers are defined. The
trigger OpenLine expresses the ability of the switch to detect a call demand,
i.e. an OffHook signal coming from a terminal. The trigger CloseLine enables
the switch to permanently detect a call termination demand, i.e. an OnHook

signal coming from a terminal. The switch has to release the connection
related to this terminal if such a connection exists ( i.e. the user has hung up
after the transfer phase, and not during the establishment phase).

In the next section, the SSF capability, i.e. the ability to detect an IN
service demand contained in a call, is added to the switch. The OF-Class
TSwitch is then modified to take into account this capability.

26.3.2 The OF-Class Model of a CFU Telecommunications System

A CFU Telecommunications System is a system that provides the Call For-
warding Unconditional service according to the intelligent network principle.
In this case, the telecommunications system is composed of physical entities
that implement the needed functional entities, namely the CCF/SSF, SCF,
and SDF entities. As a simplification, the SCF and the SDF are grouped
together (see Figure 26.6).

The CFU Service. The CFU service enables a user to forward his incoming
calls to another terminal. Only the operational part of this service is taken
into account; it encompasses several aspects such as operator procedures (e.g.
adding or removing a subscriber) and user procedures. The description is
focused on the user procedures, namely activation, deactivation, and use. A
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Fig. 26.6. The CFU telecommunications system

CFU subscriber who wants to forward his calls must first activate the service.
The activation procedure is performed by first dialling a special code, and
then dialling a terminal number to which the calls will be forwarded; this is
named the forwarded-to number. If a user dials the CFU subscriber number,
then his call will be forwarded to this forwarded-to number. Thus no specific
procedure is required of the user calling the CFU subscriber. Only the system
is involved, detecting that such a basic call demand is in fact a CFU processing
demand. When the subscriber wants to deactivate the service, he must dial
another special code. The model described below details only the CFU service
part corresponding to the processing of a CFU number demand.

The CFU Number Demand Processing. A call to a CFU subscriber is
processed as illustrated in Figure 26.7. When a user dials a terminal number,
the CCF/SSF has to detect if it corresponds to a CFU subscriber number
or not. This is done by the Detection Point (DP) processing included in the
basic call processing. If the CCF/SSF recognises a CFU subscriber number,
it suspends the basic call processing and addresses a request to the SCF by
providing it with the corresponding service key. Based on this information,
the SCF invokes the appropriate service logic, i.e. the CFU processing, by
providing the dialled number. The CFU processing determines if the service
is activated for this subscriber, and if so, retrieves the Forwarded-To number.
The result of this execution is then provided to the SCF. Depending on this
result, the SCF has to transmit an order to the CCF/SSF. Three types of
orders are identified:

• Continue with the same data: the CCF/SSF can resume the basic call pro-
cessing with the same data, i.e. the calling-line identity (callingLineID)

and the called-line identity (calledPartyNumber).
• Continue with new data: the service execution provides new data by mod-

ifying the initial ones (e.g. the forwarded-to number replaces the called
number). So the CCF/SSF has to resume the basic call processin, taking
into account these new data.

• Clear the call: following the service execution, the call must be cleared by
the CCF/SSF. This response is provided, for example, in case of errors
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occurring during the service execution. It is also used to terminate a ser-
vice demand for which no connection request is required, for example the
activation or deactivation of a service. In such cases, once the service is
performed, it is assumed that the call can be cleared.
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Fig. 26.7. The CFU number demand processing

The OF-Class Model. The OF-Class model of such a system contains
the same OF-Class Terminal as the previous model, a new OF-class SSF

corresponding to the modified OF-Class TSwitch and two other new OF-
Classes, namely the SCF and OFCallForwarding OF-Classes.

• The OF-Class SSF corresponds to an OF-Class TSwitch that has the ability
to detect an IN demand, i.e. to process detection points (DPs). A simplified
DP processing is considered: only the DP enabling the processing associ-
ated with the acceptance of a call on the terminating side is taken into
account, i.e. DP12. Actually, before delivering the call to the called termi-
nal, the CCF/SSF determines if it is a basic call or if it is an IN service
demand. For this, it is assumed that an armed DP12 and the correspond-
ing service key, namely the CFU number demand, are associated with the
CFU subscriber number. This is achieved by using a table that associates
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the armed DPs of a service with the user profile identified by a terminal
number. This table tPointTable is defined as an SSF resource. So any call
with call parameters corresponding to a CFU subscriber number is identi-
fied as an IN service demand and is suspended while a request is addressed
to the SCF for service processing. The CCF/SSF will continue the basic
call processing according to the SCF order related to the end of the service
execution.
So the OF-Class SSF imports from the OF-Class SCF the service StartUp

that is composed of the operation InitialDP. The service invocation mode
is synchronous.

• The OF-Class SCF models the entity that is responsible for the processing of
the SSF requests. When the SSF invokes operation InitialDP, it provides
to the SCF one parameter initialDPArg that contains the identifier of the
service serviceKey, the identity of the calling terminal callingLineID,
and the identity of the called terminal calledPartyNumber. Once again,
the description is simplified. The serviceKey is a discriminant that enables
the SCF to determine which service logic program is relevant to the request.
The SCF transfers the request to this service logic program.
The macro-level of the OF-Class SCF contains only an operational inter-
face. The imported service of this OF-Class is the service CallForwarding
composed of three operations: CF Activation, CF Deactivation, and
CF Processing. This service is used by the SCF to invoke the appropriate
service logic program. Its invocation mode is synchronous. The OF-Class
SCF exports the service StartUp, which is used by the SSF. The InitialDP
operation is the sole operation of the service. The service invocation mode
is synchronous.
The micro-level description is very simple: only the operation bodies are
needed. The SCF manages no resource because it works only on supplied
data and does not need to have persistent states.
It should be noted that in the IN recommendations, the SCF is the entity
performing the services. Thus it is composed of several modules, includ-
ing the service logic programs. In the present model, this characteristic is
expressed by the definition of two OF-Classes. One is the OF-Class SCF

which represents the module that receives an SSF request, analyses it, and
invokes the appropriate service logic program. The other is the OF-Class
OFCallForwarding which represents the service logic itself. Since a service
logic program is a part of the SCF, the OF-Class SCF includes the OF-Class
OFCallForwarding.

• The OF-Class OFCallForwarding represents the service logic for the CFU
service. As mentioned above, it is included in the OF-Class SCF. Its macro-
level description contains the exported service CallForwarding with its
three operations CF Activation, CF Deactivation, and CF Processing,
corresponding to the user procedures. The usage pattern expresses the
dependency relation between the CF Activation and CF Deactivation
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operations, since the CF Activation operation must always precede the
CF Deactivation operation. On the other hand, the CF Processing oper-
ation can be invoked independently of the two others.
It should be noticed that it is assumed thatgrouping the SCF and the SDF
can be grouped together (see Figure 26.7). Since the OF-Class SCF models
the SDF too, one resource is defined at the micro-level. This is the list of
subscribers who have activated the CFU service, CF activeList. Only the
CF Processing operation is specified in detail. It performs CFU number
demand processing.

26.3.3 The OF-Class Model of an IN Telecommunications System

The system now modelled is the CFU Telecommunications System in which
a new service is introduced, namely the Terminating Call Screening service
(TCS), in order to obtain an IN Telecommunications System. It is consid-
ered that the same SCF performs the two services (Figure 26.8). Actually,
whether we have a single SCF performing the two services, or two SCFs, each
dedicated to the execution of one service, has no impact on the activities of
validation and verification of the system realised by the formalism. The prov-
ing process enables us to validate the correctness of the specification in terms
of expected functionality, and to verify its structural and behavioural prop-
erties. Thus it is independent of the assumptions made in the specification
itself. Its role is precisely to evaluate whether or not, given these assump-
tions, the specification is correct. Introducing the TCS service then requires
the modification of the SSF and SCF OF-Classes and the addition of a new
OF-Class OFTerminatingCallScreening.

SCF-SDF

CFU SLPIN

CCF
SSF

CCF
SSF

TCS SLP

Fig. 26.8. The IN telecommunications system

The Terminating Call Screening Service. The TCS service enables a
user to prevent some calls from being delivered to his terminal. This means
that the subscriber has to provide the calling numbers which he does not want
to accept, and when an incoming call is presented to the switch from one of
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these numbers, the switch stops this call. As was done for the CFU service, the
focus is on the user procedures of the TCS service, especially the processing
of a TCS number demand. The subscriber has to activate his service by a
specific procedure TCS Activation. Then his incoming calls will be filtered
according to the given list of denied callers. When the subscriber wants to
deactivate the service, he performs the TCS Deactivation procedure. The
subscriber can also manage his list of denied numbers, i.e. add or remove a
number by using the TCS AddNumber or TCS RemoveNumber procedures.

The TCS Number Demand Processing. The TCS number demand pro-
cessing is very close to CFU processing, since it is based on the call presen-
tation to the called terminal. If the called number corresponds to a TCS
subscriber, then the CCF/SSF detects it through DP12 processing, suspends
the basic call processing, and addresses an InitialDP request to the SCF by
providing the initialDPArg, i.e. the serviceKey, the callingLineID, and
the calledPartyNumber.

Based on the service key, the SCF invokes the TCS service logic program.
It checks whether the service is activated for this subscriber, and if so, it
checks whether or not the calling terminal is authorised to make the call. As
for the response, the SCF will deliver to the CCF/SSF the order to resume
or to clear the call.3

The OF-Class Model. To introduce a new service, the CFU Telecommu-
nications System requires some modifications.

• The OF-Class SSF has to be modified to be able to detect a TCS service de-
mand and to initiate a corresponding request to the SCF. Obviously DP12
has to be armed. As in the previous model, the SSF resource tPointTable
is used to associate an armed DP of a service with the user profile identi-
fied by the terminal number. So this table has to be modified by adding
the association corresponding to the TCS service. This table represents the
list of services for which DP12 is armed and for which the CCF/SSF has
to request from the SCF the execution of the corresponding service logic
programs during a given call. If several services have to be invoked in the
same call, the table is also used to determine the invocation priority and
then the sequence of the requests sent to the SCF.

• The OF-Class SCF has to take into account the new service. So it will in-
clude not only the OF-Class OFCallForwarding, but also the OF-Class
OFTerminatingCallScreening, which models the TCS service logic. Into
the operational interface of the OF-Class SCF is added the imported
service TerminatingCallScreening, composed of the five operations
corresponding to user procedures, TCS Activation, TCS Deactivation,
TCS AddNumber, TCS RemoveNumber, and TCS Processing. The usage pat-
tern expresses the dependency relation between the TCS Activation and

3 Once again, the procedure is simplified by the omission of the announcement to
the caller that he is not authorised to place his call.
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TCS Deactivation operations, since the TCS Activation operation must
always precede the TCS Deactivation operation. The same precedence
relation exists between the TCS AddNumber and TCS RemoveNumber opera-
tions. On the other hand, the TCS Processing operation can be invoked
independently of the others. This service is synchronously invoked. At the
micro-level, the service keys for the TCS service and enabling the SCF to
determine which service logic program is relevant to the SSF request are
added.

• The OF-Class OFTerminatingCallScreening represents the service logic
program of the TCS service. As mentioned above, it is included in the
OF-Class SCF. Its macro-level description contains the exported service
TerminatingCallScreening with its five operations. Resources are the
list of subscribers who have activated their TCS service, TCS activeList,
and for each subscriber, the list of his denied numbers, deniedList. Only
the operation TCS Processing is specified in detail.

26.3.4 From OF-Class to OF-CPN: The Principles of the
Transformation

Once a syntactically correct OF-Class model is obtained, it is automatically
transformed into OF-CPNs, as described in section 10.3 of Part III. This
process is recalled here for the sake of clarity. The principles of this transfor-
mation, which are based on the method developed by Heiner [Hei92] are:

• Each OF-Class (the source element) is transformed into one OF-CPN (the
target element). This means that composition links are not taken into
account. Thus a composite OF-Class is considered as a set of flat OF-
Classes, without any hierarchical relationship.

• For a given OF-Class, its declaration section determines the type system
of its target OF-CPN.

• The elementary unit of an OF-Class, i.e. the micro-level description is
transformed into the target Petri net. Actions are mapped onto transitions
or onto a sub-net, whereas resources, parameters, and variables are mapped
onto places. Domains of these places are determined by the modelled data
types. Arcs describe the effect of actions on resources, variables, and pa-
rameters. Arc valuations determine the semantics of transformations.

• The interfacing units (macro-level description) contain offered and required
services. They are transformed into state machines controlling the interac-
tions between the elementary units.

Based on these principles, each OF-CPN is generated from the OF-Class
model of the IN Telecommunications System. They are not represented here
because of their size and complexity. Table 26.1 below illustrates the com-
plexity of the net models by giving the number of places, transitions, and
arcs for each net obtained by transformation of the corresponding OF-Class.
The specification size, i.e. number of lines, of the OF-Class is also given as an
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indication. The next section illustrates the transformation on one component,
namely Terminal.

OF-Class Number Number Number Number
of Linesof Placesof Transitions of Arcs

Terminal 152 78 57 196
SSF 203 79 65 227
SCF 99 24 28 91

OFCallForwarding 58 48 28 90
OFTerminating- 89 29 17 52
CallScreening

Table 26.1. Complexity of net models

26.3.5 From OF-Class to OF-CPN: Illustration of the
Transformation

An OF-CPN is built from a set of Petri nets produced from the OF-Class
specification according to the principles given in Section 26.3.4. Each usage
pattern gives a net which enforces valid sequences between the operations.
Figure 26.4 illustrates the usage pattern of the terminal, which determines
the correct behaviour of a telephone user. The places in this net express the
sequencing constraints. The operations are transformed into nets according
to the principles above. The places which model the resources are connected
to the actions which modify them. A couple of places are added to model the
incoming parameters and the outgoing results of the operation.

<id>

<id> <id>

<id>

<id,disc>

<id,con>

<id,ring>

<id,dialtone>

<id,talktone>

<id,con>

BeginPickUp

Accept

tstate

Result

Fig. 26.9. The operation PickUp of Terminal in OF-Class and OF-CPN

These nets are used to refine the usage pattern and produce from it the
OF-CPN model. Actually, each transition of the usage pattern models an
operation, i.e. a sequence of elementary and elaborated actions. It is therefore
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refined by the net modelling this operation (see Figure 26.9 for the example
of PickUp).

The procedure sketched above shows a progressive way to produce an
OF-CPN from an OF-Class. A simple case for the OF-Class Terminal with
only one usage pattern is illustrated in Figure 26.10. In the case of many
different usage patterns, they are first combined according to rules which are
skipped here for the sake of space.

<id,ring>

<id>

<id,talktone>

<id,dialtone>

<id,ring>

<id,con>

<id,disc>

<id>

<id><id>

<id>

<id>

<id>

<id>

<id>

<id>

<id>

<id>

<id>

<id>

<id,tlk>

<id,tlk>

<id>

<id>

<id>

<id>

Result

tstate

Accept

Idle

Dial

BeginPickUp

HangUp
HangU p

Connect

Talk
HangUp

Fig. 26.10. Part of the OF-CPN synthesised from OF-Class Terminal

26.4 Analysis

26.4.1 Overview of Analysis with Petri Nets in the Area of
Telecommunications Systems

Many analysis techniques and methods have been developed for the formalism
of Petri nets (see Part III). Almost all these techniques and methods can be
applied to telecommunications systems. First of all, the direct executability
of nets allows a validation approach based on simulation and animation.
Telecommunications systems modelled directly with nets can be simulated.
If nets are used only for verification and validation needs (as for the modelling
approach used in this chapter), the nets provide a basis for animation of the
models because of their tight correspondence.

Structural analysis such as invariant computation allows us to validate
the usage of resources and the sequence of actions in net-based telecommuni-
cations system models. For instance, a given telephone line in a telecommu-
nications system has a given number of possible states which can be matched
by a P-semiflow. The actions a subscriber can perform using a telephone can
also be matched by repetitive sequences of transitions. There are two basic
approaches in invariant-based analysis and modelling:
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• Models are built and their invariants computed. These invariants are then
used to corroborate those expected in the models.

• Invariants are modelled and afterwards the models are refined in such a
way that these invariants are preserved. This approach puts constraints on
the refinement process but allows us to produce models with correct and
precise properties.

Net models for telecommunications systems can also support analysis of their
performance. Deterministic and stochastic time can be associated with the
transitions. For exponentially distributed stochastic time, the reachability
graph is shown to be equivalent to a Markov chain if the net is bounded
(see [Dia82, Mur89]). One interesting feature of nets in telecommunications
is that they allow a state-/transition-based approach to their models. Reach-
ability graphs allow us to build and check the global state space of a model.
Properties can be expressed and verified by model-checking means. For the
expression of the properties, one can use, for instance, temporal logic (see
section 14.1 of Part III).

26.4.2 Analysis of the IN Model: Detection of Feature Interaction

The purpose of this analysis is twofold:

• It enables the designer to establish that the specification of the system is
correct in terms of safety and reliability.

• It assists him/her to check and validate some specific scenarios suspected
to produce feature interactions.

The technique used here is the analysis of the reachability graph. Once each
OF-CPN has been obtained by the transformation of its source OF-Class, it is
extended by including the usage patterns of its offered services. In this case,
all OF-CPNs are interfaced by places. Therefore, the place-fusion method
is chosen for the analysis. This method is the most suitable because state
information on the SSF is required. The initial configuration of the system
is determined as follows. Three users A, B, and C are considered. A has
subscribed to the CFU and TCS services and has activated them. A forwards
his calls to B’s terminal and denies calls from C. B is idle and C initiates a
call to A.

First the reachability graph for each OF-CPN is computed according to
the initial configuration and the exhaustive abstraction of the environment.
Exhaustive abstraction of the environment means marking with all their pos-
sible values the interface places that model incoming results and signals. It
contains the expected results of interactions with other OF-CPNs as well as a
representation of the part of the system that is not explicitly modelled. This
abstraction enables an OF-CPN to guarantee a correct operation provided
that the environment operates correctly. It gives an implicit model of the
environment based on the rely/guarantee principle [Col93]. An aggregated
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equivalent for each OF-CPN with its environment abstraction is computed.
Below we give the aggregated equivalent of the OF-CPN deduced from OF-
Class Terminal (Figure 26.11). Its initial configuration is C initiating a call to
A. This is represented by a request for each of the operations of the OF-Class
Terminal. The sequencing between these requests is achieved by the usage
pattern of the OF-Class. For the sake of space and readability, the value of
the resources at each state is not shown in detail.

C.PickUp()

signal(C,OffHook,Sw1)

signal(Sw1,DialTone,C)
C.HangUp()

C.Dial(A)

C.HangUp()

C.HangUp()

C.BreakLine()

C.HangUp()
res = ConnectionReq(C,A) 

res = connect res = busy

signal(Sw1,RoutingTone,C)
signal(Sw1,RingingBackTone,C)

Fig. 26.11. Aggregated equivalent of the OF-Class Terminal

The aggregated equivalent of an OF-CPN is a restriction of the reacha-
bility graph to actions that modify the interface places. Thus it models the
part of the behaviour that is observable rather than the internal part that
modifies only resource variables and parameters.

Such equivalents are considered for each of the other OF-Classes, namely
SSF, SCF, OFCallForwarding ,and OFTerminatingCallScreening. Each
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equivalent (except the SSF equivalent) is transformed back into smaller Petri
nets that will be combined with the OF-CPN modelling the CCF/SSF by
place-fusion. The reachability graph for the net modelling the SSF interfaced
with other equivalents is illustrated in Figure 26.12. It shows that a com-
munication can be established between A and C, thereby violating the TCS
functionality. In fact, the precedence relationship between the invocation of
the CFU and TCS services in the same call, established by the way the table
is managed, is not correct.

signal(C,OffHook,Sw1)

signal(Sw1,DialTone,C)

ConnectionReq(C,A)

resInit = InitialDP(initialDPArg)

resSLP = CFUProcessing(C,A)

resSLP = (connect,B)

resInit = connect(C,B)
send(B,Ring)

signal(C,RingingBackTone,Sw1)

receive(Ring,ringResp)

ringResp =absent

ringResp = present

signal(C,OnHook,Sw1)

signal(C,OnHook,Sw1) signal(B,OnHook,Sw1)

signal(Sw1,routingTone,C)

InitialDPArg = (CFU,C,A)

B.BreakLine() C.BreakLine()

Fig. 26.12. Reachability graph of the SSF interfaced with the aggregated equiva-
lents of Terminal, TCS, and CFU

In a correct operation, when a call is addressed to a subscriber that has
subscribed to the CFU and TCS services, if the services are activated and
if the caller belongs to the deniedList of the subscriber, then the call must
not be forwarded. So the first service to be invoked must be the TCS service,
followed by the CFU service. The invocation priority is determined by the
table tPointTable and so depends on the management policy of this resource.
This policy is the combination of an updating policy and a consulting policy,
and both must be consistent with each other in order to guarantee that no
interactions between services will occur. Thus introducing a service requires
us to modify the resource tPointTable and to build a new one, according
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to the management policy. Once the table is built, our formalism enables us
to determine the correctness of the construction, by verifying the precedence
relationship between the invocations.

A very simple resource management policy has been chosen, namely FIFO
management. Hence the oldest service created in the system, namely the CFU
service, is invoked first. The verification of the table construction has shown
that the management policy is not correct.

The IN-CS1 principles have been applied, namely single-ended and single
point-of-control services. The service invocations of SSF are sequential and
blocking, i.e. the basic call process is suspended. This is expressed in the
specification by the synchronous invocation mode of the service StartUp (cf.
the DP processing in the OF-Class SSF). The OF-Class formalism enables
non-blocking and parallel invocations of services imported from different OF-
Classes. So a scenario in which several points of control are involved can
be described with the OF-Class formalism, i.e. an OF-Class SSF can invoke
several OF-Classes SCF in a parallel and non-blocking way. In this case, several
services can be invoked at the same time. If a precedence relationship must be
respected between services, it is no longer expressed as an invocation priority,
but as a priority of result collecting and processing. As for priority between
invocations, the specification must state a priority policy for result collecting
and processing. The proving tool is then able to validate that the policy does
not exhibit interaction between services.

The OF-Class formalism is linked with another one called H-COSTAM,
which is mostly dedicated to code generation with optimisation features and
was presented in Chapter 21. The translation from one formalism to the other
is described in [DK96]. The implementation of a tool for this translation is
ongoing. So it will become possible to undertake code generation from an
OF-Class specification. The pair of formalisms allows one to trace proper-
ties proved on the specification to the final implementation. The OF-Class
formalism provides a very detailed specification level from which final code
could be easily derived in an automated way. But it is useful to trace and
check properties via the H-COSTAM model.

26.5 Conclusion

This chapter has illustrated the benefits of using formal methods, namely
Petri nets, in the context of telecommunications systems. The emerging do-
main of service engineering needs formal support. The new challenge for the
providers is the ability to specify and to design new services which can be in-
tegrated them into an operational system without altering the existing service
operation.

The proving toolset described in this chapter enables a service designer to
validate and to verify a service specification. The proposed approach, based
on a coupling of OO and Petri net paradigms, can be incorporated in a
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standard software production environment without too much effort. The shift
from the initial OO model to the OF-Class model can be made easier by
means of design patterns. The transformation from the OF-Class to the OF-
CPN model is fully automated and supported by a tool. A prototype of
the approach described here has been developed and integrated in the AMI
environment, which is a framework dedicated to the formalisation of software
development throughout its life-cycle.

The case study developed in the chapter uses this proving toolset for the
validation and verification of an intelligent network system that provides call
forwarding and terminating call screening services. Applying the tool gives
an OF-CPN model which is analysed. It reveals an error due to an incorrect
resource management policy. This example clearly establishes the suitability
of the proving toolset. More generally, it illustrates that Petri nets have great
potential as formal methods for the telecommunications service engineering
area.
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27.1 Common Modelling Problems

The three application domains have common characteristics with respect to
the modelling of their processes. Most of the processes considered in this part
are case-based, i.e. every piece of work is executed for a specific case. Examples
of cases are a mortgage, a telephone call, a production order, an insurance
claim, a tax declaration, an order, or a request for information. Cases are often
generated by an external customer. However, it is also possible that a case
is generated by another department within the same organisation (internal
customer). The goal of the processes in the three application domains is to
handle cases as efficiently and effectively as possible.

Cases are handled by executing tasks (operations, process steps) in a
specific order. The process definition (procedure) specifies which tasks need
to be executed and in what order. Since tasks are executed in a specific order,
it is useful to identify conditions which correspond to causal dependencies
between tasks. A condition holds or does not hold (true or false). Each task
has pre- and post-conditions: the pre-conditions should hold before the task
is executed, and the post-conditions should hold after execution of the task.
Many cases can be handled by following the same process definition. As a
result, the same task has to be executed for many cases. A task which needs
to be executed for a specific case is called a work item. An example of a work
item is: Execute task ‘send refund form to customer’ for case ‘complaint sent
by customer Baker’.

Most work items are executed by a resource. A resource is either a ma-
chine (e.g. a conveyor belt, a robot, or a router) or a person (participant,
worker, employee). Resources are allowed to deal with specific work items.
To facilitate the allocation of work items to resources, resources are grouped
into classes. A resource class is a group of resources with similar characteris-
tics. There may be many resources in the same class, and a resource may be a
member of multiple resource classes. A work item which is being executed by
a specific resource is called an activity. If we take a photograph of a process,
we see cases, work items, and activities. Work items link cases and processes.
Activities link cases, processes, and resources.

Figure 27.1 shows that a case-based process has three dimensions: (1) the
case dimension, (2) the process dimension, and (3) the resource dimension.
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case dimension

process dimension

resource dimension

task

case
work item

activity

resource

Fig. 27.1. A three dimensional view of a process

The case dimension signifies the fact that all cases are handled individually.
In principle, cases do not directly influence each other. Clearly they influence
each other indirectly via the sharing of resources and data. In the process
dimension, the procedure, i.e. the tasks and the routing through these tasks,
is specified. In the resource dimension, the resources are grouped into classes.
We can visualise the state of a process as a number of dots in the three-
dimensional view shown in Figure 27.1. Each dot represents either a work
item (case + task) or an activity (case + task + resource).

The fact that the three-dimensional view of a process presented in Fig-
ure 27.1 makes sense in the three application domains presented in this part
illustrates that from a modelling point of view the three domains are not that
different! These application domains share design patterns which transcend
each of the domains. Future research should aim at capturing these design
patterns so that they can be made available to people applying Petri nets.

27.2 Shared Analysis Results

To support the analysis of processes in manufacturing, telecommunications,
and business, many approaches have been developed. There has been a mas-
sive invasion of quantitative techniques to aid decision making at all levels.
Techniques provided by operations research (OR) include linear program-
ming, Markovian analysis, dynamic programming, and critical path analysis.
These OR techniques can be used for scheduling, risk analysis, project plan-
ning, plant location, etc. However, for each level we need different techniques
and models. Moreover, there is often no relation between the efforts performed
at the operational, tactical, and strategical levels.

Another problem related to the use of mathematical techniques such as
linear programming, Markovian analysis, dynamic programming, etc. is the
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fact that it is often necessary to remodel the situation if another type of ques-
tion needs to be answered. For example, to use another method of analysis
we may have to remodel the situation.

To solve these problems one should use a ‘solver-independent’ medium
for the modelling of the problem situation. This medium is used to make
a concise blueprint of the process/system. This blueprint may be used at
different levels of decision making and can be used as a starting point for
various means of analysis.

The solver-independent medium proposed in this book is Petri nets. A
specification in terms of a (high-level) Petri net provides a concise and solver-
independent description of the process at hand, i.e. a blueprint. Unlike more
traditional approaches, the emphasis is on a natural representation rather
than the method(s) of analysis. The result of the modelling process, i.e. the
specification, can be used as a starting point for all kinds of analysis, i.e. the
specification provides an interface between the modelling activities and the
analysis activities. Since the specification does not depend upon the method
of analysis, it is possible to do several kinds of analysis without having to
remodel the entire system. Sometimes, additional analysis activities are the
price paid for this flexibility, i.e. the specification has to be transformed into a
model which can be analysed using a suitable method of analysis. Therefore, it
is essential to support these transformations with tools that allow for an easy
transition between the specification, the analytical model, and the analysis
results.

The use of Petri nets as a modelling language allows for the unification
of analysis techniques over a number of application domains. Consider, for
example, techniques for deadlock detection: they can be applied in any of the
application domains presented in this part.
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d’architecture fonctionnelle et opérationnelle. PhD thesis, Université Pierre &
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[Röm96] S. Römer. An efficient algorithm for the computation of unfoldings of
finite and safe Petri nets (on efficiently implementing mc millan’s unfolding



594 References

algorithm). Technical report, Technische Universität München, Institut für In-
formatik, 1996.

[Roz85] G Rozenberg, editor. Advances in Petri Nets 1984, volume 188 of Lecture
Notes in Computer Science. Springer-Verlag, 1985.

[Roz87] G Rozenberg, editor. Advances in Petri Nets 1987, volume 266 of Lecture
Notes in Computer Science. Springer-Verlag, 1987.

[Roz88] G Rozenberg, editor. Advances in Petri Nets 1988, volume 340 of Lecture
Notes in Computer Science. Springer-Verlag, 1988.

[Roz89] G Rozenberg, editor. Advances in Petri Nets 1989, volume 424 of Lecture
Notes in Computer Science. Springer-Verlag, 1989.

[Roz91] G Rozenberg, editor. Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

[Roz92] G Rozenberg, editor. Advances in Petri Nets 1992, volume 609 of Lecture
Notes in Computer Science. Springer-Verlag, 1992.

[Roz93] G Rozenberg, editor. Advances in Petri Nets 1993, volume 674 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[RS93] J.K. Rho and F. Somenzi. Automatic generation of networks invariants for
the verification of iterative sequential systems. In Proceedings of the 5th Inter-
national Conference on Computer Aided Verification, number 697 in Lecture
Notes in Computer Science, pages 123–137, Elounda, Greece, 1993. Springer-
Verlag.

[RTS95] L. Recalde, E. Teruel, and M. Silva. On Well-formedness Analysis: The
Case of Deterministic Systems of Sequential Processes. In J. Desel, editor, Pro-
ceedings of the International Workshop on Structures in Concurrency Theory,
Workshops in Computing, pages 279–293. Springer-Verlag, 1995.

[RTS96] L. Recalde, E. Teruel, and M. Silva. Modeling and analysis of cooperating
processes with Petri nets. Research report, Dep. Informática e Ingenieŕıa de
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SERENITE. L’Echo des recherches, (157):45–48, 1994. in French.
[SM83] I. Suzuki and T. Murata. A Method for Stepwise Refinements and Ab-

straction of PetPetriri Nets. Journal of Computer Systems Science, 27:51–76,
1983.

[SM99] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In
Proc. of LFM’99: Workshop on Logical Frameworks and Meta-languages, Paris,
France, September 28, 1999, 1999.

[Sof96] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Ger-
many, 1996.

[Som96] I. Sommerville. Software Engineering. International computer science
series. Addison/Wesley, Wokingham, fifth. ed. edition, 1996.

[Sou89] Y. Souissi. Compositions of nets via a communication medium. In ATPN89
[ATP89].

[Sou91] Y. Souissi. Deterministic Systems of Sequential Processes: a Class of Struc-
tured Petri Nets. In Proceedings of the 12th International Conference on Ap-
plication and Theory of Petri Nets 1991 (ICATPN ’91), pages 62–81, Gjern,
Denmark, 1991.

[Spr98] C. Sprenger. A verified model checker for the modal µ-calculus in coq. In
Desel and Silva [DS98], pages 167–183.

[SRI00] SRI International. PVS home page, 2000. http://www.csl.sri.com/
sri-csl-pvs.html.

[ST92] I. Sommerville and R. Thomson. Configuration specification using a sys-
tem structure language. In International IEEE Workshop in Configurable Dis-
tributed Systems, 1992.

[ST97] M. Silva and E. Teruel. Petri nets for the design and operation of manu-
facturing systems. European Journal of Control, (3):182–199, 1997.

[Sta91] P. Starke. Reachability analysis of Petri nets using symmetries. Syst. Anal.
Model. Simul., 8:293–303, 1991.

[Sta93] M.G. Staskauskas. Formal derivation of concurrent programs: an example
from industry. IEEE Trans. on Software Eng., 19:503–528, 1993.

[Ste98a] M.-O. Stehr. Assertional reasoning and temporal logic for sys-
tem verification. Lecture at the MATCH Advanced Summer School
on Systems Engineering, September 14-22, Jaca, Spain. Available via
http://www.cps.unizar.es/deps/DIIS/MATCH/real Home.html, 1998.



596 References

[Ste98b] M.-O. Stehr. Embedding UNITY into the Calculus of Inductive Construc-
tions. Fachbereichsbericht FBI-HH-B-214/98, Universität Hamburg, Fachbere-
ich Informatik, 1998.

[Sti96] Colin Stirling. Modal and temporal logics for processes. In Faron Moller
and Graham Birtwistle, editors, Logics for Concurrency. Springer-Verlag, 1996.

[Suz88] I. Suzuki. Proving properties of a ring of finite-state machines. Information
Processing Letters, 28(4):213–214, 1988.

[SV82] M. Silva and S. Velilla. Programmable logic controllers and petri nets. In
International symposium IFAC-IFIP on Software Computer Control, Madrid,
Spain, 1982.

[SV89] M. Silva and R. Valette. Petri Nets and Flexible Manufacturing. In Rozen-
berg [Roz89], pages 374–417.

[Tau88] D. Taubner. On the implementation of Petri nets. In Rozenberg [Roz88].
[TCE99] F. Tricas, J.M. Colom, and J. Ezpeleta. A solution to the problem of

deadlocks in concurrent systems using Petri nets and integer linear program-
ming. In 11th European Simulation Symposium and Exhibition Simulation in
Industry, Erlangen-Nuremberg, 1999.

[TCS93] E. Teruel, J.M. Colom, and M. Silva. Linear analysis of deadlock-freeness
of Petri net models. In Proceedings of the European Control Conference,
ECC’93, pages 513–518, Groningen, The Netherlands, June 1993.

[TCS97] E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri nets: A model
for deterministic concurrent systems with bulk services and arrivals. IEEE
Transactions on System, Man and Cybernetics. Part A: Systems and Humans,
27(1):73–83, 1997.

[Tel91] G. Tel. Topics in Distributed Algorithms. Cambridge University Press,
1991.

[Tel94] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

[Thi87] P.S. Thiagarajan. Elementary net system. In Brauer et al. [BRR87a], pages
26–59.

[Thu85] E. Thuriot. Le synchroniseur coloré: une approche pour la mise en oeuvre
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Marie Curie (Paris VI), 4 place Jussieu, 75252 Paris Cedex 05, France, 1996.

[ZD91] M. Zhou and F. DiCesare. Parallel and Sequential Mutual Exclusions for
Petri Net Modelling of Manufacturing Systems with Shared Resources. IEEE
Transactions on Robotics and Automation, 7(4), August 1991.

[ZD93] M. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Kluwer Academic Publishers, 1993.

[Zha99] W. Zhang. State-Space Search – Algorithms, Complexity, Extensions, and
Applications. Springer-Verlag, 1999.





Index

A-preservation, 25
abstraction, 20
– simple, 19
– strict, 20
ac-CPN, see arc-constant CPN
accepting state, 211
ACP, 137, 385
admissible occurrence sequence, see

occurrence sequence
algebra
– initial, 321
algebraic data types, 319
algebraic net specification, 320, 328
algebraic representation
– principle of, 14
algebraic semantics, 321
algebraic specification, 319
alternating bit protocol, 97
AMS, see automated material handling

system
analysis techniques
– WMF, 513
AND-JOIN, 518
AND-SPLIT, 518
application domains, 473–570
application of Petri nets, 473, 567
applications
– WFM, 509
arc addition, 110
arc-constant CPN, 30, 43
assertional reasoning, 338
asymmetric choice, 301
asymmetrical transition, 253
asynchrony, 429
at-relation, 24
automata theoretic approach, 210, 215
automated material handling system,

479

Büchi automaton, 210, 215, 221
backward incidence matrix, see

incidence matrix

bag, see multiset
banker’s problem, 92, 325
basic assertions, 341
behavioural property, see boundedness,

liveness, reversibility
benefits of Petri nets, 1, 473
binary decision diagram, 437
binding, 36, 328
bisimilarity, 143, 171
black box section, 418
border
– of a set, 18
– place-bordered set, 18
– transition-bordered set, 18
bound
– of a place, 59
– structural, 287
boundedness, 54, 59, 188, 306, 489, 524
– k-boundedness, 62, 287
branching process, 219, 231, 233
branching process graph, 231
branching-time theory, 143, 386
business process, 507

canonical, see p-semiflow, t-semiflow
case
– WMF, 514
category theory, 362
causal box, 429
causal multicast, 430
causal net, see Petri net
causal state operator, 387
channel, 428
channel place, 438
CIP (concurrent implicit place), see

implicit place
closed
– locally, 25
closed set, 18
co, 343
code generation, 433–468
– centralised, 435
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– high-level net, 461
– table, 436
coherence, 326
colour, 29
– class, 45, 242
– domain, 29, 45
– of a transition, 45
colour classes
– set of, 43
coloured Petri net, 30, 34, 45, 241, 259,

338
commitment protocol, 422
communication, 108, 135, 147, 148
complementary place, 98
components, 343
composition, 108, 350
compositional reasoning, 342
computation, 363
computation sequence, 363, 364
computational tree logic, see CTL
concurrency
– principle of, 12
concurrent implicit place, see implicit

place
conditional assertions, 352
conditional rule, 335
configuration, 233
conflict, 294
– equal, 226, 301
– structural, 294
conflict place
– behavioural, 17
– structural, 17
conflicts, 294
confluence, 305, 321
confusion, 18
conservative, 68
control
– centralised, 420
– distribution over edges, 427
– distribution over places, 421
control place, 504
correctness, 419
correctness proof
– formalising of, 361
coverability, 489
covering step graph, 229
CPN, see coloured Petri net
CSG, see covering step graph
CSP, 428
CTL, 197, 204–214
cut, 232

dead transition, 501

deadlock, 289, 525
deadlock avoidance, 500
deadlock freeness, 289
deadlock prevention, 500
deadlock property, 231, 236, 239, 250
deadlock-freeness, 59, 62, 188, 419, 489,

500
decision making subsystem, 479
decomposition, 108, 116
design patterns, 423
directedness, 305
distributed virtual software compo-

nents, 456
distributor-free, 300
DMS, see decision making subsystem
duality
– principle of, 10
DVSC, see distributed virtual software

components
dynamic subclass, 247

EDD, 536
enablement, 42
– predicate, 365
engineering method, 382
ensures, 348
entails, 370
epifolding, 25
epimorphism, 25
equal conflict, see conflict
equational reasoning, 382
equivalence
– of markings, 241
event structure
– prime, 419
everywhere operator, 341
executable, 321
execution, 417
– direct, 407
– indirect, 407
exploration, 319

F-preservation, 25
factories, 423
fairness, 115, 121, 133, 202, 303, 340
– strong, 359
– weak, 340, 347, 419
– weak group, 333, 347
fairness assumption, 212, 346
FASFS, 535
fault tolerance, 429
FIFO, 484, 535
finite net, 14
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firing sequence, see occurrence
transition sequence

flexible arc, 328, 336
flexible manufacturing system, 108,

479–506
flow relation, 14
FMS, see flexible manufacturing system
folding, 20, 25
forward incidence matrix, see incidence

matrix
free choice Petri net, 75, 297, 488
free occurrence sequence, see occurrence

sequence
free-choice Petri net, 184, 279, 298, 299,

301, 500, 529–530
fusion, see place fusion, transition

fusion

generator, 68
gossiping problem, 329
graphical representation
– principle of, 13
ground term, 321
guard, 36

H-COSTAM, 463
hashing compaction, 267
hierarchical place/transition net, see

place/transition net
hierarchy, 108
high-level formalism, 462
high-level Petri net, see Petri net
Hoare triples, 341
home space, 250
home space property, 259
home state, 63, 188, 226, 250

implicit place, 281
– sequential, 282
– structurally, 284
incidence matrix, 41
– backward, 41, 43, 45
– forward, 41, 43, 45
ind. invariant, 343
initial algebra, see algebra
input element, 15
input place, 15
input transition, 15
interleaving semantics, 338
interleaving theory, 386
invariant, 307, 528
– linear, 70, 307, 309
– place, 437
invariant, 343

invariant equation, 70
invariant property, 221, 236, 239
isomorphism, 25

Java, 427

k-boundedness, 62, 287
KRON, 421

labelled transition system, see
transition system

leads to, 349
LIFO, 484, 535
linear invariant, see invariant
– computation of, 309
linear invariant equation, 70
linear logic, 326, 370, 371
linear time temporal logic, see LTL
livelock, 419, 426
livelocks, 419
liveness, 63, 188, 289, 292, 306, 489,

500, 525
– quasi-, 188
– structural, 292
liveness assertion, 346
liveness assertions, 342
liveness property, 202, 221, 231, 250,

259
locality
– of a place, 15
– of a transition, 15
– principle of, 12
locally closed, see closed
lockset, 421, 425
logic
– CTL, see CTL
– temporal, 202, 204, 207, 209
logical clock, 430
logical framework, 338
LTL, 204, 209, 358

management section, 418
manufacturing, 474
marked graph, 300, 488
marking, 33, 42
– of a CPN, 44
– parametrised, 263
Markov chain, 483
matching algorithm, 323, 337
Maude, 320, 327
membership equational logic, 322, 328
minimality of a morphism, 367
model checking, 212, 360
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– on-the-fly, 215, 224, 267
modelling, 81–180
– common problems, 567
– protocol, 97, 119, 137
modelling process
– automation, 494
monitor, 427, 428
monitor invariants, 428
monitoring tools
– WMF, 509
monoid
– free commutative, 324
morphism
– categorical, 362
– net morphism, 24, 25
MST-property, see siphon-trap-

property
multiset, 43
– finite - as monoid, 324
multithreading, 427, 428
mutual exclusion, 17, 59, 62, 120, 159

net, 14
– finite, 14
net execution
– seeexecution, 417
net isomorphism, 25
net morphism, see morphism
network algorithm, 329
nondeterministic Petri net, see Petri

net
nondeterministic transition, see

transition
normal form, 321

OBJ3, 322
object system, 379, 378–381
object-channel, 428
object-monitor, 427
object-orientation, 105, 106, 108, 111,

119, 146, 173
OCCAM, 429
occurrence mode, 35
occurrence net, 233
occurrence sequence, 37, 42
– admissible, 340
– free, 340
occurrence transition sequence, 42
of course, 371
OF-Class, 146, 152, 173
OF-CPN, 152, 173
on-the-fly model checking, see model

checking

open set, 18
operational semantics, 321, 323, 326
OPS5, 421
OR-JOIN, 518
OR-SPLIT, 518
ORBDD, see ordered reduced binary

decision diagrams
order-sorted algebra, 322
ordered reduced binary decision

diagrams, 268
output element, 15
output place, 15
output transition, 15

P-element, 10
p-flow, 68, 106, 126, 178
p-semiflow, 68, 497
– canonical, 68
P/T net, see place/transition net
P/T net system, see place/transition

net system
par, 370
parallelism, 437
parametrised graph, 241
parametrised marking, 263
parametrised program, 260
parametrised state graph, 263
parametrised verification method, 261
partial correctness, 353
partial-order methods, 218
Partitioning algorithm, 439
path formula, 205
performance analysis, 513
persistent set, 223
Petri net
– arc-constant, see arc-constant CPN
– causal net, 232
– coloured, see coloured Petri net
– high-level, 319
– nondeterministic, 379–381
– P/T net, see place/transition net
– stochastic, 490
– timed, 490
– well-formed, 420
pipe-line detection, 459
place, 10, 14
– complementary, 98
– locality of a, 15
place center, 427
place element, 15
place fusion, 20, 108, 351
place invariant, 126, 459, 528
place linearity equation, 335, 336
place parts, 427



Index 605

place-as-container view, 336
place-bordered set, 18
place/transition net, 32, 41, 219, 260,

326
– hierarchical, 383
place/transition net system, 42
preservation, 365
– minimal, 367
– of properties, 366
prime event structure, see event

structure
priority, 115
PRM net
– seeprogram resource mapping net,

455
process, 232
– PN-process, 437
process algebra, 137, 381, 385
process definition tools
– WMF, 508
process plan, 491
producer/consumer model, 465
production unit, 382, 388
productivity, 347, 419
– weak, 426
program resource mapping net, 455
proof assistants, 339
proof rules, 339
properties, see behavioural property,

structural property
property, 419
protocol modelling, see modelling
prototype, 412, 433
– execution architecture, 454
– hardware architecture, 454
prototype execution environment, 453
prototype object, 434, 440
– computation of, 443
– enhanced, 466
– implementation, 448
prototyping, 319, 433
– evolutionary, 410
– incremental, 410
– model, 410, 412
– rapid, 409
– throw-away, 409
prototyping approach, 408
prototyping taxonomy, 409

quasi-liveness, see liveness
queuing network, 483

rank, 295

rapid prototyping, see prototyping
reachability, 228, 306, 489
reachability graph, 526
reachabilty set, 42, 44, 50
reduction, 307, 312, 321
reduction modulo, 323
reduction rule, 280, 321
refinement, 20
– simple, 19
– strict, 20
reflection, 327, 365
– minimal, 367
– of properties, 366
reflectivity, 429
remote method invocation, 422, 423
remote procedure call, 422–423
representative program, 262
resource, 106, 492
resource management, 92
resource place, 493
reversibility, 59, 63, 296, 489
rewrite rule, 324
rewrite specification, 320, 324
rewriting logic, 319
rewriting modulo, 327
rewriting semantics, 319
rewriting techniques, 382
RMI, see remote method invocation

safe state, 95, 96
safeness, 489
safety assertions, 342, 346
safety property, 202, 221
Saggita-2000, 537
scheduler, 435
sequent calculus, 371
– linear logic, 371
sequential implicit place, 282
shared analysis results, 568
signature, 320
simple, 301
simulation, 363, 382, 530
SIP, see sequential implicit place
siphon, 297, 298, 484, 502, 526
siphon-trap property
– marked (MST-property), 298, 299
sleep set, 227
snapshot, 429, 430
software life-cycle, 405
solver-independent medium, 569
soundness, 525
spiral model, 405
SPT, 536
SRG, see symbolic reachability graph
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SRPT, 536
stable, 343
state
– unavoidable, 188
state equation, 306
state formula, 205, 365
state function, 340
state machine
– join-free, 300
state place, 493
state predicate, 340
state-space caching, 267
static subclass, 242
step, 418
stochastic Petri net, 490
strategy, 319, 327, 334, 336
strong fairness, see fairness
structural analysis, 497, 513, 524
structural bound of a place, 287
structural conflict, 294
structural equation, 323, 326
structural liveness, 292
structural methods, 360
structural property
– structurally live, 59
– structurally bounded, 59
stubborn set, 224
stuttering invariance, 222, 237
subclass
– dynamic, 247
– static, 242
substitution axiom, 345
successor marking relation, 42, 44
– for transition sequences, 50
symbolic firing, 246, 255
symbolic marking, 245, 254
symbolic model checking, 273
symbolic reachability graph, 241, 252
symbolic representation, 337
symmetrical transition, 253
symmetry relation, 241, 259
synchronisation, 110, 136, 148, 428
synchronisation distance, 89
system design, 382
system verification, 382

T-element, 10
t-flow, 68
t-semiflow, 68, 497
– canonical, 68
tagged-token view, 336
task
– execution, 85

– WFM, 515
team prototyping, 430
telecommunications, 475
temporal logic, 107, 119, 120, 201, 202,

204, 207, 209, 338
– CTL, see CTL
temporal model checking, 201
temporal property, 219, 231, 236, 239,

263
temporal redundancy, 421
tensor, 370
term rewriting system, 319
termination, 321
test net, 367
testing, 405
theorem proving, 338
thread, 426, 427
– Java, 427
thread safety, 427
time-out, 429
timed Petri net, 115, 490
token constructor, 326
tools, 338, 412
– analyser, 414
– animator, 414
– code generator, 414
– editor, 413
– repository, 415
– simulator, 413
total correctness, 353
trace, 219, 220
trace-based graph, 219
transient, 348
transition, 10, 14
– asymmetrical, 253
– locality of a, 15
– nondeterministic, 377
– symmetrical, 253
transition element, 15, 319, 328
transition fusion, 20, 110, 136, 438
transition invariant, 528
transition rule, 326
transition system
– labelled, 339
transition-bordered set, 18
transitions
– set of, 14
trap, 297, 298, 526

UI, see user interface
unavoidable state, 188
unconditional fairness, 346
unfolding, 219, 231, 234, 340
unity, 120, 338
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unless, 343
unsafe state, 95
user interface, 430

V-model, 405
validation, 319, 382, 405, 406
value, 321
variant function, 350
verification, 183–401
view, 342, 351

waterfall model, 405

weak fairness, see fairness
weak group fairness, see fairness
weak productivity, see productivity
well-formed Petri net, 242, 420
well-structuredness, 529
with, 370
WN, see well-formed Petri net
workflow analysis, 523
workflow engine, 508
workflow management, 475, 507
workflow management system, 107,

475, 507–540


