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CHAPTER THIRTEEN
13. Eigenvectors
13.1 An eigenvector for a given matrix A is any non—zero vector v such that A(v) = Av

where A is a scalar.

i.e. an eigenvector is one which A maps into a multiple of itself.
The possible values for A are called eigenvalues (or characteristic values).
Example

4 2
Note that [6 5} maps (1,2) to (8,16). This means that (1,2) is an eigenvector for

4

4 2
[6 5} with eigenvalue 8. Furthermore since [6 5} is a L.t. it preserves scalar

multiplication and hence it follows that all scalar multiples of (1,2) are mapped to 8—

multiple of themselves.
4 2
e.g. [6 5} maps (2,4) to (16,32)

This means that the set {m(1,2) | me R}, i.e. y = 2x is left invariant by the matrix

M

A y=2x A
y v v=2u
| |
X X
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To find eigenvalues in general

We will consider the 2x2 case but the argument readily generalises to the nxn case.

a b
Let A= .

: : . a bl|x AX
We wish to investigate q =
c

i.e ax + by = Ax

cx +dy= Ay
ie.(a—x)+by=0
ex+(d—A)y=0

. . . [a—42 b |[x] [0
i.e. the equations may be written: L dod J =10
C - y

a-1 b
: } is 1-1 then Kernel = {0} only and there are no eigenvectors for A.

IfL c d-4

(0 is not an eigenvector for reasons to be found later).

a—-A
: J is not 1-1, then there will be non—zero vectors in the Kernel which is

If
L c d-4
what we are looking for.
[a—1 b ]

a
i.e. If the determinant of L J is zero, then [

will have eigenvectors with
c d-4 c

corresponding eigenvalues A.

, [a—1 b ] . a b 1 0] .
Note that notationally L doi J may be written dl A 0 1 ie A- AL
c - c

ie. A has eigenvalue A if det(A — AI)=0.
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Example

1 2
To find eigenvalues and eigenvectors for [3 2} .

-1 2 ]
We need to look at det =
| 3 2-1]

ie. (1-1)2-1)—6=0

AP-34-4=0
(A—4)(A+1)=0
A=4or-1

i.e. the eigenvalues are 4 and —1.
The set of all eigenvalues is called the SPECTRUM.

Spectrum for above matrix is {4,1}.

To find the eigenvectors corresponding to A =4.

. 1 2||x 4x
We wish to solve =
3 2]y 4y

le. x +2y=4x
} i.e. 2y = 3x
3x +2y =4y

2
This means that all position vectors for points on 2y = 3x are eigenvectors for [3 2}

with eigenvalue 4.
We call this Sy4. i.e. S4 = {(xy) | 2y = 3x}.

In general the set of eigenvectors corresponding to an eigenvalue A is called S,.

To find S_1.

. 1 2||x -X
ie =
3 2]y -y
e x+2y=-—x
Y 2> y=-—Xx
3x+2y=-y
i.e. any position vector on y = —x is an eigenvector with eigenvalue —1.

Le. Sa={xy|y=—x}.



318

Example

1 -2
To find spectrum and S, for [1 4 }

-1 -2 ]
det =0
|1 4-2]
ie. A2-51+6=0

i.e. A=2or3.

i.e. Spectrum is {2,3}
To find Sz.

1 =2 x_2x
1 4 ||y| |2y
e, Xx—2y=2
Le. X—2y x} -)y=—lx
2
1

x +4y =2y

ie. = {(xy) [y = —7x}

To find S3.

1 =2||x B 3x
1 4 ||y| |3y
l.e. X — 2y =3x
Y } 2> y=-—Xx
x +4y =3y

Le. 83 = {(xy) |y =—x}

For the purposes of calculating eigenvalues, the zero vector is not considered as an

eigenvector because A(0) = 0 for all matrices A.

Hence every matrix would have 0 as an eigenvector. Furthermore, since A0 =0

for all A, every real number would be an eigenvalue for every matrix, clearly an

undesirable situation. Hence 0 is not usually an eigenvector.

The special case where A = 1, i.e, where vectors remain unchanged by the matrix, is of

interest in the study of Stochastic Processes, Markov Chains and Probability Theory in

general.
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Exercise 13.1
) 12 20 .. |1 5 |12 |1 6
1. Find the spectrum and S, for i) i1) i) iv)
1 3 2 4 5 4 3 4

) 2 1 ) 6 4 i) 1 4
vi vii
V1ot 0 9 6 2 1
2. If mis a double root of det (A—AI) = 0, does it follow that S, is a plane (as opposed

4 1
to a line). (Hint —consider [ . 2} ).

3. Ifvis an eigenvector for A show that v is an eigenvector for A", for all n.
4. If A is an eigenvalue for A, show that A” is an eigenvalue for A%. Is A" an eigenvalue

for A"?
1. . _ _
5. i) Show that if A is an eigenvalue for A then 7 is an eigenvalue for A™'. (Assume A

1 .
exists, of course)

ii) Does (S, for A)=(s, for A™')?
7

6. Find A so that A(v) = A'(v) = Av.
7. Show that if A is an idempotent matrix then the spectrum of A is a subset of {0,1}.
8. Show that if A is a nilpotent matrix, then the spectrum of A is {0}.
9. Explain why a rotation of any angle other than 180 in R? cannot have eigenvalues.
10. What are the possible eigenvalues for:

i) A reflection?

ii) An orthogonal matrix?

11. Find a matrix having eigenvalues —2 and +3. (Assume matrix is 2x2)

12.If A'is find the eigenvalues A.

W=
WA |Ww
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Exercise 13.1 Answers

Lo 1) {14} Si={(xy) [ 2y +x =0}, Sa = {(xy) | y =x}.
i) {6,-1} S¢ = {(x,y) | y =x}, S.1 = {(xy) | Sy = —2x}.
iii) {6, =1} S¢ = {(xy) [ 5x =2y}, S ={(xy) | y = =x}.
iv) {722} S7={(%y) |y =x}, S2= {(xy) | x + 2y = 0}
V) {1} Si={xy) [y =—x}
vi) {0,12} Sp = {(x,y) | 3x + 2y = 0}, S1 = {(x,y) | 2y = 3x}.

vii) ¢ i.e. no eigenvalues.
: 4 1 .
2. No. A= 3is a double root of [ . 2} but S; is a line {(x,y) | y =—x}.

4. Yes.

5. 1i) Yes.
6. A= =+1.
9. All rotations (except I) change directions of vectors.

10.) 1. i)+1

l'Il2 n 2 1
1. | m—m” +6 l—m e.g. [4 _J

n

13.2 Eigenvalues for 3x3 matrices

a b c
Consider |[d e f|=A
g h i
[a-A b c |[x
This maps (X,y,z) to A (x,y,z), as in the R’ case, when| d e-4 f | y|=
e n i-Allz

And as before, we obtain the eigenvalues A from the equation det(A— AI) = 0.



321

Example
1 0 0 [1-2
2 3 0] has eigenvalue A when det | 2
2 21 | 2
ie. (1- 1)(3— A)(1- 1)=0
ie. A=1or3 Note A =1 is a double root.
To find S]
1 0 O0||x X
2 3 O0||y|=]|y |occurs when
-2 =2 1|z z
X = 3x
2x + 3y =3y 2 y=—x
—2x—2y+z=3z

Note that S; is a plane {(x,y,z} | y =—x}

To find S;
1 0 O0]|x 3x
2 3 0f|ly|=|3y
-2 =2 1||z 3z
ie. X =X
2x+3y=y > x=0y=-2
2x—-2y+z=z

i.e. S3is a line {m(0,1,-1) | m € R}
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Example
3 -2 3
To find eigenvalues and S, for [1 2 1
1 3 0
[3-1 2 3]
detl 1 2-2 110
1 3 2]
ie.—A’+51°-21 -8=0
e(-D(A+D(A-2)(A-4)=0
ie. A=-1,2o0r4.
TOfilldS-]
3 -2 3||x -X
I 2 1||ly|=|-Y
1 3 0]|z -z
ie. 3x -2y +3z=—x
fayizey b > Koy 2
xraymemy TRRAESY

x+3y =-z
i.e. S_;isaline {m(11,1,-14) | me R}
Similar techniques show that —
S; = {m(1,-1,-1) | me R}
and
S4 = {m(1,1,1) | me R}

This means each of the three lines of vectors

3 -2 3
S_1, S; and S4 remains invariant after |1 2 1
1 3 0

The previous examples suggest the following theorem —
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Theorem 13.1
If A is an eigenvalue for matrix A then S, is a subspace of the domain A.
Proof
Letviand v € S,
Then A(vq) = Avy and A(v2) = Av,
i.e. A(vi +v3) = A(vq) + A(vz) since Ais a Lt.
= Avit Av,
= A (vitv)

L Vit eSS, i.e. S, is closed under vector addition.

Similarly A(cvi) =cA(vi) since Aisal.t.
=cA (v1)
= A (cvy)
~.ocvie S, i.e. S, is closed under scalar multiplication.

Therefore S, is a subspace of domain of A.

Theorem 13.2
If A: V> Wisalt and A is an eigenvalue then A=0 <> det A=0

Proof

(=) If A= 0 then some vectors in the domain of A are mapped to zero times
themselves, i.e. mapped to 0. This mean that Kernel of A contains something other than
0, 1e. KerA#0 .. Aisnot1-1.
sdet A=0

(<€) The above argument is completely reversible. [

Exercise 13.2

1
1. Find x so that [3 ﬂ has eigenvalue 4.
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S e O
- o O

5
. Find eigenvalues for | 0
0

Hence deduce its inverse.

1 3 =2
. Find eigenvalues and the corresponding S, for: [3 1 —-2].
3 4 -5

. Does it follow that if A is a double root of det (A — AI) = 0 where A is a 3x3 matrix

then S, is a plane?

1 1 -1
Investigate by considering | -1 3 —1].
-1 2 0

2 -
Show that [2 }is idempotent. Find its eigenvalues and describe its geometric

significance.
1 0 1
. Find spectrumof |2 -1 2].
0 1 O
1 0 0
. Investigate | 2 3 0| for eigenvalues and the resulting subspaces S,.
-2 =21

[\ 2 \O R \S)
W W W

1
. By considering the range of matrix A = |1
1

show that 1) is not onto
il) Aisnot 1-1
iii) Ker A#0
iv) A =0 is an eigenvalue
Furthermore show that the range is {m(1,1,1) | m € R}, that A = 6 is an eigenvalue

and hence that the only possible subspace for S¢ is {(X,y,z) | x =y = z}.
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Find examples A; and A, which are eigenvalues for matrices A; and A, respectively

but such that A; + A, is not an eigenvalue for A; + A.

10. 1) If A is an eigenvalue for A, is A an eigenvalue for mA (m # 1) ?

1.

ii) Ism A an eigenvalue for mA?

If A, and A, are eigenvalues for A; and A, respectively, is 11 A, an eigenvalue for

A1Ay?

12. Find a matrix other than I or the zero matrix which has every vector as an

eigenvector. How many eigenvalues does the matrix have?

Exercise 13.2 Answers

I. x=3
1 0 O
5
2. {(51}A'=]0 % 0
0 0 1
y z
3. {223 Sa={(xy.n)|x=y=2z}So={(xy,2) | x = 3" 3 }
X 'y z
Ss={(x,y,2) | —===—
3={(x%y,2) | 5 =57 }
4. No. A=1is a double root but S; is a line {(x,y,z) | x =y = z}.
5. A=0or 1. It maps everything to y = x.
6. {0,4/3,-/3}
7. A=1or3. 1isadoubleroot. S; = {(x,y,z) | x =-y} S5 = {(X,y,2) | x =0;y = —z}.
10. 1) No. ii) Yes. 11. No.

}which has a single eigenvalue a.

o Ja
A magnification
0 a
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13.3 If A is a matrix then det(A — AI) = 0 is called the characteristic polynomial of A.

(2 -1 2-2 -1
e.g. IfAis then det =
3 4 | 3 4-2]

i.e. A =62 + 11 =0 is the characteristic polynomial
Hamilton—Cayley Theorem
If A is a matrix with characteristic polynomial F( 1), then F(A) = [0] where [0] is

the zero matrix.

We will first illustrate the meaning of this theorem.

2
For A = [3 4} as above, F(1)= 1> - 61 + 11.

Then F(A) means A* — 6A + 111.
The theorem allows us to deduce that A* — 6A + 111.=[0]

Check
A2_2—1 2 -1] [1 -6
3 413 4 18 13
—12 6
—6A =
18 —24
11 0
111 =
0 11}

0 0
Then A% — 6A + 111 does equal [0 O} as required by the theorem.

A general proof of the Hamilton—Cayley Theorem is beyond the scope of this text but we

will show the truth of the theorem in the 2x2 case by direct substitution.

Proof

[a—1 b ]

a b . . . ] . . ] 1

LetAbe[ =0

C

ie. A*—(atd) A +ad-bc=0
We now need to show that

A’ — (a+d)A + (ad — be)l = [0]
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A2 a’+bc ab+bd
ac+dc bc-d’

(ard)A - a’—ad -ab—bd
-ac-dc -ad-d?
d-b 0
(ab—de)I = ¢ ¢
0 ad - bc

0 0
Hence A? — (a+d)A + (ad — be)l = [0 O} as required.

Example
0 -1 1
Consider [2 -1 2
1 0 1
| 1]
The characteristic polynomial is det |2 —1-2 2 |=0
1 o0 1-4
ie.—A° +1=0 i.e. A =1 is the only eigenvalue.
(we do not include complex eigenvalues)

It therefore follows from the Hamilton—Cayley Theorem that

~A’+1=[0]
ie. A’=1
ie. AZ=A"

0O -1 1|{0 -1 1 -1 1 -1
Hence |2 -1 2|2 -1 2|=|0 -1 2|=A"
1 0 11 0 1 1 -1 2

The Hamilton—Cayley Theorem can be used occasionally to find high powers of some

matrices as follows.

Question

3 5
IfA= [ } find A'®. The characteristic polynomial is A*~4=0 ie. A
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ie. A2—41=0

ie AZ=41

A= = |4 0] [1024 0
o 0 4| | 0 1024

Previously in the chapter we examined [3 2} . We found that its eigenvalues were 4 and

—1 and that S4 = {(x,y) | m(2,3) € R} and S_; = {m(1,-1) | m € R}. We will now look at

1 2
[3 2} in greater detail. Call the matrix A.

To diagonalise A

This means to multiple A by matrices so that A becomes a diagonal matrix. This
can be effected as follows.
Let P be the matrix mapping i to any vector in S4, (say) (2,3) and mapping j to any vector

in S_j, (say) (1,-1).

) 1201
1.e. P is
3 -1

Now we know A(2,3) = (8,12) and A(1,-1) = (- 1,1)
(since they belong to S4 and S_; respectively)

8 -1
AP =
[12 1}
8 -1 4 0
But =P
[12 1} [0 —1}
) 4 0
1.e.AP=P[ }

0 -1

Butdet P £0, .. P! exists.
4 0

~P'AP = ®
0 -1

i.e. A can be diagonalised to a diagonal matrix whose non—zero elements are its

eigenvalues.
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4 0
We say A is SIMILAR to [0 J

i.e. if A= P 'BP then A is similar to B.
Note that det(P'AP) = det P' det A det P

1
detP

=det A

det A det P

Since the determinant of P™' AP is clearly the product of the eigenvalues, see @ above, it

follows that

det A = product of its eigenvalues

This is true for nxn matrices but it is not true that every square matrix is similar to a
diagonal matrix.

(Exercise 13.2 Question #4 is an example illustrating this.)

3 -2 3
Previously, we found that |1 2 1| had eigenvalues —1, 2, and 4 and
1 3 0

S| = {m(11,1,-14) | me R}, S, = {m(1,-1,-1) | me R}and S4 = {m(1,1,1) | me R}.

11 I 1
We may deduce from thisthat P=| 1 —1 1] is a matrix such that
-14 -1 1
3 -2 3 -1 0 0
P'l1 2 1|P=[{0 2 0
1 3 0 0 0 4

In fact every symmetric matrix can be made similar to a diagonal matrix. More advanced

texts treat similar matrices more fully where they have considerable importance.
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Exercise 13.3

1.

1 3
Find the eigenvalues for [3 2 0 | and hence find its determinant.
7 0 =2
0 -1 1
Repeat for [2 -1 2].
1 0 1
3 -4 2
Aisthe matrix |1 3 -3 |. Find P such that P'AP=B. where B is a diagonal
1 6 -6
matrix.
1 0 0
Repeat question 3 where A=| 2 3 0
-2 =21
0 -1 1
Use the Hamilton—Cayley Theorem to find the inverse of |2 —1 2 |. Note that this
1 0 1

is the matrix in Question 2.
Investigate the conjecture that if A is a 3x3 matrix with eigenvalues A, A,, A3 then
trace A= A+ A, + Aj [trace A is the sum of the diagonal elements of A]

[cos@ -sin6 O]
Show that |sin cos6 0lis orthogonal and that it represents a rotation of 0° a.c.

Lo o 1]
about the z—axis.
Show that if A is a 3x3 orthogonal matrix then {A(i), A(j), A(k)} is a set of mutually

perpendicular unit vectors. Is the set an orthonormal basis for the range of A?

1 3 -2
Show that A=|—1 5 -2/ has only one real eigenvalue. Find the corresponding
-1 4 1

S,. Explain why it is not possible to find a matrix P such that P 'AP=B where B is a

diagonal matrix.
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1.

12.

13.

14.
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Is

S O N

1 0
2 1| diagonalisable?
0 2

0 1 0

Find the characteristic polynomial of |0 0 1 | and consequently name a matrix
a b c

whose characteristic polynomial is x> — 5x* — 6x — 7 = 0.

Show that if A and B are similar matrices then they have the same eigenvalues. Do

they have the same eigenvectors?

Find the spectrum of . Find the corresponding eigenspaces and describe the

N[ =N =
N[ =N =

geometric significance of the matrix.

True or False?

a) If A>=Athen A=[0]orl

b) If A+ B=1Ithen A’ commutes with B

¢) If (A —I)>=[0] then A does not have an inverse

d) If all the eigenvalues of A are zero then A* = [0] for some integer k.

e) If A is a diagonal matrix then AB = BA for every matrix B.

Exercise 13.3 Answers

1. Spectrum = {0,5,—4}. Determinant is zero.
2. Spectrum = {1}. Determinant = 1
1 0 0 a 2b 0
3. Aissimilarto (0 2 0 |. Pis|a b c | foranya,b,c.

0 0 -3 a b 2
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a ¢ 0
4. P=|—-a —c e whered;«tz. i.e. P(i), P(j) are l.i. An example is
a
b d -e
1 2
-1 -2 3
4 5 -3
-1 1 -1
5. Since A’ =1 by Hamilton—Cayley Theorem A" =A*=| 0 -1 2
1 -1 2
6. True
8. Yes
X z
9. 1=2 —=y=—
5 Y -1
10. No.
0 1 0
11.{0 0 1
7 6 5
12. No

13. Spectrum = {0,1} Sp = {(x,y) | y =—x} S_; = {(xy) | y = x}. It is a projection on to
y=X.

10
14. a) False b) True c¢) Falsee.g. [3 J d) True (Hamilton—Cayley Theorem)

e) False



