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Dermition 2.1

For any r E N = {1, 2, ...}, A' is the set of all

affine functions from R' to R, that is, the set of all
functions of the form A(x) = w.x + b where wand
x are vectors in R', ,'.', denotes the usual dot product

of vectors, and b E R is a scalar. D
In the present context, x corresponds to network

input, w corresponds to network weights from input
to the intermediate layer, and b corresponds to a
bias.

Definition 2.2

For any (Borel) measurable function G( .) mapping
R to R and r E Nlet I'(G) be the class of functions

{I: R'~ R :f(x)
q

= 2: PjG(AAx», x E R', pj E R, Aj E A',

q = 1,2, ...}. D

A leading case occurs when G is a "squashing
function," in which case Lr(G) is the familiar class
of output functions for single hidden layer feedfor-
ward networks with squashing at the hidden layer
and no squashing at the output layer. The scalars Pi
correspond to network weigQts from hidden to out-

put layers.
For convenience, we formally define what we mean

by a squashing function.

Definition 2.3

A function 'II : R -+ [0,1] is a squashing function if it
is non-decreasing, lim;.-~ 'II().) = 1, and lim;.--~
'II(;.) = 0. D

Because squashing functions have at most count-
duly 1Iidlly ui~cuntlnultles, they are measurable. Use-
ful examples of squashing functions are the thres-
hold functions, 'II(;.) = 1 {;.~O} (where 1{.} denotes
the indicator function), the ramp function, 'II(;.) =
Al{o~;.~I} + 4;.>1}, and the cosine squasher of Gallant
and White (1988), 'II(A) = (1 + cos[;. + 37t/2])

(1/2) 4-,,/2~;.~"/2} + 4;.>,,/2}.
We define a class of In network output functions

(Maxwell, Giles, Lee, & Chen, 1986; Williams, 1986)
in the following way.

though Kolmogorov's result provides a theoretically
important possibility theorem, it does not and cannot
explain the successes achieved in applications.

In previous work, le Cun (1987) and Lapedes and
Farber (1988) have shown that adequate approxi-
mations to an unknown function using monotone
squashing functions can be achieved using two hid-
den layers. Irie and Miyake (1988) have given a rep-
resentation result (perfect approximation) using one
hidden layer, but with a continuum of hidden units.
U nfortunately , this sort of result has little practical
usefulness, despite its great theoretical utility.

Recently, however, Gallant and White (1988)
showed that a particular single hidden layer feed-
forward network using the monotone "cosine
squasher" is capable of embedding as a special case
ii f'uurier network Which yieias a fOurIer serIes ap-
proximation to a given function as its output. Such
networks thus possess all the approximation prop-
erties of Fourier series representations. In particular ,
they are capable of approximation to any desired
degree of accuracy of any square integrable function
on a compact set using a finite number of hidden
units. Still, Gallant and White's results do not justify
arbitrary multilayer feedforward networks as uni-
versal approximators, but only a particular class of
single hidden layer networks in a particular (but im-
portant) sense. Further related results using the lo-
gistic squashing function ( and a great deal of useful
background) are given by Hecht-Nielsen (1989).

The present paper makes use of the Stone-Weier-
strass Theorem and the cosine squasher of Gallant
and White to establish that standard multilayer feed-
forward network architectures using arbitrary
squashing functions can approximate virtually any
function of interest to any desired degree of accu-

racy, provided sufficiently many hidden units are
available. These results establish multilayer feedfor-
ward networks as a class of universal approximators.
As such, failures in applications can be attributed to

inadequate learning, inadequate numbers of hidden
units, or the presence of a stochastic rather than a
deterministic relation between input and target. Our
results do not address the issue of how many units
are needed to attain a given degree of approxima-
tion.

The plan of this paper is as follows. In section 2
we present our main results. Section 3 contains a
discussion of our results, directions for further re-
search and some concluding remarks. Mathematical
proofs are given in an appendix.

Dermition 2.4

For any measurable function G( .) mapping R to R
and r E N, let lllr(G) be the class of functions

{I: R' -R:I(x) =2. MAIN RESULTS

We begin with definitions and notation which enable
us to speak precisely about the class of multi-layer
feedfor-.vard networl~s undcr considcrntion.

q 'i

2: Pi. n G(Aik(X», X E R', Pi E R, Aik E A', ii' E N,
i=1 k=1

q=
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real-valued continuous function over a compact set.
The compact set requirement holds whenever the
possible values of the inputs x are bounded (x E K).
An interesting feature of this result is that the acti-
vation function G may be any continuous noncon-
stant function. It is not required to be a squashing
function, although this is certainly allowed. Another
interesting type of activation function allowed by this
result behaves like a squashing function for values
of A (x) below a given level, but then decreases con-
tinuously to zero as A(x) increases beyond this level.
Our subsequent results all follow from Theorem 2.1.

In order to interpret the metrics relevant to our
subsequent results we introduce the following no-
tion.

Our general results will be proved first for In net-
works and subsequently extended to I networks. The
latter are the special case of In networks for which
lj = 1 for all j .

Notation for the classes of function that we con-
sider approximating is given by the next definition.

Definition 2.5

Let C' be the set of continuous functions from R' to
R, and let M' be the set of all Borel measurable
functions from R' to R. We denote the Borel a-field
ofR'asB'. O

The classes I'(G) and III'(G) belong to M' for
any Borel measurable G. When G is continuous,
I'(G) and III'(G) belong to C'. The class C' is a
subset of M' .which in fact c()nt:\in.. virtu~lly all func-
tions relevant in applications. Functions that are not
Borel measurable exist (e.g., Billingsley, 1979, pp.
36-37) but they are pathological. Our first results
concern approximating functions in C'; we then ex-
tend these results to approximating functions in M' .

Closeness of functions f and 9 belonging to C' or
M' is measured by a metric, p. Closeness of one class
of functions to another class is described by the con-
cept of denseness.

Definition 2.8

Let .u be a probability measure on ( Rr , Br) .If f and
9 belong to Mr, we say the are .u-equivalent if .u{x E
Rr:f(x) = g(x)} = 1 D

Taking .u to be a probability measure (i.e.,
.u(Rr) = 1) is a matter of convenience; our results

actually hold for arbitrary finite measures. The con-
text need not be probabilistic. Regardless, the mea-
sure .u describes the relative frequency of occurrence
of input "patterns" x .The measure .u is the "input
space environment" in the terminology of White
(1988a). Functions that are .u-equivalent differ only
on a set of patterns occurring with probability (mea-
sure) zero, and we are concerned only with distin-
guishing between classes of equivalent functions.

The metric on classes of .u-equivalent functions
relevant for our main results is given by the next
definition.

Definition 2.6

A subset S of a metric space (X, p) is p -dense in
a subset T if for every e > O and for every t E T
there is an s E S such that p(s, t) < e. D

In other words, an element of S can approximate
an element of T to any desired degree of accuracy.
In our theorems below, T and X correspond to C'
or M', S corresponds to I'(G) or Ill'(G) for specific
choices of G, and f) is chosen appropriately.

Our first result is stated in terms of the following
metrics on C' .

Definition 2.7

A subset S of Cr is said to be uniformly dense on
compacta in Cr if for every compact subset K CRr S
is p~dense in cr, where for I, g E cr PK(/,g) =

SUPXEKI/(x) -g(x)l. A sequence of functions {In}
converges to a function I uniformly on compacta if
for all compact K C Rr PK(I n,f) -+ O as n -+ 00. D

We may now state our first main result.

Uefinition 2.9

Given a probability measure 11 on (Rr,B') define the
metric p!' from Mr X Mr to R + by p!'(I ,g ) = inf

{8 > 0: l1{x: II(x) -g(x)1 > 8} < 8}. D
Two functions are close in this metric if and only

if there is only a small probability that they differ
significantly. In the extreme case that I and 9 are
l1-equivalent p!'(I,g) equals zero.

There are many equivalent ways to describe what
it means for p!'(I n' I) to converge to zero.

Lemma 2.1. All of the following are equivalent.

(a) PJl(fn,f) -0.
(b) For every e > ° Jl{x: Ifn(x) -f(x)1 > e} -0.

(c) f min{lfn(x) -f(x)l, 1} Jl(dx) -0. D

From (b) we see that p!,-convergence is equivalent
to convergence in probability (or measure). In (b)

Theorem 2.1

Let G be any continuous nonconstant function from
R to R. Then In'( G) is uniformly dense on compacta
in C' .D

In other words, In feedforward networks are ca-
pable of arbitrarily accurate approximation to any
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the Euclidean metric can be replaced by any metric
on R generating the Euclidean topology, and the
integrand in (c) by any bounded metric on R gen-
erating the Euclidean topology. For example d
(a,b) = la -bl/(l + la -bl) is a bounded metric

generating the Euclidean topology, and ( c) is true
if and only if f d(fn(x), f(x».u(dx) ~ 0.

The following lemma relates uniform convergence
on compacta to PIJ-convergence.

Lc1n1nQ 2.2. If Un} is a scqucncc of functions in !.1'
that converges uniformly on compacta to the function
I then P,,(In, I) ~ o O

We now state our first result on approximating
functions in M' .It follows from Theorem 2.1 and
Lemma 2.2.

environment /1. Thus, I networks are also universal

approximators.
Theorem 2.4 implies Theorem 2.3 and, for squash-

ing functions, Theorem 2.3 implies Theorem 2.2.
Stating our results in the given order reflects the
natural order of their proofs. Further, deriving Theo-
rem 2.3 as a consequence of Theorem 2.4 obscures
its simplicity.

The structure of the proof of Theorem 2.3 (re-
spectively 2.4) reveals that a similar result holds if
'I' i3 not rc3trictcd to bc d ~qud~hillg fU11l.;liu11, uul i:;
any measurable function such that Illl('l') (respec-
tively Il('l'» uniformly approximates some squash-
ing function on compacta. Stinchcombe and White
(1989) give a result analogous to Theorem 2.4 for
nonsigmoid hidden layer activation functions.

Subsequent to the first appearance of our results
(Hornik, Stinchcombe, & White, 1988), Cybenko
(1988) independently obtained the uniform approx-
imation result for functions in Cr contained in Theo-
rem 2.4. Cybenko's very different approach makes
elegant use of the Hahn-Banach theorem.

A variety of corollaries follows easily from the
results above. In all the results to follow, 'I' is a
squashing function.

Theorem 2.2

For every continuous nonconstant function G, every
r, and every probability measure 11 on (Rr, Br), Ill'(G)
is p/l-dense in Mr D

In other words, single hidden layer III feedfor-
ward networks can approximate any measurable
function arbitrarily well, regardless of the continuous
nonconstant function G used, regardless of the di-
mension of the input space r, and regardless of the
input space environment 11. In this precise and sat-
isfying sense, III networks are universal approxi-
mators.

The continuity requirement on G rules out the
threshold function '¥( ). ) = l{A~o}. However, for

squashing functions continuity is not necessary .

Corollary 2.1

For every function 9 in Mr there is a compact subset
K of Rr and an f E Ir('1') such that for any e > O
we have I1(K) < 1 -e and for every x E K we have
If(x) -g(x)i < e, regardless of '1' , r, or 11. O

In other words, there is a single hidden layer feed-
forward network that approximates any measurable
function to any desired degree of accuracy on some
compact set K of input patterns that to the same
degree of accuracy has measure (probability of oc-
currence) 1. Note the difference between Corollary
2.1 and Theorem 2.1. In Theorem 2.1 9 is continuous
and K is an arbitrary compact set; in Corollary 2.1
9 is measurable and K must be specially chosen.

Our next result pertain~ to ~pproYim~tion in Lp-
spaces. We recall the following definition.

Theorem 2.3

For every squashing function '1' , every r, and every
probability measure /1 or (R',B'), III'('1') is uni-
formly dense on compacta in C' and pll-dense in
M'. O

Because of their simpler structurc, it is important
to know that the very simplest III networks, the I
networks, have similar approximation capabilities.

Definition 2.10

Lp(R', JL) (or simply Lp) is the set of I E M' such
that f If(x)lp JL(dx) < 00, The Lp norm is defined by
II flIp == Ulf(x)lp JL(dx)]I/Po The associated metric on
Lp is defined by pp(f, g) == III -gllpo O

The Lp approximation result is the following.

Theorem 2.4

For every squashing function 'I' , every r, and every
probability measure J.L on ( Rr ,Br) , I r('1') is uniformly
dense on compacta in Cr and pjJ-dense in Mr. D

In other words, standard feedforward networks
with only a single hidden layer can approximate any
continuous function uniformly on any compact set
and any measurable function arbitrarily well in the
PjJ metric, regardless of the squashing function 'I'
(continuous or not), regardless of the dimension of
the input space r, and regardless of the input space

Corollary 2.2

If there is a compact subset K of Rr such that
.u(K) = 1 then Ir('1')ispp-densein Lp(Rr,.u)for every

p E [1, 00), regardless of '1' , r, or .u. O
Wc aI30 immcdilltcIy obtQin th~ foIIowiug It;~uIl.
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Coronary 2.3

If.u is a probability measure on [0,1]' then I'('1') is
pp-dense in Lp([O, 1]', .u) for every p E [1, 00), re-
gardless of 'I' , r, or ~. D

layer) mapping R' to Rs using squashing functions 'I'
as I(.S('1'). (Our previous results thus concerned the
case l = 2.) The activation rules for the elements of

such a network are

aki = Gk(Aj(ak-J) i = 1, ..., qk; k = 1, ..., i,

where Qk is a qk X 1 vector with elements Qki, Qo =
x by convention, G1, ..., Gl-1 = '1' , Gl is the
identity map, qo = r, and ql = s. We have the fol-

lowing result.

Corollary 2.4

If J.l puts mass Ion a finite set of points, then for
every 9 E M' and for every e > O there is an f E
I'('l') such that J.l{x:lf(x) -g(x)1 < e} = 1. O

Coronary 2.5

For every Boolean function 9 and every F. > O there
is an f in ~r('l') such that maxXE{O.lj'lg(x) -f(x)I
<1! O

In fact, exact representation of functions with fi-
nite support is possible with a single hidden layer .

Corollary 2.7

Theorem 2.4 and Corollaries 2.1-2.6 remain valid
for multioutput multilayer classes !.(.S('l') approxi-
mllting fUll\,;liu"~ in Cr.. anct Mr." with P/l and Pp re-
placed as in Corollary 2.6, provided l ~ 2. D

Thus, !.(.s networks are universal approximators
of vector valued functions.

We remark that any implementation of a !.II(.s
network is also a universal approximator as it con-
tains the !.(.s networks as a special case. We avoid
explicit consideration of these because of their no-
tational complexity.

Theorem 2.5

Let {XI' ..., Xn} be a set of distinct points in R' and
let 9 : R' ~ R be an arbitrary function. If '1' achieves
O and 1, then there is a function f E I'('1') with n
hidden units such that f(Xi) = g(Xi)' i E {1, ...,

n}. D
With some tedious modifications the proof of this

theorem goes through when 'I' is an arbitrary squash-
ing function.

The foregoing results pertain to single output net-
works. Analogous results are valid for multi-output
networks approximating continuous or measurable
functions from R' to Rs, s E N, denoted C',s and M'.s,
respectively. We extend I' and }:,W to }'.,.s :lnd ~1I'.s
respectively be re-interpreting Pj as an s x 1 vector
in Definitions 2.2 and 2.4. The function g:R' ~ Rs
has elements gi' i = 1, ..., s. We have the following

result.

Corollary 2.6

Theorems 2.3, 2.4 and Corollaries 2.1-2.5 remain
valid for classes Illr..('l') and/or Ir..('l') approxi-
mating functions in cr.. and Mr.. with PJl replaced with
p~, p~(!, g) = LJ=1 PJl(!;' g;) and with Pp replaced

with its appropriate multivariate generalization. D
Thus, multi-output multilayer feedforward net-

works are universal approximators of vector-valued
functions.

All of the foregoing results are for networks with
a single hidden layer. Our final result describes the
approximation capahilitie~ of multi-output multi
layer networks with multiple hidden layers. For sim-
plicity, we explicitly consider the case of multilayer
L nets only. We denote the class of output functions
for multilayer feedforward nets with 1 layers (not
counting the input layer, but counting the output

3. DISCUSSION AND
CONCLUDING REMARKS

The results of Section 2 establish that standard mul-
tilayer feedforward networks are capable of approx-
imating any measurable function to any desired de-
gree of accuracy, in a very specific and satisfying
sense. We have thus established that sj.lch "mapping"
nctwork~ arc; U1liVt:l~ClI Clpproxlmators. l"hlS implies
that any lack of success in applications must arise
from inadequate learning, insufficient numbers of
hidden units or the lack of a deterministic relation-
ship between input and target.

The results given here also provide a fundamental
basis for rigorously establishing the ability of mul-
tilayer feedforward networks to learn (i.e. , to esti-
mate consistently) the connection strengths that
achieve the approximations proven here to be pos-
sible. A statistical technique introduced by Gren-
ander (1981) called the "method of sieves" is par-
ticularly well suited to this task. White (1988b)
establishes such results for learning, using results of
White and Woolridge (in press). For this it is nec-
essary to utilize the concept of metric entropy (Koi-
mogorov & Tinomirov, 1961) for subsets of I' pos-
sessing fixed numbers of hidden units. As a natural
by~product of thc; 1l1t:tli~ t:ntropy results one obtains
quite specific rates at which the number of hidden
units may grow as the number of training instances
increases, while still ensuring the statistical property
of consistency (i.e. , avoiding overfitting).

An important related area for further research is
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The Stone-Weierstrass Theorem thus implies that In'(G) is
PK-dense in the space of real continuous functions on K. Because
K is arbitrary .the result follows. O

Proof of Lemma 2.1

(a) ~ (b): Immediate.
(b) -+ (c): If .u{x:1 f n(X) -f(x)1 > e/2} < e/2 then J min{lf n(X)

-f(x)l. I} .u(dx) < e/2 + e/2 = e.
(c) -+ (b): This follows from Chebyshev's inequality. D

the investigation of the rate at which approximations
using III or I networks improve as the number of
hidden units increases (the "degree of approxima-
tion") when the dimension r of the input space is
held fixed. Such results will support rate of conver-
gence results for learning via sieve estimation in mul-
tilayer feedforward networks based on the recent
approach of Severini and Wong (1987).

Another important area for further investigation
that we have neglected completely and that is beyond
the scope of our work here is the rate at which the
number of hidden units needed to attain a given ac-
curacy of approximation must grow as the dimension
r of the input space increases. Investigation of this
"scaling up" problem may also be facilitated by con-
sideration of the metric entropy of IIIr.s and Ir.s.

Thc rc~ult~ ~iVCll ht:re are clearly only one step
in a rigorous general investigation of the capabilities
and properties of multilayer feedforward networks.
Nevertheless, they provide an essential and previ-
ously unavailable theoretical foundation establishing
that the successes realized to date by such networks
in applications are not just flukes, but are instead a
reflection of the general universal approximation ca-
pabilities of multilayer feedforward networks.

Proof of Lemma 2.2

Pick an e > 0. By Lemma 2.1 it is sufficient to find N E N such
that for all n ~ N we have f min{f,,(x) -f(x), 1} Ji(dx) < e.
Without loss of generality, we suppose Ji(R') = 1. Because R' is
a locally compact metric space, Ji is a regular measure (e.g., Hal-
mos, 1974, 52.G, p. 228). Thus there is a compact subset K of R'
with Ji(K) > 1 -e/2. Pick N such that for all n ~ N SUPZEKlf ,,(x)
-f(x) < e/2. Now fR'-K min{lf,,(x) -f(x)l, 1} Ji(dx) +
f« min{lf.(.~) -f(x)ll] I'(Jx) < G/2 -1- r./Z = " Cur all n ~ N.

Lemma A, For any finite measure /1 C' is p,,-dense in M'

Proof

Pick an arbitrary f E M' and e > 0. We must find a 9 E C' such
that P.(f. g) < e. For sufficiently large M. f min{lf .l{I/I<AfI -
!1. l}dJl < e12. By Halmos (1974. Theorems 55.C and D. p. 241-
242). there is a continuous 9 such that f If. 1{]/1<M} -g\dJl <
e12. Thus f min{lf -gl, l}dJl < e. O

Note added in proof: The authors regret being un-
aware of the closely related work by Funahashi (this
journal, volume 2, pp. 183-192) at the time the re-
vision of this article was submitted. Our Theorem
2.4 and Corollary 2.7 somewhat extend Funahashi's
Theorems 1 and 2 by permitting non-continuous ac-
tivation functions.

Proof of Theorem 2.2

Given any continuous nonconstant function, it follows from Theo-
rem 2.1 and Lemma 2.2 that In'(G) is p,,-dense in C'. Because
C' is p,,-dense in M' by Lemma A.1, it follows that In'(G) is P,,-
dense in M' (apply the triangle inequality). D

The extension from continuous to arbitrary squashing func-
tions uses the following lemma.

Lemma Ao2o Let F be a continuous squashing function and 'I' an
arbitrary squashing function. For every e > O there is an element
H, of };1 ('I') such that SuP.eaIF().) -H,().)I < eoMATHEMATICAL APPENDIX

Because of the central role played by the Stone-Weierstrass theo-
rem in obtaining our results, we state it here. Recall that a family
A. nf r'.,,\ function. defined on a 3et E i. an ..l.s,,&,.. if A i~ "lu:;~ll
under addition, multiplication, and scalar multiplication. A family
A separates points on E if for every x, y in E, x ~ y, there exists
a function f in A such that f(x) ~ f(y). The family A vanishes
at no point of E if for each x in E there exists f in A such that
f(x) ~ 0. (For further background. see Rudin, 1964, pp. 146-

153.)

Stone-Weierstrass Theorem

Let A be an algebra of real continuous functions on a compact
set K. If A separates points on K and if A vanishes at no point
of K, then the uniform closure B of A consists of all real contin-
uous functions on K (i.e., A is PK-dense in the space of real
continuous functions on K).

Proof

Pick an arbitrary £ > 0. Without loss of generality, take £ < I
also. We must find a finite collection of constants, pj, and affine
functions Aj, j E {1,2, ..., Q -1} such that SUP'ERIF().) -

~r.it Pi'1'(Aj().»1 < £.
Pick Q such that llQ < £/2. For j E {1, ..., Q -1} set

Pi = l/Q. Pick M > 0 such that 'I'( -M) < £/2Q and 'I'(M) >

I -£/2Q. Because 'I' is a sqashing function such an M can
be found. For j E {1, ..., Q -1} set ri = sup{).: F().) = jIQ}.
Set rQ = sup{).:F().) = I -I/2Q). Because F is a continuous

squashing function such r;s exist.
For any r < s let A,., E At be the unique affine func-

tion satisfying A",(r) = M and A,.,(s) = -M. The desired ap-
proximation is then H,().) = ~f.~t Pj'1'(A77+t().». It is easy to

check that on each of the intervals ( -~, !1], (rl' rJ, ...,
(rQ-J,rQ], (rQ, + ~) we have IF().) -H,().)I < £. 0

Proof of Theorem 2.1

We apply the Stone-Weierstrass Theorem. Let K C R' be any
compact set. For any G, ~n'(G) is obviously an algebra on K. If
x, y E K, x ~ y, then there is an A E A' such that G(A(x» ~
G(A(y». To see this, pick a, b E R, a ~ b such that G(a) ~
G(b). Pick A(.) to satisfy A(x) = a, A(y) = b. Then G(A(x»
~ G(A (y». This ensures that ~n'(G) is separating on K.

Second, there are G(A(.»'s that are constant and not equal
to zero. To see this, pick b E R such that G(b) ~ O and
set A(x) = O .x + b. For all x E K, G(A(x» a G(b). This
encurec that ~n'(c) vani~h,,~ at llU I'Vi11L vC K.

Proof of Theorem 2.3

By Lemma 2.2 and Theorem 2.2, it is sufficient to show that
In'('1') is uniformly dense on compacta in Ill'( F) for some con-
tinuous squashing function F. To show this, it is sufficient to show
that every function of the form n~-IF(Ak(.» can be uniformly
approximated by members of Ill'('1').

Pick an arbitrary e > 0. Because multiplication is continuous
and [0,1)' is compact there is a a > 0 such that lak -bJ < a for

O~ak'bk~l,kE{l, I}implieslni-.a.- nt-.b.l<"
tly Lemma A.Z there is a function HI.) = IT., p,'1'(A)(.»
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is uniformly dense on compacta, there is an I E I'('lr) such that
sup%EKII(x) -I'(x)lp < (eI3)p. Because Jl(K) = 1 by hypothesis
we have pp(I', n < e13. Thus pp(g. n ~ pp(g, h) + pp(h, I') +
pp(I', n < el3 + el3 + el3 = e. D

Proof of Coronary 2.3

Note that [0, I)' is compact and apply Corollary 2.2. 0

such that SUP'ERI F(J.) -H6(J.)1 < 0. It follows that

SUpxEJI' In F(A.(x» -n H6(A.(x»I< e.
.-1 .-1

Because A1(A.(.» E A', we see that lli.1H6(A.(.» E Ill'('1').
Thus lli-IF(Aj.(.» can be uniformly approximated by ele-

ments of Ill'('1'). O
The proof of Theorem 2.4 makes use of the following three

lemmas.

Lemma A.3. For every squashing function '1' , every £ > 0, and
every M > ° there is a function COS",., E II('1') such that

suP'EI-M.+MllcoSM..().) -cos().)1 < £.

Proof of CoroUary 2.4

Let f = min{J1(x) :J1(x) > 0}. For all £ < f we have that p.(f, g) =
£ implies J1{x:lf(x) -g(x)1 > £} = 0. Appealing to Theorem 2.4
finishes the proof. O

Proof of CoroUary 2.5

Put mass 1/2' on each point in {0, 1}' and apply CoroUary 2.4.0

Proof of Theorem 2.5

There are two steps to this theorem. First, its validity is demon-
strated when {XI' ...x.} C R1, then the result is extended to R'.

Proof

Let F be the cosine squasher of Gallant and White (1988) (the
third example of squashing functions in Section 2). By adding,
subtracting and scaling a finite number of affinely shifted versions
of Fwe can get the cosine function on any interval [ -M, + M].
The result now follows from Lemma A.2 and the triangle
inequality. O

Lemma A.4. Let g(.) = ~j~, Pi cos(Af.», Aj E A'. For arbitrary

squashing function '11 .for arbitrary compact K C R', and for
arbitrary E > O there is an f E I'('11) such that SUP.EKig(x) -

f(x)1 < E.
Step 1: Suppose {XI' ..., Xn} C R I and, relabelling if necessary ,

that XI < X2 < ...< x.-. < Xn. Pick M > 0 such that 'II( -M) =
1 -'II(M) = 0. Define A, as the constant affine function A, =
M" and set PI = g(x,). Set f'(x) = p, .'II(AI(x)). Because /'(x) =
g(x.) we have /'(x,) = g(x,). Inductively define Ak by Ak(Xk-J =
-M and Ak(X.) = M. Define Pk = g(x.) -g(Xk-J.

Set fk(X) = I:-I pj'Il(Aj(x)). For i ~ k fk(Xi) = g(x;). fn is the
desired function.

Step 2: Suppose (XI' ..., Xn} C R' where r ~ 2. Pick p E R'
such that if i ~ j then p .(Xi -xJ ~ 0. This can be done since
ui..Aq:q .(Xi -xJ = 0} is a finite union of hyperplanes in R'.
Relabelling, if necessary, we can assume that p .x, < p .X2 <
...< p .Xn. As in the first step find Pis and Ais such that
II-i p;'Il(Aj(p .Xi)) = g(Xi). Then f(x) = II-, pj'Il(Aj(p .x)
is the desired function. D

Proof

PickM>OsuchthatforjE{l,. , , ,Q}Aj(K)C[-M, + M].
Because Q is finite, K is compact and the Aj(.) are continuous,
such an M can be found, Let Q' = Q .~r.IIPjl. By Lemma A. 3
for all x E K we have 1~r.1 pj cosM.,IQ'(Aj(x» -g(x)1 < e, Because
COSM"IQ' E 11('11), we see that f(.) = ~f-1 cos.\1"'Q'(Aj(.» E

1'('11). O

Lemma A.5. For every squashing function 'II 1'('11) is uniformly
dense on compacta in C',

Proof

By Theorem 2.1 the trigonometric f olynomials {kr.1Pin~-1

cos (Aik(.»:Q, ii E N, Pi E R, A;k E A' are uniformly dense on

compacta in C'. Repeatedly applying the trigonometric identity
(cos a) .(cos b) = cos(a + b) -cos (a -b) allows us to rewrite

every trigonometric polynomial in the form kT-l a, cos(A,( .» where
a, E R and A, E A'. The result now follows from Lemma A.4.

D

Proof of Corollary 2.6

Using vectors Pi which are O except in the ith position we can
approximate each g, to within el15. Adding together 15 approxi-
mations keeps us within the classes In',' and I"'. D

The proof of Corollary 2.7 u.c. lIlC fullowlng lemma.

Lemma A.6. Let F (resp. G) be a class of functions from R to R
(resp. R' to R) that is uniformly dense on compacta in CI (resp.
C'). The class of functions G o F = {f 0 g: 9 E G and f E F} is

uniformly dense on compacta in C' .

Proof of Theorem 2.4

By Lemma A.5, l'('1') is uniformly dense on compacta in C'.
Thus Lemma 2.2 implies that l '('1') is p..-dense in C' .The triangle
inequality and Lemma A.l imply that l '('1') is p..-dense in M' .

0

Proof of Coronary 2.1

Fix £ > 0. By Lusin's Theorem (Halmos, 1974, p. 242-243) there
is a compact set Kt such that.u(KI) > 1 -£/2 andglKl (grestricted
to K') is continuous on Kt. By the Tietze extension theorem
(Dugundji, 1966, Theorem 5.1) there is a continuous function g'
E C'suchthatg'IK' = gIK'andsupxER'g'(X) = SUPxEKlgiKI(X).
By Lemma A.5, I'('lt) is uniformly dense on compacta in C'.
Pick compact K2 such that .u(K2) > 1 -£/2. Take f E I '('It) such
that SUPXEK2If(x) -g'(x)1 < £. Then SUPxEKlnK2If(x) -g(x)1 < £
and .u(K' n K2) > 1 -£. 0

Proof

Pick an arbitrary h E C', compact subset K of R', and e > 0. We
must show the existence of an f E F and a 9 E G such that
suP%eKlf(g(x» -h(x)1 < e.

By hypothesis there is a 9 E G such that suP%eKig(x) -

h(x)1 < e/2. Because K is compact and h is continuous {h(x): x
E K}is compact. Thus {g(x): x E K}is bounded. LetSbe theneces-
sarily compact closure of {g(x): x E K}.

By hypothesis there is an f E F such that suP,eslf(s) -si <
e/2. We see that f o 9 is the desired function, as

suP%eKlf(g(x» -h(x)1 ~ suP%eKlf(g(x» -g(x) + g(x) -h(x)1

~ suPxeKlf(g(x» -g(x)1 + suPxeKig(x) -h(x)1

< e/2 + e/2 = e. D
Proof of Coronary 2.2

Pick arbitrary 9 E Lp and arbitrary e > 0, We must show the
existence of a function f E I'('l') such that pp(f, g) < e,

It follows from standard theorems (Halmos, 1974, Theorems
55,C and 55,0) that for every bounded function h E LD there is
a "UIililIUUUS l' sucn tnat ppth, I') < e13, For sufficiently large
M E R, setting h = gl(~ICMI gives pp(g, h) < t:/3, Because I'('l')

Proof of Coronary 2.7

We consider only the case where s = 1. When s ...2 apply Cor-
ollary 2.6. It is sufficient to show that for every k the class of
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is uniformly dense on compacta in C'.
Lemma A.5 proves that this is true when k = 1. Induction on

k will complete the proof.
Suppose I. is uniformly dense on compacta in C'. We must

show that 1.+1 is uniformly dense on compacta in C', I.+, =
{~iPi'lI(Aj(gi(X»):gj E I.}. Lemma A.5 says that the class of func-
tions {~jpj'lI(Af.»)} is uniformly dense on compacta in C'. Lemma
A.6 and the induction hypothesis complete the proof. O


