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CHAPTER FOURTEEN 
14. Linear Programming 

Linear Programming involves problems where a variable has to be maximised or 

minimised subject to certain conditions. The conditions are called CONSTRAINTS and 

the variable, the OBJECTIVE FUNCTION. They are represented in linear form.  

It is best illustrated by example.  

 

14.1 Example 1 

A manufacturer makes products P1 and P2 by using machines M1 and M2. The time in 

hours required to make P1 and P2 on each machine is shown in the table below.  

 

 

 

 

 

The profits on P1 and P2 are $30 and $15 each respectively. The manufacturer operates 

for 420 hours a month.  

How many of each product P1 and P2 should be made per month to maximise profit?  

The problem may be set up as follows.  

 Let x and y represent the number of P1 and P2 made respectively per month.  

The profit = $30x + 15y is called the OBJECTIVE FUNCTION. 

Time on machine M1 per month cannot exceed 420 hours.  

!4x + 420y
2

1
1 !  

Similarly the time condition of machine M2 leads to 

 3x + 2y !  420 

Clearly x !0 and y !0.  

The problem may be summarised.  

Maximise 30x + 15y  OBJECTIVE FUNCTION 

 

 

 P1 P2 

M1 4 1
2

1  

M2 3 2 
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Subject to x !0  (1) 

  y !0 (2) 

 4x + 420y
2

1
1 !  (3) 

 3x + 2y !  420 (4) 

There are many ways of solving linear programming problems like this but for simple 

two variables cases the simplest and most intuitive are by graphical methods. The 

constraint may be drawn as follows.  

 

  
 

The shaded area OABC represents the intersection of the four constraints (1), (2), (3), (4). 

We call OABC the FEASIBLE REGION. This means that any point (with integer co-

ordinates) inside OABc is a feasible solution to the problem – not necessarily the 

optimum solution. For example, (10,20) is a possible solution, i.e. we could produce 10 

or P1 and 20 of P2. Clearly however we can do better by making more of each.  

 The objective function is represented by 30x + 15y = M where M is the profit. 

30x +15y = M is a line with slope -2 whose position is determined by the value of M.  

C 

O A 

B 
(1) 

(2) 

(3) 

(4) 

CONSTRAINTS 
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The graph shows profit lines for different values of M. What we need to do is to find a 

point in the feasible region lying on a profit line whose profit (M) is greatest.  

 

Superimposing the profit lines on the feasible region produces the fact that point B lies on 

a profit line which is “farthest out” from the origin, i.e. having the maximum value for M, 

i.e. maximum profit.  

 

M = 2000 

M = 3000 

M = 4000 

x 

y 

O A 

B 

C 30x + 15y = 3600 
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Point B has co-ordinates (60,120) (i.e. the intersection of 4x + 1
2

1 y = 420 and 3x + 2y = 

420) and hence the manufacturer does best by producing 60 of product P1a nd 120 of 

product P2 for a total profit of $3600.  

 

Example 2 

 Two workers, A and B, ear $6 per hour and $8 per hour respectively. A makes 6 

products of P1 and 4 products of P2 per hour. B makes 10 products of P1 and 2 products of 

P2 per hour. It is necessary to manufacture 148 of P1 and 52 of P2 to complete an order. 

How many hours should each work to fill the order at minimum labour cost? Find the 

minimum labour cost. 

 

Solution  

 Let x,y, be hours A and B work respectively. 

Then, since there has to be at least 148 of P1 produced,  

 6x + 10y ≥ 148 (1) 

Similarly with respect to P2,  

 4x + 2y ≥ 52 (2) 

Also x ≥ 0 and y ≥ 0.  

 

Therefore the feasible region is as shaded below, i.e. x axis – DEF – y axis.  

 
 

x 

y 

(2) 

D 

E 

F 

(1) 



  337  

The cost lines are 6x + 8y = C where C is the cost.  

 
We need to find the point in the feasible region lying on a cost line which has minimum 

value for C.  

 A visual superimposing of the cost lines upon the feasible region shows us that 

point E ist he point required. E has co-ordinates (8,10) – the intersection of 6x + 10y = 

148 and 4x + 2y = 52.  

i.e. Worker A works for 8 hours, B for 10 hours with a total cost of 

8 x $6 + 10 x $8, i.e. $128 

  

A problem involving more constraints follows.  

 

Example 3 

 Two warehouses W1 and W2 have 12 cartons and 8 cartons respectively of a 

product which has to be shipped to three stores S1, S2, S3 which need 8, 6 and 6 cartons 

respectively, Shipping costs vary according to the table below.  

 

 

 S1 S2 S3 

W1 $7 $3 $2 

W2 $3 $1 $2 

 

What is the most economical way to ship the cartons? 

C = 60 

C = 180 

C = 280 

To 

From 
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Solution 

 Let x be the number of cartons shipped from W1 to S1.  

 Let y be the number of cartons shipped from W1 to S2 

Then the table showing the shipping of cartons is as below. 

 

 S1 S2 S3 

W1 x y 12 – x – y 

W2 8 – x 6 – y x + y - 6 

 

Clearly each of these values is not negative hence 

x ≥ 0, y ≥ 0, 12 – x – y ≥ 0  

8 – x ≥ 0, 6 – y ≥ 0, x + y – 6 ≥ 0  

 

i.e. 0 ≤ x ≤ 8,  0 ≤ y ≤ 6,  6 ≤ x + y ≤ 12.  Constraints 

The most is $(7x + 3y + 2(12 – x – y) + 3(8 – x) + 1(6 – y) + 2(x + y – 6)) 

i.e. cost is $4x + 2y + 42 Objective Function  

 

D 

C 

E 

A B 

cost lines 

From 
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Drawing the constraints produces the feasible region ABCDE. The cost lines  

superimposed indicate that E is the optimum solution, i.e. at (0,6). 

i.e. the optimum solution occurs when x = 0 and y = 6.  

i.e. the shipping table is  

 S1 S2 S3 

W1 0 6 6 

W2 8 0 0 

 

The total cost is $54.  

 From the examples quoted it appears that a vertex of a feasible region is an 

optimum solution and in fact this is true in all cases. The proof is beyond the scope of this 

text but note that the optimum solution is not necessarily unique. For example, the 

objective function may be parallel to a boundary of the feasible region leading to the 

result that all points on the boundary are optimum solutions.  

 From the examples quoted it might also appear true that the optimum solution is 

the intersection point of the two boundary lines of the feasible region having slopes one, 

the smallest of the slopes greater than the objective function and the other, the largest of 

the slopes less than the objective function. This is not true and the following example 

shows the advantage of drawing a diagram rather than relying on the algebraic data.  

 

Example 4 

 A man buys 100 pills to satisfy his vitamin requirements of 700 units of B1, 600 

units of B2 and 260 units of B6.  

Pills 1, 2 and 3 contain units of B1, B2 and B6 as in the table below.  

 B1 B2 B6 Cost 

Pill 1 10 5 3 $0.05 each 

Pill 2 10 2 8 $0.06 each 

Pill 3 6 7 2 $0.04 each 
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Find the number of each pill he should buy to satisfy his vitamin requirement at least 

cost.  

 

Solution 

 Let x be the number bought of Pill 1.  

 Let y be the number bought of Pill 2.  

 Then 100 – x – y is the number bought of Pill 3.   

The cost function is 5x + 6y + 4(100 – x – y)¢ 

i.e. Cost = x – 2y + 400¢ 

Constraints  

 x ≥ 0, y ≥ 0, 100 – x – y ≥ 0.  

B1 requirement constraints 10x + 10y + 6(100 – x – y) ≥ 700 (1) 

B2 requirement constraints 5x + 2y + 7(100 – x – y) ≥ 600 (2) 

B6 requirement constraints 3x + 8y + 2(100 – x – y) ≥ 360 (3) 

Simplified, the problem becomes 

 Minimise x + 2y + 400 

 Subject to x ≥ 0, y ≥ 0, x + y ≤ 100. 

 4x + 4y ≥ 100 (1) 

 2x + 5y ≤ 100 (2) 

 x + 6y ≥ 60 (3) 

 

B 

C 

A 

x 

y 

50 60 25 

25 

20 

10 

 

 
 

Feasible Region 
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The cost lines shown above when superimposed upon the feasible region lead to the 

result that B is the vertex of the feasible region lying on a cost line which has smallest 

cost.  

 B has co-ordinates (18,7) – the intersection of 4x + 4y = 100 and x + 6y = 60.  

 i.e. the man should buy 18 of Pill 1, 7 of Pill 2 and hence 75 of Pill 3 for a total 

cost of 432¢, i.e. $4.32.  

 

Exercise 14.1 

1. A manufacturer is to make an unknown number of two models A and B. The 

models require machine work by three machines M1, M2 and M3 as indicated in 

the table.  

Time in hours 

 M1 M2 M3 

Model A 1 2 1.6 

Model B 2 1 1.6 

 

No machine may work more than 48 hours per week and profit on Model A is $4 and 

on Model B is $3. How many should be produced per week of each to maximise 

profit?  

Cost Lines 

C = 420 

C = 430 C = 440 

C = 450 

x 

y 
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2. A linear programming problem leads to the constraints x ≥ 0, y ≥ 0, x + 2y ≤ 18, 

2x + y ≤ 12. Find the point (x,y) such that k is maximised in the cases below.  

i) y = k 

ii) y =  - 
4

1 x + k 

iii) y = 
2

1 x + k 

iv) y = - x + k 

v) y = - 2x + k 

vi) y = -3 + k 

3. Use the same details as in 14.1, Example 3 except the cost table is: -  

 S1 S2 S3 

W1 $2 $1 $3 

W2 $5 $3 $4 

 

 W1 and W2 have 12 cartons each and S1, S2, S3 need 8 cartons each.  

4. Two mines A and B produce three grades of ore: - High, Medium and Low. 

Together they have to produce 12 unites of High, 8 unites of Medium and 24 units 

of Low to complete an order.  

The production table per day is:  

 High Medium Low 

A 6 2 4 

B 2 2 12 

 

The running costs per day are $2,000 for A and $1,600 for B. Find the optimum 

working arrangement of the mines so that the total cost is minimised when 

completely the order.  

5. A man has a diet whereby he has to have a minimum weekly requirement of 32 

units of protein, a minimum of 25 units of carbohydrates and a maximum of 61 

units of fats. He can choose between three types of food – A, B or C. The prices 

and contents of the foods, in units are in the table on the next page. –  
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Food 

 A B C 

Protein 3 1 2 

Carbohydrates 2 1 1 

Fats 5 2 1 

Cost per pound $3.00 $1.50 $2.00 

 

He is to buy a weekly total of exactly 20 pounds. How many pounds of each food 

should he buy each week to minimise his cost? What is that minimum cost?  

6. Maximise 4x + y 

Subject to x + y ≤ 7, x ≥ 0, y ≥ 0, 2x – y ≤ 3, 2x + 4y ≤ 24, 4x – y ≤ 8.  

7. A manufacturer produces two types of products A and B using three machines – 

lathe, grinder and drill. The machine requirements in minutes for manufacturing 

each product is set in the table below.  

 A B 

Lathe 2 4 

Grinder 6 2 

Drill 6 3 

 

The lathe can work at most 400 mins per day. The grinder can work at most 450 mins 

per day. The drill can work at most 480 mins per day.  

The profits on products A and B are $34 and $27 respectively.  

i) Find the optimum production plan.  

ii) The manufacturer has enough money to buy one more machine and by 

so doing he will increase the capacity of that type of machine by 40 

minutes per day. Which machine should he buy?  

8. A dietician wishes to mix two types of food so that the vitamin content of the 

mixture contains at least 9 units of vitamin A, 7 units of vitamin B, 10 units of 

vitamin C and 12 units of vitamin D. Foods 1 and 2 contain vitamins in units per 

pound as shown in the table.  
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Vitamin 

 A B C D 

Food 1 2 1 1 1 

Food 2 1 1 2 3 

 

Food 1 costs $5 per pound and Food 2 costs $7 per pound. find the minimum cost of a 

mixture satisfying the vitamin requirements.  

 

 

Excerise 14.1 Answers 

1. 18 of Model A. 12 of Model B  Profit = $108. 

2. i) (0,9)  ii) (0,9)   iii) {(0,9), (2,8)}   iv) (2,8)     v) {(2,8), (3,6), (4,4), (5,2), (6,0)}  

    vi) (6,0) 

3.    

 S1 S2 S3 

W1 8 4 0 

W2 0 4 8 

.  

4. A opens for 1 day, B for 3 days.  

5. 5 pounds of A, 13 pounds of B, 2 pounds of C, at a total costs of $38.50. 

6. x = 3, y = 4 Maximum value of 16.  

7. i) Manufacture 40 of A and 80 of B, for total profit of $3520.  

   ii) Drill (New optimum production is 50 of A and 75 of B with profit of $3725.) 

8. 4 pounds of Food 1 and 3 pounds of Food 2, for total cost of $41.  

 

10.2 Linear Programming With More Than 2 Variables.  

 Where more than two variables is involved, a graphical approach to solutions of 

linear programming problems is not recommended since, with two variables for example, 

it requires graphs of planes in R3 with three dimensional feasible regions of irregular 

shapes with planes as boundaries. Furthermore, the objective function is a plane: all 

rather difficult to visualise and draw.  

Minimum cost = $64 
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 However, the result that a vertex is still the optimum solution still holds true and a 

crude but effective method of solution is to find the vertices of the feasible region and 

find the optimum vertex by direct substitution into the objective function.   

 While this may be time-consuming to do by hand it is, of course, an easy task for 

the computer which is ideally suited for solving linear programming problems.  

 

Example 

 A manufacturer makes three types of cabinets A,B and C. These products use 

three kinds of wood – oak, teak and plywood. He has available 18- feet of oak, 180 feet 

of teak and 250 feet of plywood. Cabinet styles A, B and C require wood as in the table 

set out below.  

Styles 

 A B C 

Oak 2 0 3 

Teak 0 5 2 

Plywood 3 4 2 

 

Profits on Cabinets A, B, C are $30, $40,  $50 respectively. How many cabinets of each 

type should he make to maximise his profit?  

 

Solution 

 Let z1, z2, z3 be the number of cabinets made of styles A, B, C respectively.  

Then z1 ≥ 0, z2≥ 0 z3≥ 0. 

The oak constraint is 2z1 + 3z3 ≤ 180. 

The teak constraint is 5z2 + 2z3 ≤ 180 

The plywood constraint is 3z1 + 4z2 + 2z3 ≤ 250.  

 

Objective Function  Maximise P = 30z1 + 40z2 + 50z3.  

We need to find the vertices of the feasible region. This is done by noting that a vertex of 

the feasible region is the intersection of three planes satisfying the other three 

inequalities. There will be many points of intersection (20 in fact for this problem) but 
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many of these will not lie in the feasible region because they will not satisfy the other 

inequalities. For example, the intersection of z1= 0, z2 = 0 and 3z1 + 4z2 + 2z3 = 250 is 

(0,0,125). But (0,0,125) is not a vertex of the feasible region because (0,0,125) does not 

satisfy 2z1 + 3z3 ≥ 180.  

As noted, the process of finding the vertices of the feasible region is time-consuming. 

Students with knowledge of computer languages and techniques could use this 

knowledge to facilitate the finding of the vertices.  

 The vertices of the feasible region with the corresponding profits are listed below.  

 O A B C D E F G 

Vertices (0,0,0) (0,0,60) (0,36,0) 
)0,0,

3

1
83(  (0,12,60) (78,0,8) ( )0,36,

3

1
35  (30,20,40) 

Profit 0 3000 1440 2500 3480 2740 2500 3700 

 

Point G (30,20,40) is hence the optimum vertex providing the maximum profit of $3,700.  

 The best production plan is to make 30 of cabinet A, 20 of Cabinet B and 40 of 

Cabinet C.  

 The fact of non-integer co-ordinates for some vertices of the feasible region is a 

minor difficulty overcome by rounding off to the nearest valid integer co-ordinate.  

 More sophisticated techniques will be developed later for investigating problems 

with three or more variables.  

 The following problem will be analysed later very thoroughly but we show now 

the vertex substitutions methods.  

Example 

Minimise 12x1 + 5x2 + 2x3.  

Subject to constraints –  

 x1, x2, x3 ≥ 0.  

 x1 + x2 + x3 ≥ 5. 

 x1 – x2 + x3 ≥ 3.  

 x1 – 2x2 – x3 ≥ 4. 
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The vertices of the feasible region are (5,0,0) ( )
2

1
,0,

2

1
4  and )0,

3

1
,
3

2
4( . The feasible 

region is an unbounded one. the corresponding values of the objection function are 60, 

55, 57
3

2 respectively. The minimum value of the objective function is hence obtained at 

the vertex ( )
2

1
,0,

2

1
4 .  

i.e. Solution is x1 = 
2

1
4 , x2 = 0, x3 = 

2

1  yielding a minimum of 55. We will refer back to 

this problem later on.  

 

Example 

 A manufacturer uses one or more of four production processes involving labour in 

man-hours and tons of raw material. The manufacturer wishes to determine the optimum 

daily production schedule with the information as below.  

 

 Process 1 Process 2 Process 3 Process 4 

Man hours 2 1 2 1 

Tons of raw material 2 3 5 6 

Profit per unit $60 $40 $70 $50 

 

There is available a total of 100 man-hours daily and 500 tons of raw material are 

available daily.  

Solution 

 Let z1, z2, z3, z4 be the number of units produced using processes 1,2,3,4 

respectively.  

Then  z1, z2, z3, z4 ≥ 0  

 2z1 +  z2 +  2z3 + z4 ≤ 100 

 2z1 + 3z2 + 5z3 + 6z4 ≤ 500 

Maximise 60z1 +  40z2 + 70z3 + 50z4 
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The vertices of the feasible region and corresponding profits are:  

 O A B C D E F G 

Vertices (0,0,0,0) (0,0,0,83) (0,0,50,0) (0,0,14,71) (0,100,0,0) (0,34,0,66) (50,0,0,0) (10,0,0,80) 

Profit 0 4150 3500 4530 4000 4660 3000 4600 

 

Some of the co-ordinates have been rounded off. The optimum vertex is point E 

(0,34,0,66) with a profit of $4,660. The optimum production schedule is 34 units using 

process 2 and 66 units using process 4.  

 

Certain problems involve finding a linear functional relationship between two variables, 

for which data are available, which best approximates the true relationship.  

 

Example MINIMAX 

 We know from an experiment that when x = 1, y = 4.5, when x = y, y = 6.5, and 

x = 3, y = 9.5. Find the “best” linear relationship between x and y using the MINIMAX 

method. Minimax means minimising the maximum difference between the true value and 

the value estimated by the linear relationship.  

 
 

3 

3 

6 

9 

1 2 
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i.e. the dotted line is the line of best fit where the maximum vertical distance between any 

of the three points and the dotted line is minimised.  

Solution 

 Let y = mx + b be the line of “best fit” A visual inspection of the data leas us to 

deduce that m ≥ 0 and b ≥ 0 (not completely necessary, but desirable).  

 Let d = max {vertical distance} 

  = max {|m + b – 4.5|, |2m + b – 6.5|, |3m + b – 9.5|} 

We wish to minimise d 

 subject to the following constraints.  

 |m + b – 4.5| ≤ d 

 |2m + b – 6.5| ≤ d 

 |3m + b – 9.5| ≤ d 

 m, b, d ≥ 0. 

But |z| ≤ d is equivalent to z ≤ d and –z ≤ d.  

 i.e. our constraints are:  

 m + b – 4.5 ≤ d 

 4.5 – m – b ≤ d 

 2m + b – 6.5 ≤ d 

 6.5 – 2m – b ≤ d 

  3m + b – 9.5 ≤ d 

 9.5 – 3m – b ≤ d 

 m ≥ 0, b ≥ 0, d ≥ 0 . 

Rearranging these constraints yields:  

 m + b – d ≤ 4.5 

 m + b + d ≥ 4.5 

 2m + b – d ≤ 6.5 

 2m + b + d ≥ 6.5 

 3m + b – d ≤ 9.5 

 3m + b + d ≥ 9.5 

 m ≥ 0, b ≥ 0, d ≥ 0   Minimise d.  
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The vertices (m,b,d) of the feasible region are (0,0,9.5), (0,7,2.5), (2
2

1 , 0,2), (3
2

1 , 0,1), 

(2,3, 
2

1 ), (3,1, 
2

1 ), (2
2

1 , 1
4

3 , 
4

1 ).  

It therefore follows that the vertex having the minimum value for d is (2
2

1 , 1
4

3 , 
4

1 ).  

i.e. the optimum solution occurs when m = 2
2

1  and b =  1
4

3 yielding the maximum 

difference of  
4

1 .  

i.e. y = 2
2

1 x +  1
4

3  is the line of “best fit” 

This means that we could extrapolate the conjecture that when x = 4, y = 11
4

3 .  

Example 

 Matrix Games 

 Players A and B play a game where A and B simultaneously choose a playing 

card Jack, Queen or King and compare their choices. Player A then pays player B in 

dollars according to the following chart.  

                         B 

 Jack Queen  King 

Jack 0 -2 3 

Queen 2 0 -1 
A 

King -3 1 0 

 

This chart means, for example that if A chooses the Queen and B chooses the Jack then A 

pays B $2. The negative entries indicate that B has to pay the corresponding amount, e.g. 

if A chooses the King and B the Jack then B plays A $3.  

 A wishes to determine his optimum strategy.  

 A assigns probabilities p1, p2, 1 – p1 – p2 to his choices Jack, Queen, King 

respectively and then tries to determine p1 and p2 so that the amount he pays B is a 

minimum (of course, he would like it to be a negative payment if possible).  
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 If B always chooses the Jack, then, IN THE LONG RUN, A expects to pay B, 

0p1 + 2p2 – 3(1 – p1 – p2) dollars, i.e. $( 3p1 + 5p2 – 3) each time.  

 If B always chooses the Queen, then in the long run, A expects to pay B,  

-2p1 + 0p2 – 1(1 – p1 – p2) dollars, i.e. $( -3p1 – p2 + 1) each time. 

 If B always chooses the King, then in the long run, A expects to pay B,  

3p1 -1p2 + 0(1 – p1 – p2) dollars, i.e. $( 3p1 - 5p2 ) each time. 

 Since A wishes to minimise the amount he expects to pay B each time regardless 

of B’s strategy, then the problem can be set up as follows.  

 Let M be the maximum amount A expects to pay B each time in the long run.  

Then A wishes to: -  

 Minimise M 

subject to  

 3p1 + 5p2 – 3 ≤ M 

 -3p1 – p2 + 1 ≤ M 

 3p1 - 5p2 ≤ M 

p1 ≥ 0, p2 ≥ 0, 1 – p1 – p2 ≥ 0   

These constraints can be simplified and rearranged below.  

 3p1 + 5p2  - M ≤  3 

 3p1 + p2 + M ≥  1 

 3p1 - 5p2  - M≤ 0 

 p1≥ 0 

 p2 ≥ 0  

 p1 + p2 ≤ 1 

 

The vertices (p1, p2, M) of the feasible region are –  

)0,
2

1
,
6

1
( , (0, 

3

2 , )
3

1 , ( )0,
2

1
,
2

1 , (0,1,2), ( )
2

1
,0,

6

1 , (0,0,1) and (1,0,3). 
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i.e. the optimum vertex is )0,
2

1
,
6

1
(  since this has the smallest value for M, i.e. zero. This 

means that A’s optimum strategy for the long run is to choose the Jack, 
6

1 th of the time, 

the Queen, 
2

1 of the time and hence to choose the King, 
3

1 of the time.  

 This result seems a little counter-intuitive when one re-examines the payment 

chart. It seems at first glance that A should select the King more frequently – the reason 

he does not is that in fact B’s strategy is also to choose the Jack 
6

1 th of the time, the 

Queen, 
2

1 of the time and hence to choose the King, 
3

1 of the time and hence A does not 

collect $3 from B very often and pays out $1 far more often when (A) selects the King.  

 

14.2 ii) Gaussian Elimination 

 To find solutions to equations in three or more variables a method is called 

GAUSSIAN ELIMINATION is readily applicable and is illustrated by the following 

example: 

 Solve -  x + 2y + 3z = 9 (1) 

   4x + 3y + 2z = 11 (2) 

   5x + 5y + z = 9 (3) 

 We eliminate x from equations (2) and (3). 

 i.e. multiply (1) by 5 and subtract (3). Replace (3) with this resulting equation.  

       Multiply (1) by 4 and subtract (2). Replace (2) with this resulting equation. 

 i.e.  

  x + 2y + 3z  = 9  (1) 

  5y + 10z  = 25 (2) 

  5x + 4y + z = 9    (3) 

Simplify (2) and (3), then multiply (2) by 3 and subtract (3). Replace (3) with the 

result.  

  i.e.  x + 2y + 3z  = 9 (1) 

  y + 2z  = 5 (2) 
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  -z = 3 (3)     

We now solve the resulting system of equations by back substitution, i.e. z = 3 from (3). 

Substituting in (2) yields y = - 1 and substituting in (1) yields x = 2.  

i.e. (2, -1, 3) is the solution.  

 

What has happened is that the original equation –  
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i.e. the system of equations is solvable providing the co-efficients matrix is 

diagonalisable.  

Difficulties may arise when leading co-efficient of the first equation at the first stage is 

zero of when the lead co-efficient of the second equation at the second stage is zero and 

so on. Interchanging the equation with a later one will overcome this difficulty if the 

system of equations has a solution. 

The Gaussian Elimination method may be generalised to four or more variables and is 

recommended in those cases.  
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Exercise 14.2 

1. i) Solve 2x – y + z = 4 by Gaussian Elimination. 

  x – 2y – z = -1  

  x + y – 2z = 1 

 ii) repeat for:  

   2x – y + z = 4  

  x – 2y – z = -1  

  x + y – 2z = 1 

2.  Solve:  

 w + x + 2y + z = 5 

 2w + 2x – y + z = 4 

 2w+ 3x + y – z = 5 

 3w + 2x + y – 2z = 4 

3. Maximise 2x + 2y + 6z 

  subject to 6x + 6y + 10z ≤ 25 

     3x + 8y + 10z ≤ 20 

         x ≥ 0, y ≥ 0, z ≥ 0.  

4.  Maximise 2x + 3y + 4z 

 subject to 2x + y + z ≤ 13  

    x + 2y + 2z ≤ 17 

         x ≥ 0, y ≥ 0, z ≥ 0. 

5. A manufacturer can produce four types of cabinets A, B, C or D using oak, teak and 

plywood. He has available 2000 feet of oak, 2000 feet of teak and 10,000 feet of 

plywood. Cabinet require wood as in the table.  

 A B C D Available Supply 

Oak 2 1 1 0 2000 

Teak 0 3 1 1 2000 

Plywood 12 3 4 2 10000 

Profit $45 $15 $30 $15  

 

Find the optimum production plan.  
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6.  See previous example on matrix games.  

 Find the optimum strategy for player A where the payment chart is as below:  

                         B 

 Jack Queen  King 

Jack 0 4 -5 

Queen -4 0 3 
A 

King 5 -3 0 

 

7. Find the optimum strategy for both player A and B in the following matrix game:  

 B 

 Jack Queen King Ace 

Jack 5 3 4 5 

Queen 3 7 6 4 
A 

King 2 8 1 1 

 

Find the amount that A has to pay B each time, in the long run.  

8. Using the set of data below, estimate the value of y when x = 4.5. Use the 

minimax method to find the line of best fit.  

x 0 2 3 

y 2 4 6.5 

 

Exercise 14. 2 Answers 

1. i) (2,1,1)  ii)  φ 2. (1,1,1,1) 3. )
2

3
,0,

3

5
( .  Maximum value is 14.  

4. (3,0,7) or (0,0, . Maximum value is 34. 5. 250 of A, none of B, 1500 of C, 500 of D. 

Profit is $63,750.  6. A chooses Jack 
4

1  of the time, Queen 
12

5  of the time and King 

3

1  of the time.  7. Strategy for A is Jack, 
3

2 rds of time, Queen 
3

1 rd of the time, 

King never. Strategy for B is Jack, 
3

2 rds of time, Queen 
3

1 rd of the time, King never. 

8. y = 1.5x + 1.5. When x = 4.5, y = 8.25 
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14. 3 (i) Duality 

 Linear programming problems are such that for a minimising problem there is a 

corresponding maximising problem (and vice versa) such that the objective functions 

have the same optimum value. The problems are called DUALS of each other. Although 

the underlying proof and theory is beyond the scope of this book, the result is remarkable.  

 

 Note on previous example is 

 Minimise 12x1 + 5x2 + 2x3 

 subject to – 

    x1 + x2 + x3 ≥ 5 

   x1 – x2 + x3 ≥ 3 

   x1 – 2x2 – x3 ≥ 4 

   x ≥ 0, x2 ≥ 0, x3 ≥ 0.   

This could be written in the matrix form  

Minimise [ ]2512

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 

Subject to  

 
!
!
!

"

#

$
$
$

%

&

''

'

121

111

111

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 ≥ 
!
!
!

"

#

$
$
$

%

&

4

3

5

 

and  

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

≥

!
!
!

"

#

$
$
$

%

&

0

0

0

 

If we label the matrices as follows  

X = 
!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 A = 
!
!
!

"

#

$
$
$

%

&

''

'

121

111

111

 R = 
!
!
!

"

#

$
$
$

%

&

4

3

5

 and C = [ ]2512  

We have Minimise CX subject to  
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 AX ≥ R and X ≥ 0  

The corresponding dual problem is set up using matrices A, R and C and a new matrix Z 

where Z is a corresponding one row matrix with the correct number of elements to make 

the following matrix multiplication possible.  

 i.e. Maximise ZR 

  subject to ZA ≤ C and  z ≥ 0.  

 Here Z = [ ]
321
zzz  

i.e. the corresponding maximising problem is: -  

 Maximise [ ]
321
zzz

!
!
!

"

#

$
$
$

%

&

4

3

5

 

 Subject to [ ]
321
zzz

!
!
!

"

#

$
$
$

%

&

''

'

121

111

111

 ≤[ ]2512  

 and [ ]
321
zzz  ≥ [ ]000  

 

i.e. Maximise 5z1+ 3z2 + 4z3 

 subject to z1 ≥ 0, z2 ≥ 0, z3 ≥ 0 

 and 

  z1+ z2 + z3 ≤ 12 

  z1 – z2 – 2z3 ≤ 5 

  z1 + z2 – z3 ≤ 2 

Solving the dual maximizing problem using techniques developed earlier in the chapter 

gives us a feasible region whose vertices are as listed below.  

Vertex (0,7,5) (7,0,5) (0,0,12) (0,2,0) (2,0,0) (0,0,0) 

Values of objection F’n 41 55 48 6 10 0 

 

From this we deduce that the vertex (7,0,5) yields the maximum value 55 for the 

objective function. Note that 55 is also the optimum value of the objective function in the 

original minimizing problem.  
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 A urther remarkable aspect of this duality relationship is that if AX ≥ R is compared 

with z ≥ 0 and X ≥0 is compared with ZA ≤ C, then, if then problems have solutions, 

taking inequalities in corresponding pairs, at least one must be an equality for the 

relevant solution point. This may be summarised as:  

 

 

 

 

For our example 

Minimising Problem  Maximising Problem 

Solution point )
2

1
,0,

2

1
4(   Solution point (7,0,5) 

E x1 + x2+ x3 ≥5  z1 ≥ 0                                  

I 

I x1 + x2+ x3 ≥ 3  z2 ≥ 0                                 

E 

E x1 - 2x2 – x3 ≥ 4  z3 ≥0                                   

I 

I x1 ≥0  z1 + z2 + z3 ≤ 12               

E  

E x2 ≥0  z1 –  z2 – z3 ≤ 5                I  

I x3 ≥0  z1 + z2 – z3 ≤ 2                E  

Objective Function Value for both problems 

12x1 + 5x2 + 2x3    = 55 =     5z1 + 3z2 + 4z3 

 

I and E refer to the fact of whether the relevant constraint is an inequality of Equality for 

the respective solution point. Note that for the solutions, comparing corresponding 

constraints yields exactly one is an inequality and the other is an equality. This is true for 

the majority of linear programming problems and gives us an alternative approach to 

solutions for these types of problems. In problems where the solution is not unique, e.g. 

AX ≥R  Z ≥ 0  
X ≥0  ZA ≤ C 

Minimise CX  Maximise ZR 
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where any point on a whole line segment may represent the solution then in the dual 

problem the solution may or may not be unique and comparing corresponding constraints 

may produce the result that both are equalities.  

 Nevertheless it is always true that at least one constraint is an equality.  

 In a previous example we learned that the problem could be summarized.  

 z1 ≥ 0, z2 ≥0, z3 ≥0  

  

2z1          + 3z3 ≤ 180 

         5z2 + 2z3 ≤ 180 

3z1 + 4z2 + 2z3 ≤ 250 

 

Maximise 30z1 + 40z2 + 50z3 

With a solution (30,20,40). 

 In matrix form this is –  

 [ ]
321
zzz  ≥ [ ]000  

 [ ]
321
zzz  

!
!
!

"

#

$
$
$

%

&

223

450

302

≤ [ ]250180180  

Maximise [ ]
321
zzz

!
!
!

"

#

$
$
$

%

&

50

40

30

 

The dual minimising problem is therefore 

 

!
!
!

"

#

$
$
$

%

&

223

450

302

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 ≥
!
!
!

"

#

$
$
$

%

&

50

40

30

 

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 ≥
!
!
!

"

#

$
$
$

%

&

0

0

0
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Minimise [ ]250180180

!
!
!

"

#

$
$
$

%

&

3

2

1

x

x

x

 

i.e. problems are:  

 

z1 ≥ 0  

z2 ≥ 0  

z3 ≥ 0  

2z1          + 3z3 ≤ 180 

      + 5z2 + 3z3 ≤ 180 

3z1 + 4z2 + 2z3 ≤ 250 

Maximise 30z1 + 40z2 + 50z3 

Solution (30,20,40) 

Maximal value 3700 

2x1          + 3x3 ≥30  

      + 5x2 + 5x3 ≥ 40 

3x1 + 2x2 + 2x3 ≥ 50 

                     x1 ≥ 0  

                     x2 ≥ 0 

                     x3 ≥ 0 

Minimise 180x1 + 180x2 + 250x3 

Solution )
41

110
,

41

240
,

41

450
(   

Minimal value 3700 

 

The solution  of the minimising problem was obtained by checking the vertices of the 

feasible region and is merely quoted here without derivation for simplicity’s sake.  

 

Note: i) The two objective functions have a common value of 3700 

          ii) The constraints are matched 

           I ---- E 

           I ---- E 

           I ---- E 

           E ---- I 

           E ---- I 

           E ---- I 

 

Example 

Consider a minimising problem which leads to the constraints 
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 2x1 + 4x2 + 4x3 + 18x4 ≥ 105 

 5x1 + 3x2 + 3x3 + 14x4 ≥ 140 

 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 

Minimise 90x1 + 110x2 + 160x3 + 630x4 

Clearly a graphical approach is not possible but its dual problem is considerably more 

simple, viz:  

 z1 ≥ 0 z2 ≥ 0 (1) – (2) 

 2z1+ 5z2 ≤ 90   (3) 

 4z1+ 3z2 ≤ 110 (4) 

 4z1+ 3z2 ≤ 160 (5) 

 18z1 + 14z2 ≤ 630 (6) 
 
Maximise 105z1 + 140z2 = P 
 
Graphically this is 

 
This feasible region is easy to arrive at because it becomes readily apparent that in fact 

constraints (5) and (6) are irrelevant. The objective function lines are marked as            , 

hence the optimum point is B, (20,10) – the intersection of 2z1 + 5z2 = 90 and 4z1 + 3z2 = 

110.  

The maximum value of the objective function is 105 x 20 + 140 x 10 i.e. 3500. 

Cross-referencing the constraints in the two problems and using the ‘at least one is an 

equality’ condition leads to the result that –  

A 

B(2,0,10) 

z1 

z2 

18 

27.5 

 

 

 

 
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i) Minimum value of 90x1 + 130x2 + 160x3 + 630x4 is 3500 

ii) x3 = 0 and x4 = 0 (because (5) and (6) are inequalities) 

iii) x1 = 17
2

1  and x2 = 17
2

1  (solving 2x1 + 4x2 + 0 + 0 = 105 and  

  5x1 + 3x2 + 0 + 0 = 140) 

i.e. solution to the original minimising problem is (17
2

1 ,17
2

1 ,0,0).  
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14.3 (ii) Simplex Method 

 

 The simplex method for solving linear programming problems, introduced by C. 

Dantzig in 1947, is a long and cumbersome one by hand, but in the age of the high speed 

computer it is readily programmable for solving problems with any number of variables.  

 There are many revisions of the basic simplex method for dealing with non-standard 

problems but this text will attempt to deal with the standard maximising problem only. 

Students interested in further linear programming should refer to the wealth of text 

available on specialised linear programming problems.  

 It should be remembered that any standard minimising problem has its dual standard 

maximising problem so that the method shown here will suffice for any standard 

problem.  

 

Example 1 

Maximise 4x1 + x2 

subject to    x1 + x2 ≤ 7 

                  2x1 – x2 ≤ 3 

                  2x1 + 4x2 ≤ 24 

                  4x1 – x2 ≤ 8 

x1 ≥ 0, x2 ≥ 0 

The data are set out in a table with constraint co-efficients in the main body of the table 

and the constraint terms entered in the right hand column.  

The bottom row constraints the negatives of the co-efficients of the objective function.  

1 1 7 

2 -1 3 

2 4 24 

4 -1 8 

-4 -1 0 

(1) (2)  
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The  (1) and (2) are labels referring to x1 and x2. This initial table refers to the situation at 

(0,0) wit the corresponding value of the objective function, i.e. zero entered in the bottom 

right hand corner.  

 The simplex method involves moving from the vertex to the vertex of the feasible 

region in a productive way, improving the value of the objective function each time, until 

no further improvement can be made. A new table is set up each time corresponding to 

the new vertex.  

 

Method 

Step 1 Locate the column having the least value in the bottom row, i.e. – 4. Call this the 

pivotal column 

 

Step 2 For each positive entry in the pivotal column find the quotient of the entry in the 

right hand column divided by the entry in the pivotal column. The pivot is the entry in 

the pivotal column corresponding to the smallest quotient, i.e. 2. (Since 3 ÷ 2 is the 

smallest of 7 ÷ 1, 3 ÷ 2, 24 ÷ 2, 8 ÷ 4) Call the pivot p.  

 

Step 3 A new table is then produced using the following rules.  

i) Each entry in the pivotal column is divided by – p 

ii) Each entry in the pivotal row is divided by + p 

iii) p is replaced by 
p

1  

iv) All other entries are transformed by the diagonal rule.  

 i.e. p …………c 

  . 

  . 

  . 

  b…………..a 

 a is replaced by a - 
p

bxc where b and c are entries forming the two other corners of 

“rectangle” formed by a and p.  
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Step 4 The label of the pivotal column is reassigned to the pivotal row.  

      The new table becomes  

            

2

1
!  

2

3  
2

11  

2

1  
2

1
!  

2

3  

-1 5 21 

-2 1 2 

2 -3 6 

 (2)  

This table represents the situation at (
2

3 , 0) (note (1) is next to 
2

3 ) where the value of the 

objective function is 6. Steps 1 to 4 are then repeated until the bottom row contains no 

negative entries.  

 

 The readjustment of the table at each stage is, in fact, the result of a Gaussian 

Elimination to arrive at the new vertex.  

 the new pivot is 1 (row 4 – column 2) and then rearranged table is  

2

5  -
2

3  
2

5  

-
2

1  
2

1  
2

5   

9 -5 11 

-2 1 2 

-4 3 12 

   

This last table represents the situation at (
2

5 , 2) (note (1) and (2) labels) with an objective 

functional value of 12.  

(1) 

(1) 

(2) 
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The -4 in the bottom rows tells us that this can be improved upon and the new pivot is 

2

5 (row 1 – column 1) 

The next (and final) table is  

5

2  -
5

3  1 

5

1  
5

1  3  

5

18
_  -

5

2  2 

5

4  -
5

1  4 

-4 3 12 

 

This is the final table because each entry in the bottom row is positive. The solution to the 

problem occurs when x1 = 3 and x2 = 4 (see (1) and (2) labels) yielding a maximum 

objective function of 16. Graphically what has happened is shown below.  

 

A (1
2

1 ,0)  

B (2
2

1 ,2)  

C(3,4)
 

D(2,5)
 

E(0,6)
E  

(0,0)  

(1) 

(2) 
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The feasible region is OABCDE. The initial table represents the situation at O. 

Subsequent tables reflect the situations at A, B, C in order.  

Example 

 Minimise 12x1 + 3x2 + 7x3 

 subject to 

  6x1 – 2x2 + 5x3 ≥ 3 

  2x1 + 3x2 – 4x3 ≥ -2 

  3x1 + 9x2 + x3 ≥ 8 

 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.  

Normally we could not deal with this problem by Simplex because it is both a minimising 

problem and has a negative constant term in one of the constraints.  

However, the dual of this problem is 

 z1 ≥ 0, z2 ≥ 0, z3 ≥ 0 

  6z1 + 2z2 + 3z3 ≤ 12 

  -2z1 + 3z2 + 9z3 ≤ 3 

  5z1 – 4z2 + z3 ≤ 7 

Maxmimise 3z1 – 2z2 + 8z3 

which we can handle using a standard simplex method. 

 

Table 1 

6 2 3 12 

-2 3 9 3 

5 -4 1 7 

-3 2 -8 0 

(1) (2) (3)  

 The initial pivot is 9  
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Table 2 

  

6
3

2  1 -
3

1  11 

-
9

2  
3

1  
9

1  
3

1  

5
9

2  -4
3

1  -
9

1  6
3

2  

9

43  
9

42  
9

8  
9

24  

(3) 

(1) (2)    

Table 3 

-
47

60  
47

307  -
141

27  
47

117   

47

2  
47

7  
47

5  
47

29  (3) 

9

47  -
47

39  -
47

1  
47

60  (1) 

47

43  
47

33  
47

37  
47

412   

 (2)    

This is the final table. The label (2) left unmoved in the final row indicates z2 = 0.  

The optimum solution for the dual is therefore (
47

60 ,0, 
47

29 ) with an objective function 

value of 
47

412 .  

Comparing this with the original minimising problem and relying on the idea in the 

duality section that at least one of the two corresponding constraints must be an Equality, 

we deduce that the optimum vertex for the minimising problem occurs at the intersection 

of x1 = 0, 6x1 – 2x2 + 5x3 = 3 and 3x1 + 9x2 + x3 = 8.  

i.e. optimum vertex is (0, 
47

37 , 
47

43 ) 

The new pivot is 5
9

2  
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Incidentally it is not a coincidence that 
47

37  and 
47

43  appear in the bottom row of the final 

simplex table. They are obtained as follows.  

 

Table 1 

,, refer to x1, x2, x3 in the original problem.  

(1), (2), (3) refer to z1, z2, z3 in the dual problem.  

 

 

Since 9 is the pivot then (3) and  interchange giving  

 

Table 2 

 

 

 

 

 

In Table 2, 
9

2
5  is the new pivot since labels (1) and  interchange.  

Table 3 

 

 

 

 

 

 

 

 

 

    

  9  

    

 (1) (2) (3)  

    

  9  

9

2
5     

 (1) (2) (3)  

x x x 
47

117   

x x x 
47

29  (3) 

x x x 
47

60  (1) 

47

43  
47

33  
47

37  
47

412   

 (2)    
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Since  remains unmoved in the final column, x1 = 0 but x2 = 
47

37  and x3 = 
47

43  as 

indicated in the final row to yield the optimum value of 
47

412 . In other words, Simplex 

solves the two problems simultaneously.  

 

For further reading, students are recommended G.B. Dantzig, Linear Programming and 

its Extensions (Princeton University Press) 1963, and W.A. Spivey, Linear Programming 

– An Introduction. (Macmillan – New York) 1968.  

 

(Author’s note) 

 A recent (1980) mathematical paper by a Russian mathematician L. G. Khachian, 

suggest that a much more efficient method for solving linear programming problems will 

soon be possible.  

 At present the Simplex method is said to be exponential time one. This means that the 

computer time required to solve a problem increases exponentially as the number of 

variables increases. Khachian’s method has a polynomial time solution. The dime 

difference between the two is illustrated by the fact that a polynomial time algorithm 

requiring x3 steps takes about 
5

1 second of computer time when x = 60 whereas an 

exponential time algorithm requiring 3x steps takes billions of centuries of computer time 

when x = 60.  

 The Simplex method involves a polygon in multi-dimensional space whose 

boundaries are determined by the constraints in the problem and whose vertices are 

possible solutions.  

 Khachian’s method involves the construction of a sequence of “ellipsoids” in multi-

dimensional space that close in automatically on the optimum solution.  
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Exercise 14.3 

1. Find the dual problem of  

Minimise 2x1 + 3x2 + 4x3 

subject to 5x1 + 6x2 + 7x3 ≥ 8 

  9x1 + 10x2 + 11x3 ≥ 12 

 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 

and solve by any method. 

2. Find the dual problem of 

Maximise 5z1 + 3z2 

subject to   z1 + 2z2 ≤ 3, 4z1 + 5z2 ≤ 6,  

   7z1 + 8z2 ≤ 9, 10z1 + 11z2 ≤ 12 

   z1 ≥ 0, z2 ≥ 0 

3. A manufacturer has 240, 360, and 420 pounds of wood, plastic and steel 

respectively. Products of A, B, C require quantities of these materials as outlined 

in the table below.  

  A B C 

Oak 1 3 2 

Teak 3 2 1 

Steel 2 1 3 

 

Profits on products A, B, C are $3, $4, $5 respectively. Find the optimum production 

plan.  

The manufacturer is able to obtain free, from the supplier, 60 pounds of wood, plastic 

or steel. Which should he choose?  

4. Use Simplex Method to solve.  

Minimise  5x1 + 12x2 + 10x3  

subject to x1 + x2 + 2x3 ≥ 4 

   x1 - 2x2 + 3x3 ≥ 7 

   x1 + 2x2 – x3 ≥ 5 
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  -x1 + 4x2 + 4x3 ≥ -1 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0  
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Exercise 14.3 (cont’d) 

 

5. Use the Simplex method to find the optimum strategy for A in the follow matrix 

game. What is the expected payout reach time in the long run?  

                         B 

 Jack Queen  King 

Jack 0 -3 4 

Queen -3 0 -5 
A 

King 4 -5 0 

 

6. Determine the straight line y = mx + b which best fits the following data in the 

minimax sense.  

  

x 0 1 2 3 4 5 

y 6.2 6.8 7.0 7.8 8.5 9.4 

 

7. Maximise z1 + z2 + z3 + z4  

subject to z1 –  z2 + z3 – z4 ≤ 2 

 z1 + z2 – z3 + z4 ≤ 4 

-z1 + z2 + z3 – z4 = 0 

  z1 ≥ 0 , z2 ≥ 0, z3 ≥ 0, z4 ≥ 0.  

 (Hint: z = 0  z ≤ 0 and – z ≤ 0) 
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Exercise 14.3 Answers 

1. Maximise 8z1 + 12z2 

Subject to 5z1 + 9z2 ≤ 2 

  6z1 + 10z2 ≤ 3 

  7z1 + 11z2 ≤ 4 

  z1 ≥ 0 

  z2 ≥ 0  

  Solution for minimising problem is (
5

8 ,0,0) with minimum value of 
5

16 . 

2. Minimise 3x1 + 6x2 + 9x3 + 12x4.  

Subject to x1 + 4x2 + 7x3 + 10x4 ≥ 5 

 2x1 + 5x2 + 8x3 + 11x4 ≥ 5 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 

  Solution to maximizing problem is (
5

6 , 0) with maximum value of 6.  

3. 96 of A, none of B, 72 of C. 

60 pounds of wood. 

4. )
9

7
,

18

5
,

9

47
( Minimum value is 

9

335 . note solution is obtained by solving the dual 

problem by simplex.  

5. i) A chooses Jack 
14

5 of the time, Queen 
14

8 of the time and King 
14

1 of the time.  

ii) 
7

10  

6. y = 0.64x + 6.18 (max. d is 0.02) 

7. z1 = 0, z2 = 1
2

1 , z3 = 0, z4 = 1
2

1 .Max. value is 3.   


