CHAPTER THIRTEEN

13. Eigenvectors

13.1 An eigenvector for a given matrix A is any non-zero vector \mathbf{v} such that $A(\mathbf{v})=\lambda \mathbf{v}$ where λ is a scalar.
i.e. an eigenvector is one which A maps into a multiple of itself.

The possible values for λ are called eigenvalues (or characteristic values).

Example

Note that $\left[\begin{array}{ll}4 & 2 \\ 6 & 5\end{array}\right]$ maps $(\mathbf{1 , 2})$ to $(\mathbf{8 , 1 6})$. This means that $(\mathbf{1 , 2})$ is an eigenvector for $\left[\begin{array}{ll}4 & 2 \\ 6 & 5\end{array}\right]$ with eigenvalue 8. Furthermore since $\left[\begin{array}{ll}4 & 2 \\ 6 & 5\end{array}\right]$ is a 1.t. it preserves scalar multiplication and hence it follows that all scalar multiples of $(\mathbf{1 , 2})$ are mapped to 8 multiple of themselves.

$$
\text { e.g. }\left[\begin{array}{ll}
4 & 2 \\
6 & 5
\end{array}\right] \operatorname{maps}(\mathbf{2}, \mathbf{4}) \text { to }(\mathbf{1 6 , 3 2})
$$

This means that the set $\{\mathrm{m}(\mathbf{1 , 2}) \mid \mathrm{m} \in \mathrm{R}\}$, i.e. $\mathrm{y}=2 \mathrm{x}$ is left invariant by the matrix $\left[\begin{array}{ll}4 & 2 \\ 6 & 5\end{array}\right]$.

To find eigenvalues in general

We will consider the 2×2 case but the argument readily generalises to the nxn case.
Let $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$.
We wish to investigate $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}\lambda x \\ \lambda y\end{array}\right]$
i.e $a x+b y=\lambda x$
$c x+d y=\lambda y$
i.e. $(a-x)+b y=0$

$$
c x+(d-\lambda) y=0
$$

i.e. the equations may be written: $\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

If $\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]$ is $1-1$ then Kernel $=\{\boldsymbol{0}\}$ only and there are no eigenvectors for A.
($\mathbf{0}$ is not an eigenvector for reasons to be found later).
If $\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]$ is not $1-1$, then there will be non-zero vectors in the Kernel which is what we are looking for.
i.e. If the determinant of $\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]$ is zero, then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ will have eigenvectors with corresponding eigenvalues λ.
Note that notationally $\left[\begin{array}{cc}\mathrm{a}-\lambda & \mathrm{b} \\ \mathrm{c} & \mathrm{d}-\lambda\end{array}\right]$ may be written $\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ i.e $\mathrm{A}-\lambda \mathrm{I}$.
i.e.
A has eigenvalue λ if $\operatorname{det}(A-\lambda I)=0$.

Example

To find eigenvalues and eigenvectors for $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.
We need to look at det $\left[\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right]=0$
i.e. $(1-\lambda)(2-\lambda)-6=0$

$$
\begin{aligned}
& \lambda^{2}-3 \lambda-4=0 \\
& (\lambda-4)(\lambda+1)=0 \\
& \lambda=4 \text { or }-1
\end{aligned}
$$

i.e. the eigenvalues are 4 and -1 .

The set of all eigenvalues is called the SPECTRUM.
Spectrum for above matrix is $\{4,1\}$.

To find the eigenvectors corresponding to $\lambda=4$.
We wish to solve $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}4 x \\ 4 y\end{array}\right]$

$$
\left.\begin{array}{r}
\text { i.e. } x+2 y=4 x \\
3 x+2 y=4 y
\end{array}\right\} \quad \text { i.e. } 2 y=3 x
$$

This means that all position vectors for points on $2 \mathrm{y}=3 \mathrm{x}$ are eigenvectors for $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ with eigenvalue 4.

We call this S_{4}. i.e. $\mathrm{S}_{4}=\{(\mathbf{x}, \mathbf{y}) \mid 2 \mathrm{y}=3 \mathrm{x}\}$.
In general the set of eigenvectors corresponding to an eigenvalue λ is called S_{λ}.

To find S_{-1}.

$$
\begin{aligned}
& \text { i.e }\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-x \\
-y
\end{array}\right] \\
& \text { i.e } x+2 y=-x \\
& \left.\begin{array}{r}
x+2 y=-y
\end{array}\right\} \Rightarrow y=-x
\end{aligned}
$$

i.e. any position vector on $\mathrm{y}=-\mathrm{x}$ is an eigenvector with eigenvalue -1 .
i.e. $S_{-1}=\{(\mathbf{x}, \mathbf{y}) \mid y=-x\}$.

Example

To find spectrum and S_{λ} for $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
$\operatorname{det}\left[\begin{array}{cc}{[1-\lambda} & -2 \\ 1 & 4-\lambda\end{array}\right]=0$
i.e. $\lambda^{2}-5 \lambda+6=0$
i.e. $\lambda=2$ or 3 .
i.e. Spectrum is $\{2,3\}$

To find \mathbf{S}_{2}.

$\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$
i.e. $\left.\begin{array}{rl}x-2 y & =2 x \\ x+4 y & =2 y\end{array}\right\} \quad \rightarrow y=-\frac{1}{2} x$
i.e. $S_{2}=\left\{(\mathbf{x}, \mathbf{y}) \left\lvert\, \mathrm{y}=-\frac{1}{2} \mathrm{x}\right.\right\}$

To find S_{3}.

$\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{l}3 \mathrm{x} \\ 3 \mathrm{y}\end{array}\right]$
i.e. $\left.\begin{array}{r}x-2 y=3 x \\ x+4 y=3 y\end{array}\right\} \quad \rightarrow y=-x$
i.e. $S_{3}=\{(\mathbf{x}, \mathbf{y}) \mid \mathrm{y}=-\mathrm{x}\}$

For the purposes of calculating eigenvalues, the zero vector is not considered as an eigenvector because $\mathrm{A}(\mathbf{0})=\mathbf{0}$ for all matrices A .

Hence every matrix would have $\mathbf{0}$ as an eigenvector. Furthermore, since $\lambda \mathbf{0}=\mathbf{0}$ for all λ, every real number would be an eigenvalue for every matrix, clearly an undesirable situation. Hence $\mathbf{0}$ is not usually an eigenvector.
The special case where $\lambda=1$, i.e, where vectors remain unchanged by the matrix, is of interest in the study of Stochastic Processes, Markov Chains and Probability Theory in general.

Exercise 13.1

1. Find the spectrum and S_{λ} for i) $\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ ii) $\left[\begin{array}{ll}1 & 5 \\ 2 & 4\end{array}\right] \quad$ iii) $\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right] \quad$ iv) $\left[\begin{array}{ll}1 & 6 \\ 3 & 4\end{array}\right]$
v) $\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$
vi) $\left[\begin{array}{ll}6 & 4 \\ 9 & 6\end{array}\right]$
vii) $\left[\begin{array}{cc}1 & 4 \\ -2 & 1\end{array}\right]$
2. If m is a double root of $\operatorname{det}(A-\lambda I)=0$, does it follow that S_{m} is a plane (as opposed to a line). (Hint-consider $\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$).
3. If \mathbf{v} is an eigenvector for A show that \mathbf{v} is an eigenvector for A^{n}, for all n.
4. If λ is an eigenvalue for A, show that λ^{2} is an eigenvalue for A^{2}. Is λ^{n} an eigenvalue for A^{n} ?
5. i) Show that if λ is an eigenvalue for A then $\frac{1}{\lambda}$ is an eigenvalue for A^{-1}. (Assume A^{-} ${ }^{1}$ exists, of course)
ii) Does $\left(S_{\lambda}\right.$ for A$)=\left(\mathrm{S}_{\frac{1}{\lambda}}\right.$ for $\left.\mathrm{A}^{-1}\right)$?
6. Find λ so that $\mathrm{A}(\mathrm{v})=\mathrm{A}^{-1}(\mathrm{v})=\lambda \mathrm{v}$.
7. Show that if A is an idempotent matrix then the spectrum of λ is a subset of $\{0,1\}$.
8. Show that if λ is a nilpotent matrix, then the spectrum of λ is $\{0\}$.
9. Explain why a rotation of any angle other than 180 in R^{2} cannot have eigenvalues.
10. What are the possible eigenvalues for:
i) A reflection?
ii) An orthogonal matrix?
11. Find a matrix having eigenvalues -2 and +3 . (Assume matrix is 2×2)
12. If A is $\left[\begin{array}{cc}\frac{1}{4} & \frac{3}{4} \\ \frac{1}{3} & \frac{2}{3}\end{array}\right]$ find the eigenvalues λ.

Exercise 13.1 Answers

1. i) $\{1,4\} S_{1}=\{(\mathbf{x}, \mathbf{y}) \mid 2 y+x=0\}, S_{4}=\{(\mathbf{x}, \mathbf{y}) \mid y=x\}$.
ii) $\{6,-1\} \mathrm{S}_{6}=\{(\mathbf{x}, \mathbf{y}) \mid \mathrm{y}=\mathrm{x}\}, \mathrm{S}_{-1}=\{(\mathbf{x}, \mathbf{y}) \mid 5 \mathrm{y}=-2 \mathrm{x}\}$.
iii) $\{6,-1\} \mathrm{S}_{6}=\{(\mathbf{x}, \mathbf{y}) \mid 5 \mathrm{x}=2 \mathrm{y}\}, \mathrm{S}_{-1}=\{(\mathbf{x}, \mathbf{y}) \mid \mathrm{y}=-\mathrm{x}\}$.
iv) $\{7,-2\} S_{7}=\{(\mathbf{x}, \mathbf{y}) \mid y=x\}, S_{-2}=\{(\mathbf{x}, \mathbf{y}) \mid x+2 y=0\}$
v) $\{1\} \mathrm{S}_{1}=\{(\mathbf{x}, \mathbf{y}) \mid \mathrm{y}=-\mathrm{x}\}$
vi) $\{0,12\} \mathrm{S}_{0}=\{(\mathbf{x}, \mathbf{y}) \mid 3 \mathrm{x}+2 \mathrm{y}=0\}, \mathrm{S}_{12}=\{(\mathbf{x}, \mathbf{y}) \mid 2 \mathrm{y}=3 \mathrm{x}\}$.
vii) ϕ i.e. no eigenvalues.
2. No. $\lambda=3$ is a double root of $\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$ but S_{3} is a line $\{(\mathbf{x}, \mathbf{y}) \mid y=-x\}$.
3. Yes.
4. ii) Yes.
5. $\lambda= \pm 1$.
6. All rotations (except I) change directions of vectors.
7. i) $\pm 1 . \quad$ ii) ± 1
8. $\left[\begin{array}{cc}\frac{\mathrm{m}}{\mathrm{m}-\mathrm{m}^{2}+6} & \mathrm{n} \\ \mathrm{n} & 1-\mathrm{m}\end{array}\right] \quad$ e.g. $\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$
9. $\left\{-\frac{1}{12}, 1\right\}$

13.2 Eigenvalues for $\mathbf{3 x} 3$ matrices

Consider $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=A$
This maps $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to $\lambda(\mathbf{x}, \mathbf{y}, \mathbf{z})$, as in the R^{3} case, when $\left|\begin{array}{ccc}\lceil\mathrm{a}-\lambda & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e}-\lambda & \mathrm{f} \\ \mathrm{g} & \mathrm{h} & \mathrm{i}-\lambda\end{array}\right|\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
And as before, we obtain the eigenvalues λ from the equation $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$.

Example

$$
\left.\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 0 \\
-2 & -2 & 1
\end{array}\right] \text { has eigenvalue } \lambda \text { when } \operatorname{det} \left\lvert\, \begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & 3-\lambda & 0 \\
-2 & -2 & 1-\lambda
\end{array}\right.\right]=0 .
$$

i.e. $(1-\lambda)(3-\lambda)(1-\lambda)=0$
i.e. $\lambda=1$ or $3 \quad$ Note $\lambda=1$ is a double root.

To find S_{1}

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 0 \\
-2 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { occurs when }} \\
\left.\begin{array}{r}
x=3 x \\
\begin{array}{r}
x x+3 y
\end{array}=3 y \\
-2 x-2 y+z=3 z
\end{array}\right\} \quad \rightarrow y=-x
\end{array}
$$

Note that S_{1} is a plane $\{(\mathbf{x}, \mathbf{y}, \mathbf{z}\} \mid \mathrm{y}=-\mathrm{x}\}$

To find S_{3}

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 0 \\
-2 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 x \\
3 y \\
3 z
\end{array}\right]
$$

i.e.

$$
\left.\begin{array}{r}
x=x \\
2 x+3 y=y \\
-2 x-2 y+z=z
\end{array}\right\} \quad \rightarrow x=0 ; y=-z
$$

i.e. S_{3} is a line $\{m(\mathbf{0}, \mathbf{1}, \mathbf{- 1}) \mid m \in R\}$

Example

To find eigenvalues and S_{λ} for $\left[\begin{array}{ccc}3 & -2 & 3 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$
$\left.\operatorname{det} \left\lvert\, \begin{array}{ccc}3-\lambda & -2 & 3 \\ 1 & 2-\lambda & 1 \\ 1 & 3 & -\lambda\end{array}\right.\right]=0$
i.e. $-\lambda^{3}+5 \lambda^{2}-2 \lambda-8=0$
i.e $(-1)(\lambda+1)(\lambda-2)(\lambda-4)=0$
i.e. $\lambda=-1,2$ or 4 .

To find S-1

$$
\left[\begin{array}{ccc}
3 & -2 & 3 \\
1 & 2 & 1 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x \\
-y \\
-z
\end{array}\right]
$$

i.e. $\left.\begin{array}{rl}3 x-2 y+3 z & =-x \\ x+2 y+z & =-y \\ x+3 y= & =-z\end{array}\right\} \quad \rightarrow \frac{x}{11}=y=\frac{z}{-14}$
i.e. S_{-1} is a line $\{m(\mathbf{1 1}, \mathbf{1}, \mathbf{- 1 4}) \mid m \in R\}$

Similar techniques show that -
$S_{2}=\{m(1,-1,-\mathbf{1}) \mid m \in R\}$
and
$\mathrm{S}_{4}=\{\mathrm{m}(\mathbf{1}, \mathbf{1}, \mathbf{1}) \mid \mathrm{m} \in \mathrm{R}\}$
This means each of the three lines of vectors
S_{-1}, S_{2} and S_{4} remains invariant after $\left[\begin{array}{ccc}3 & -2 & 3 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$
The previous examples suggest the following theorem -

Theorem 13.1

If λ is an eigenvalue for matrix A then S_{λ} is a subspace of the domain A.

Proof

Let $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}} \in S_{\lambda}$
Then $A\left(\mathbf{v}_{\mathbf{1}}\right)=\lambda \mathbf{v}_{\mathbf{1}}$ and $\mathrm{A}\left(\mathbf{v}_{\mathbf{2}}\right)=\lambda \mathbf{v}_{\mathbf{2}}$
i.e. $A\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)=A\left(\mathbf{v}_{\mathbf{1}}\right)+\mathrm{A}\left(\mathbf{v}_{\mathbf{2}}\right)$ since A is a 1.t.

$$
=\lambda \mathbf{v}_{\mathbf{1}}+\lambda \mathbf{v}_{\mathbf{2}}
$$

$$
=\lambda\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)
$$

$\therefore \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}} \in S_{\lambda} \quad$ i.e. S_{λ} is closed under vector addition.

$$
\begin{aligned}
\text { Similarly } \mathrm{A}\left(\mathrm{c}_{\mathbf{1}}\right) & =\mathrm{cA}\left(\mathbf{v}_{\mathbf{1}}\right) \quad \text { since } \mathrm{A} \text { is a l.t. } \\
& =\mathrm{c} \lambda\left(\mathbf{v}_{\mathbf{1}}\right) \\
& =\lambda\left(\mathbf{c}_{\mathbf{1}}\right)
\end{aligned}
$$

$\therefore \mathrm{cv}_{1} \in S_{\lambda} \quad$ i.e. S_{λ} is closed under scalar multiplication.
Therefore S_{λ} is a subspace of domain of A.

Theorem 13.2

If $\mathrm{A}: \mathrm{V} \rightarrow \mathrm{W}$ is a l.t. and λ is an eigenvalue then $\lambda=0 \longleftrightarrow \rightarrow \operatorname{det} \mathrm{~A}=0$

Proof

(\rightarrow) If $\lambda=0$ then some vectors in the domain of A are mapped to zero times themselves, i.e. mapped to $\mathbf{0}$. This mean that Kernel of A contains something other than $\mathbf{0}$, i.e. $\operatorname{KerA} \neq \mathbf{0} \therefore \mathrm{A}$ is not $1-1$.
$\therefore \operatorname{det} \mathrm{A}=0$
(\leftarrow) The above argument is completely reversible.

Exercise 13.2

1. Find x so that $\left[\begin{array}{ll}1 & x \\ 3 & 1\end{array}\right]$ has eigenvalue 4 .
2. Find eigenvalues for $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Hence deduce its inverse.
3. Find eigenvalues and the corresponding S_{λ} for: $\left[\begin{array}{lll}1 & 3 & -2 \\ 3 & 1 & -2 \\ 3 & 4 & -5\end{array}\right]$.
4. Does it follow that if λ is a double root of $\operatorname{det}(A-\lambda I)=0$ where A is a 3×3 matrix then S_{λ} is a plane?

$$
\text { Investigate by considering }\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 2 & 0
\end{array}\right]
$$

5. Show that $\left[\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right]$ is idempotent. Find its eigenvalues and describe its geometric significance.
6. Find spectrum of $\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -1 & 2 \\ 0 & 1 & 0\end{array}\right]$.
7. Investigate $\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 0 \\ -2 & -2 & 1\end{array}\right]$ for eigenvalues and the resulting subspaces S_{λ}.
8. By considering the range of matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$ show that i) is not onto
ii) A is not $1-1$
iii) $\operatorname{Ker} \mathrm{A} \neq 0$
iv) $\lambda=0$ is an eigenvalue

Furthermore show that the range is $\{\mathrm{m}(\mathbf{1 , 1 , 1}) \mid \mathrm{m} \in \mathrm{R}\}$, that $\lambda=6$ is an eigenvalue and hence that the only possible subspace for S_{6} is $\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mid x=y=z\}$.
9. Find examples λ_{1} and λ_{2} which are eigenvalues for matrices A_{1} and A_{2} respectively but such that $\lambda_{1}+\lambda_{2}$ is not an eigenvalue for $\mathrm{A}_{1}+\mathrm{A}_{2}$.
10. i) If λ is an eigenvalue for A, is λ an eigenvalue for $\mathrm{mA}(\mathrm{m} \neq 1)$?
ii) Is $m \lambda$ an eigenvalue for $m A$?
11. If λ_{1} and λ_{2} are eigenvalues for A_{1} and A_{2} respectively, is $\lambda_{1} \lambda_{2}$ an eigenvalue for $\mathrm{A}_{1} \mathrm{~A}_{2}$?
12. Find a matrix other than I or the zero matrix which has every vector as an eigenvector. How many eigenvalues does the matrix have?

Exercise 13.2 Answers

1. $\mathrm{x}=3$
2. $\{5,1\} \mathrm{A}^{-1}=\left[\begin{array}{ccc}\frac{1}{5} & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1\end{array}\right]$
3. $\{2,-2,-3\} \quad \mathrm{S}_{2}=\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mid \mathrm{x}=\mathrm{y}=\mathrm{z}\} \mathrm{S}_{-2}=\left\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \left\lvert\, \mathrm{x}=-\frac{\mathrm{y}}{3}=-\frac{\mathrm{z}}{3}\right.\right\}$
$\mathrm{S}_{-3}=\left\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \left\lvert\, \frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{7}\right.\right\}$
4. No. $\lambda=1$ is a double root but S_{1} is a line $\{(\mathbf{x}, \mathbf{y}, \mathrm{z}) \mid \mathrm{x}=\mathrm{y}=\mathrm{z}\}$.
5. $\lambda=0$ or 1 . It maps everything to $\mathrm{y}=\mathrm{x}$.
6. $\{0, \sqrt{3},-\sqrt{3}\}$
7. $\lambda=1$ or 3.1 is a double root. $S_{1}=\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mid x=-y\} S_{3}=\{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mid x=0 ; y=-z\}$.
8. i) No. ii) Yes. 11. No.

A magnification $\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$ which has a single eigenvalue a.
13.3 If A is a matrix then $\operatorname{det}(A-\lambda I)=0$ is called the characteristic polynomial of \mathbf{A}.
e.g. If A is $\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ then $\operatorname{det}\left[\begin{array}{cc}2-\lambda & -1 \\ 3 & 4-\lambda\end{array}\right]=0$.
i.e. $\lambda^{2}-6 \lambda+11=0$ is the characteristic polynomial

Hamilton-Cayley Theorem

If A is a matrix with characteristic polynomial $F(\lambda)$, then $F(A)=[0]$ where $[0]$ is the zero matrix.

We will first illustrate the meaning of this theorem.
For $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ as above, $\mathrm{F}(\lambda)=\lambda^{2}-6 \lambda+11$.
Then $F(A)$ means $A^{2}-6 A+11 I$.
The theorem allows us to deduce that $A^{2}-6 A+11 I .=[0]$

Check

$$
\begin{aligned}
\mathrm{A}^{2}=\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right] & =\left[\begin{array}{cc}
1 & -6 \\
18 & 13
\end{array}\right] \\
-6 \mathrm{~A} & =\left[\begin{array}{cc}
-12 & 6 \\
-18 & -24
\end{array}\right] \\
& =\left[\begin{array}{cc}
11 & 0 \\
0 & 11
\end{array}\right]
\end{aligned}
$$

Then $A^{2}-6 A+11$ I does equal $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ as required by the theorem.
A general proof of the Hamilton-Cayley Theorem is beyond the scope of this text but we will show the truth of the theorem in the 2×2 case by direct substitution.

Proof

Let A be $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then characteristic polynomial is given by $\operatorname{det}\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]=0$
i.e. $\lambda^{2}-(a+d) \lambda+a d-b c=0$

We now need to show that
$A^{2}-(a+d) A+(a d-b c) I=[0]$
$A^{2}=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+d c & b c-d^{2}\end{array}\right]$
$-(a+d) A=\left[\begin{array}{cc}a^{2}-a d & -a b-b d \\ -a c-d c & -a d-d^{2}\end{array}\right]$
$(a b-d c) I=\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]$
Hence $A^{2}-(a+d) A+(a d-b c) I=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ as required.

Example

Consider $\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$
The characteristic polynomial is $\operatorname{det}\left[\begin{array}{ccc}{[-\lambda} & -1 & 1 \\ 2 & -1-\lambda & 2 \\ 1 & 0 & 1-\lambda\end{array}\right]=0$
i.e. $-\lambda^{3}+1=0 \quad$ i.e. $\lambda=1$ is the only eigenvalue.
(we do not include complex eigenvalues)
It therefore follows from the Hamilton-Cayley Theorem that

$$
-\mathrm{A}^{3}+\mathrm{I}=[0]
$$

i.e. $A^{3}=I$
i.e. $A^{2}=A^{-1}$

Hence $\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 2\end{array}\right]=\mathrm{A}^{-1}$.
The Hamilton-Cayley Theorem can be used occasionally to find high powers of some matrices as follows.

Question

$$
\text { If } A=\left[\begin{array}{cc}
3 & 5 \\
-1 & -3
\end{array}\right] \text { find } A^{10} \text {. The characteristic polynomial is } \lambda^{2}-4=0 \quad \text { i.e. } \lambda
$$

$$
= \pm 2
$$

$$
\begin{aligned}
& \text { i.e. } A^{2}-4 I=0 \\
& \text { i.e. } A^{2}=4 I \\
& \therefore A^{10}=(4 I)^{5}=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]^{2}=\left[\begin{array}{cc}
1024 & 0 \\
0 & 1024
\end{array}\right]
\end{aligned}
$$

Previously in the chapter we examined $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. We found that its eigenvalues were 4 and -1 and that $\mathrm{S}_{4}=\{(\mathbf{x}, \mathbf{y}) \mid \mathrm{m}(\mathbf{2}, \mathbf{3}) \in \mathrm{R}\}$ and $\mathrm{S}_{-1}=\{\mathrm{m}(\mathbf{1}, \mathbf{- 1}) \mid \mathrm{m} \in \mathrm{R}\}$. We will now look at $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ in greater detail. Call the matrix A .

To diagonalise A

This means to multiple A by matrices so that A becomes a diagonal matrix. This can be effected as follows.

Let P be the matrix mapping \mathbf{i} to any vector in S_{4}, (say) $(\mathbf{2}, \mathbf{3})$ and mapping \mathbf{j} to any vector in S_{-1}, (say) $(\mathbf{1}, \mathbf{- 1})$.
i.e. P is $\left[\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right]$

Now we know $\mathrm{A}(\mathbf{2}, \mathbf{3})=(\mathbf{8}, \mathbf{1 2})$ and $\mathrm{A}(\mathbf{1},-\mathbf{1})=(-\mathbf{1}, \mathbf{1})$
(since they belong to S_{4} and S_{-1} respectively)
$\therefore \mathrm{AP}=\left[\begin{array}{cc}8 & -1 \\ 12 & 1\end{array}\right]$
$\operatorname{But}\left[\begin{array}{cc}8 & -1 \\ 12 & 1\end{array}\right]=\mathrm{P}\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$
i.e. $\mathrm{AP}=\mathrm{P}\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$

But $\operatorname{det} \mathrm{P} \neq 0, \therefore \mathrm{P}^{-1}$ exists.
$\therefore \mathrm{P}^{-1} \mathrm{AP}=\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right] \otimes$
i.e. A can be diagonalised to a diagonal matrix whose non-zero elements are its eigenvalues.

We say A is SIMILAR to $\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$
i.e. if $\mathrm{A}=\mathrm{P}^{-1} \mathrm{BP}$ then A is similar to B .

Note that $\operatorname{det}\left(\mathrm{P}^{-1} \mathrm{AP}\right)=\operatorname{det} \mathrm{P}^{-1} \operatorname{det} \mathrm{~A} \operatorname{det} \mathrm{P}$

$$
\begin{aligned}
& =\frac{1}{\operatorname{det} \mathrm{P}} \operatorname{det} \mathrm{~A} \operatorname{det} \mathrm{P} \\
& =\operatorname{det} \mathrm{A}
\end{aligned}
$$

Since the determinant of $\mathrm{P}^{-1} \mathrm{AP}$ is clearly the product of the eigenvalues, see \otimes above, it follows that

$$
\operatorname{det} \mathrm{A}=\text { product of its eigenvalues }
$$

This is true for nxn matrices but it is not true that every square matrix is similar to a diagonal matrix.
(Exercise 13.2 Question \#4 is an example illustrating this.)
Previously, we found that $\left[\begin{array}{ccc}3 & -2 & 3 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$ had eigenvalues $-1,2$, and 4 and
$S_{-1}=\{m(\mathbf{1 1}, \mathbf{1}, \mathbf{- 1 4}) \mid m \in R\}, S_{2}=\{m(\mathbf{1}, \mathbf{- 1}, \mathbf{- 1}) \mid m \in R\}$ and $S_{4}=\{m(\mathbf{1}, \mathbf{1}, \mathbf{1}) \mid m \in R\}$.
We may deduce from this that $\mathrm{P}=\left[\begin{array}{ccc}11 & 1 & 1 \\ 1 & -1 & 1 \\ -14 & -1 & 1\end{array}\right]$ is a matrix such that
$\mathrm{P}^{-1}\left[\begin{array}{ccc}3 & -2 & 3 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right] \mathrm{P}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$
In fact every symmetric matrix can be made similar to a diagonal matrix. More advanced texts treat similar matrices more fully where they have considerable importance.

Exercise 13.3

1. Find the eigenvalues for $\left[\begin{array}{ccc}1 & 3 & 1 \\ 3 & 2 & 0 \\ 7 & 0 & -2\end{array}\right]$ and hence find its determinant.
2. Repeat for $\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$.
3. A is the matrix $\left[\begin{array}{ccc}3 & -4 & 2 \\ 1 & 3 & -3 \\ 1 & 6 & -6\end{array}\right]$. Find P such that $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{B}$. where B is a diagonal matrix.
4. Repeat question 3 where $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 0 \\ -2 & -2 & 1\end{array}\right]$
5. Use the Hamilton-Cayley Theorem to find the inverse of $\left[\begin{array}{ccc}0 & -1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$. Note that this is the matrix in Question 2.
6. Investigate the conjecture that if A is a 3×3 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ then trace $A=\lambda_{1}+\lambda_{2}+\lambda_{3}$ [trace A is the sum of the diagonal elements of A]

$$
\lceil\cos \theta \quad-\sin \theta \quad 0\rceil
$$

7. Show that $|\sin \theta \quad \cos \theta \quad 0|$ is orthogonal and that it represents a rotation of θ° a.c. $\left\lfloor\begin{array}{lll}0 & 0 & 1\end{array}\right\rfloor$
about the z -axis.
8. Show that if A is a 3×3 orthogonal matrix then $\{A(\mathbf{i}), A(\mathbf{j}), A(\mathbf{k})\}$ is a set of mutually perpendicular unit vectors. Is the set an orthonormal basis for the range of A?
9. Show that $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & -2 \\ -1 & 5 & -2 \\ -1 & 4 & 1\end{array}\right]$ has only one real eigenvalue. Find the corresponding S_{λ}. Explain why it is not possible to find a matrix P such that $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{B}$ where B is a diagonal matrix.
10. Is $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ diagonalisable?
11. Find the characteristic polynomial of $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ \mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]$ and consequently name a matrix whose characteristic polynomial is $x^{3}-5 x^{2}-6 x-7=0$.
12. Show that if A and B are similar matrices then they have the same eigenvalues. Do they have the same eigenvectors?
13. Find the spectrum of $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$. Find the corresponding eigenspaces and describe the geometric significance of the matrix.
14. True or False?
a) If $\mathrm{A}^{2}=\mathrm{A}$ then $\mathrm{A}=[0]$ or I
b) If $\mathrm{A}+\mathrm{B}=\mathrm{I}$ then A^{2} commutes with B
c) If $(\mathrm{A}-\mathrm{I})^{2}=[0]$ then A does not have an inverse
d) If all the eigenvalues of A are zero then $A^{k}=[0]$ for some integer k.
e) If A is a diagonal matrix then $\mathrm{AB}=\mathrm{BA}$ for every matrix B .

Exercise 13.3 Answers

1. Spectrum $=\{0,5,-4\}$. Determinant is zero.
2. Spectrum $=\{1\}$. Determinant $=1$
3. A is similar to $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3\end{array}\right]$. $\quad P$ is $\left[\begin{array}{ccc}a & 2 b & 0 \\ a & b & c \\ a & b & 2 c\end{array}\right]$ for any a, b, c.
4. $P=\left[\begin{array}{ccc}a & c & 0 \\ -a & -c & e \\ b & d & -e\end{array}\right]$ where $\mathrm{d} \neq \frac{\mathrm{bc}}{\mathrm{a}}$. i.e. $\mathrm{P}(\mathbf{i}), \mathrm{P}(\mathbf{j})$ are l.i. An example is

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & -2 & 3 \\
4 & 5 & -3
\end{array}\right]
$$

5. Since $\mathrm{A}^{3}=\mathrm{I}$ by Hamilton-Cayley Theorem $\mathrm{A}^{-1}=\mathrm{A}^{2}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 0 & -1 & 2 \\ 1 & -1 & 2\end{array}\right]$.
6. True
7. Yes
8. $\lambda=2 \quad \frac{\mathrm{x}}{5}=\mathrm{y}=\frac{\mathrm{z}}{-1}$
9. No.
10. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 7 & 6 & 5\end{array}\right]$
11. No
12. Spectrum $=\{0,1\} S_{0}=\{(\mathbf{x}, \mathbf{y}) \mid y=-x\} S_{-1}=\{(\mathbf{x}, \mathbf{y}) \mid y=x\}$. It is a projection on to $y=x$.
13. a) False \quad b) True \quad c) False e.g. $\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ d) True (Hamilton-Cayley Theorem)
e) False
