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1950   1   24.84   26.26   -1.42
1950   2   25.22   26.53   -1.31
1950   3   26.04   27.09   -1.04
...
2013  10   26.65   26.79   -0.14
2013  11   26.54   26.74   -0.20
2013  12   26.20   26.69   -0.49

Δ
Δt = Xt - Xt-1

Example: let t be 1950,2 then 

Δt=1950,2 = -1.31 - (-1.42) = 0.11

2013, 12:

Δt=2013,12 = -0.49 - (-0.20) = -0.29

0.11
0.27
-0.08

...
0.14
-0.06
-0.29
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Xt+1 = Xt + Forecast(Δt)

Δt+1 ≈ Forecast(Δt)   since:

Δt+1 = Xt+1 - Xt ⟹ Xt+1 = Xt +Δt+1

This model avoids wobbling and oscillation and reduces the over-fitting but prone to noise. For noisy 
data Wavelet Transforms which remove the noise create near ideal forecast for Trend. 
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Remark 1. {} stands for raw data untransformed with no filters 

Average error of about 7.9% with maximum deviation of 38%.

Remark 2. For normalization divide  μ����� by 2.38 signal maximum.
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3 Layers, Input, Hidden and Output.
37 Training samples i.e. Input and Hidden layer each of length 37.
6 length of the Output layer. 

300 sweep of the entire data, each step 30 repetition (like in memorization), all together 9000 learning 
sessions. Error reported for the very last session. 
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Because we have more weights in our network than in perceptrons, we firstly need to introduce the 
notation: wij to specify the weight between unit i and unit j. As with perceptrons, we will calculate a value 
Δij to add on to each weight in the network after an example has been tried. To calculate the weight 
changes for a particular example, E, we first start with the information about how the network should 
perform for E. That is, we write down the target values ti(E) that each output unit Oi should produce for 
E. Note that, for categorisation problems, ti(E) will be zero for all the output units except one, which is 
the unit associated with the correct categorisation for E. For that unit, ti(E) will be 1.

Next, example E is propagated through the network so that we can record all the observed values oi(E) 
for the output nodes Oi. At the same time, we record all the observed values hi(E) for the hidden nodes. 
Then, for each output unit Ok, we calculate its error term as follows:

The error terms from the output units are used to calculate error terms for the hidden units. In fact, this 
method gets its name because we propagate this information backwards through the network. For each 
hidden unit Hk, we calculate the error term as follows:

In English, this means that we take the error term for every output unit and multiply it by the weight from 
hidden unit Hk to the output unit. We then add all these together and multiply the sum by hk(E)*(1 - 
hk(E)).

Having calculated all the error values associated with each unit (hidden and output), we can now trans-
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fer this information into the weight changes Δij between units i and j. The calculation is as follows: for 
weights wij between input unit Ii and hidden unit Hj, we add on:

[Remembering that xi is the input to the i-th input node for example E; that η is a small value known as 
the learning rate and that δHj is the error value we calculated for hidden node Hj using the formula 
above].

For weights wij between hidden unit Hi and output unit Oj, we add on:

[Remembering that hi(E) is the output from hidden node Hi when example E is propagated through the 
network, and that δOj is the error value we calculated for output node Oj using the formula above].

Each alteration Δ is added to the weights and this concludes the calculation for example E. The next 
example is then used to tweak the weights further. As with perceptrons, the learning rate is used to 
ensure that the weights are only moved a short distance for each example, so that the training for 
previous examples is not lost. Note that the mathematical derivation for the above calculations is based 
on derivative of σ that we saw above. For a full description of this, see chapter 4 of Tom Mitchell’s book 
“Machine Learning”.
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