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CHAPTER ELEVEN 
11. Proof 

 

 Proof forms a central theme in the study of mathematics. Many mathematicians 

consider the proofs of theorems based on a set of axioms which are accepted as true as 

being the real essence of mathematics. 

 

 Unfortunately, there still abounds in mathematics text books and necessary school 

curriculum the presence of anachronistic elements. I speak of such as the abhorrence of 

dividing by zero, (which can be logically correct), rationalising denominators, 

trigonometric identity “proofs”, formalised ‘proofs’ of Euclidean Geometry presented as 

an arcane religion with its “Givens, CPCTC, ITT” and holy writ. Future secondary school 

teachers, but certainly nobody else, need to master this obscure theology masquerading as 

mathematics.  

 

Mathematics is a system of thought based on the principle “If …. then”. It is not a 

set of skills though its practice requires and inculcates skills. It is not simply a science. 

Thus, especially in this age of calculators, computers and the like, what matters is that the 

student learns to think rationally and be capable of expressing these logical thoughts to an 

uninitiated reader. Mathematics is something you do, not merely something you learn. 

  

My hope is that this chapter will help the student to master the art of writing 

proofs and thinking rationally.  

  

Statements whose truth remains unproven are known as conjectures so, for greater 

example, the statement that every even number greater than or equal to six is the sum of 

two odd prime numbers is a conjecture because, although no one has ever found an even 

number which is not the sum of two odd primes, it has never been proven.  

 

 

 

 



 256 

Two famous conjectures were proved only relatively recently: 

 

The four colour conjecture: This stated that only four colours were needed to 

colour any map so that no countries with a common border had the same colour. This 

conjecture was finally proven in 1976, having first been put forward in 1852. 

 

 Fermat’s Last Theorem: This stated for n, an integer greater than two, there are no 

positive integer values x, y, and z such that xn + yn = zn. It was called a theorem since the 

seventeenth century when it was first stated because Fermat claimed to have proved it 

even though no one since was able to do so until 1995 when Andrew Wiles of Princeton 

produced a fantastic 200 page proof ending 350 years of intense study.\ 

 

 In general, a statement is not considered to be a theorem simply because it is true. 

A theorem carries a mathematical significance by virtue of its generality. For example, 

Pythagoras’ theorem is important because it is true for all right triangles rather than a few 

specific ones. For that reason it is not usually possible to prove a theorem by enumerating 

some specific examples. Noting that 32 + 42 = 52 does not prove that x2 + y2 = z2 for a 

right triangle with z as hypotenuse. 

 

 However, it is possible to disprove a false theorem by quoting a counter-example. 

Suppose that it is conjectured that  

  (x + y)2 = x2 + y2  

then the conjecture can be shown to be false by simply noting a single counter-example 

e.g. x = 2 and y = 3. Then L.H.S. = 25 and R.H.S = 13 which is clearly false. 

 

Fallacy is an incorrect result which has an apparently logical explanation of why the 

result is correct, or a correct result obtained through incorrect reasoning.  

 e.g. 
4

1

64

16
=  “ by canceling sixes” 
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OR 

 de Morgan’s Fallacy 

 Let x = 1 then x = 0 

 

“Proof” 

 x = 1 

x  x
2
=!  (multiplying both sides by x) 

 1-x1 x
2

=!" (subtracting 1 from both sides) 

1-x

 1-x

1-x

1x
 

2

=
!

"  (dividing both sides by x – 1) 

 11 x =+! (canceling x – 1 on both sides) 

0 x =!  

 

An Infinite Series Fallacy 

 Consider 

 S  = 1 – 1 + 1 – 1 + 1 – 1 + …. 

Then S  = (1 – 1) + (1 – 1) + (1 – 1) + …. 

        !S = 0 + 0 + 0 … 

        !S = 0 

 Also S  = 1 – (1 – 1) – (1 – 1) – (1 – 1) - …. 

        !S = 1 – 0 – 0 – 0 - …. 

        !S = 1 

Also S = 1 – (1 – 1 + 1 – 1 + 1 – 1 ….) 

        !S = 1 – S 

        !2S = 1 

        !S = 
2

1  

  

The fallacy here comes from the fact that S does not actually have a sum. 
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During World War II the Swedish Broadcasting Company made the following radio 

announcement 

 

 “A civil – defence exercise will be held this week. In order to make sure that 

the civil-defence units are properly prepared, no one will know in advance on 

what day this exercise will take place” 

 

A paradox occurs when there is a contradiction but no apparent fallacy. This statement 

above is a paradox because; 

 

 Assume the announcement was made on a Monday. Then the exercise must take 

place before the next Monday. It cannot take place on Sunday because by then people 

will know it will take place. Because it cannot take place on Sunday, then it cannot take 

place on Saturday by the same reasoning. And so on. Therefore, it cannot take place. 

Another example of a paradox is attributable to Bertrand Russell who developed the 

following in 1918.  

 

 “A man of Seville is shaved by the Barber of Seville if and only if the man 

does not shave himself. Does the Barber of Seville shave himself?” 

 

If the answer is “yes”, then the answer is “no”. If the answer is “no” then the answer is 

“yes”     

 

Direct Proof 

  

 A direct proof is one in which statements and results are used which have 

previously been proven true and accepted as such. 

 

Example 

 Prove “If M is a 2 x 2 matrix and M2 = M + I then M4 = 3M + 2I.” 
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Proof 

 

 M4  = (M2)2 

  = (M + I)2  (given M2 = M + I) 

  = (M + I)(M + I) 

  = M2 + MI +I M + I2 (distributivity) 

  = M2 + M + M + I (Identity leaves a matrix unchanged)  

  = (M + I) + 2M + I  (given M2 = M + I) 

  = 3M + 2I 

One difficulty in writing a proof occurs because the axioms governing mathematical 

structure are not usually clearly itemized until rather later in the career of a mathematics 

student and so it is not always easy for the student to know what can be accepted and 

what needs to be explained or proved. For example, in the above proof I2 = I was already 

stated. Should it have been proved? Also the associativity and commutativity of matrix 

addition was assumed. Should there have been some explanation? There are no simple 

answers to these questions and students can only learn what steps may be assumed and 

what steps need to be proved by experience.  

 

Example 2 

 Prove n3 – n is divisible by 6 for all positive integers n.  

Proof 

    n3 – n 

 = n(n2 – 1) 

 = n(n – 1)(n + 1) 

 =(n – 1)(n)(n + 1) 

 

Now, n – 1, n and n + 1 are three consecutive integers and hence at least one is divisible 

by 2 and at least one is divisible by 3. 

 Therefore (n – 1)n(n + 1) is divisible by 6. 
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A 

B 

P 
O 

a 

b 

Example 3 

Let P be a point inside a circle different from the 

centre O. Let AB be a chord containing point P.  

Prove that the shortest chord AB passing through 

P is such that P is the mid-point of the chord AB. 

 

 

 

 

 

 

 

Proof 

 Let PA = a and PB = b 

Then since PA x PB is constant regardless of the positions of points A and B then  

a·b ≡ k (a constant) (Incidentally k is called the power of point P) We wish to minimize  

 = a + b = a + 
a

k   

Then 
2
a

k
1

da

d
!=

!  

 

When  is minimum, 0
da

d
=
!

 i.e. a2 = k 

but a · b  = k  

        ! a = b 

and hence P bisects the chord  

(incidentally OP will be perpendicular to AB) 
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Example 4 

 To prove cos(

  

!  + 

  

! ) = cos

  

! cos

  

!– sin

  

! sin

  

!  

 

Proof 

 We will use matrix multiplication 

A rotation of  

  

!  in R2 is represented by 

  

cos! "sin!

sin! cos!

# 

$ 
% 

& 

' 
( 

 

Consider the operations rotating by 

  

!  followed by rotating by 

  

! . Clearly this is 

equivalent to rotating by (

  

!  + 

  

! ). 

Hence 
  

  

cos! "sin!

sin! cos!

# 

$ 
% 

& 

' 
( 

  

cos! "sin!

sin! cos!

# 

$ 
% 

& 

' 
( 

=

  

cos(! +" ) #sin(! +" )

sin(! +" ) cos(! + ")

$ 

% 
& 

' 

( 
) 
 

 

  

   

  

!
cos"cos# - sin"sin# $

$ $

% 

& 
' 

( 

) 
* 

=
cos(" +# ) $

$ $

% 

& 
' 

( 

) 
* 
 

! cos

  

! cos

  

!– sin

  

! sin

  

!  = cos(

  

!  + 

  

! ) as required. 
 
Example 5 

 To prove that if z is a root of a polynomial equation (with real co-effiicents) then 

z  (z conjugate) is also a root of the polynomial equation.  

Note that, as an example of  this theorem, x3 – 3x2 + 4x – 2 = 0 has roots of 1, 1 + i, 1 – i.  

To prove this theorem we need to show the truth of some lemmas; a lemma is a statement 

whose truth needs to be shown prior to proving a theorem.  

 

Lemma 1 

 ( z )2 = ( 2
z ) 

Let z = a + bi 

Then z  = a – bi 
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)z(

2abiba 

2abiba 

ib2abia)z( and 

2

22

22

2222

=

+!=

!!=

+!=

 

 

By extension it follows that n)z(  = )z( n  

 

Lemma 2 

 zc  zc •=•  where c is a constant.  

As before let z = a + bi 

 

cz

cbica 

cbica 

bi)a(czcThen  

=

+=

!=

!=

 

Lemma 3 

 
2121

zz  zz +=+  

Let biaz
1

+= and let dicz
2

+=  

21

21

zz 

d)i(bca 

d)i(bca

di  c  bi a  zzThen 

+=

+++=

+!+=

!+!=+

 

Now let’s consider our theorem 

 Let x be a root of 0....axaxa
0

1n

1n

n

n
=++

!

!
 

Then !=++
"

"
0....azaza

0

1n

1n

n

n
 

Consider  

 0....azaza
0

1n

1n

n

n
=++

!

!
 

Note that if we can show that this expression does equal zero then we have completed the 

proof because it follows that zmust be a root also. 
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0 

 from 0

3) Lemma(by           ....azaza

2) Lemma(by         a....zaza

1) Lemma(by   ....a)z(a)z(a

....a)z(a)z(a

0

1n

1n

n

n

0

1n

1n

n

n

0

1n

1n

n

n

0

1n

1n

n

n

=

!=

++

++=

++=

++

"

"

"

"

"

"

"

"

 

equation. polynomial  theofroot  a is z !  

 

Example 6 

 In calculus when studying limits a well known result called L’Hôpital’s Rule 

states that if f(a) = g(a) = 0 then 

(x)g'

(x)' f
lim

g(x)

f(x)
lim

axax !!

=  (assuming f and g are smooth continuous functions) 

[For example 
24

1

2x

1x2

1

lim
9x

21x
lim

3x
2

3x

=
+

=
!

!+

""

] 

 

A proof attributable to Bernoulli is shown below. 

 

Let f and g be functions where f(a) = g(a) = 0 

 

 

 

 

 

 

 

 

 

 

 

g 

f 

a 

point A 
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Consider 
g(x)

f(x)
lim

ax!
where f(a) = g(a) = 0 

In the limiting case as x         a we can consider f and g to be linear functions using the 

tangent approximation idea. 

 

Then the equation of the tangent at point A to the f function is y = f '(a)(x – a) 

Similarly the equation of the tangent at point A to the g function is y = g`(a)(x – a) 

Then 
g(x)

f(x)
lim

ax!
= =

! a)-(x)a('g

a)-(x)a(``f 
lim

ax )a(`g

)a( ̀f
lim

ax!
 

 = 
(x)'g

(x)' f
lim

ax!
 

                  �  

It is true also that L’Hôpital’s Rule applies when f(a) = g(a) = ∞ 

 

A proof of this case follows using the 
0

0  case as a Lemma. 

Consider 
g(x)

f(x)
lim

ax!
where f(a) = g(a) = ∞. 

Call the value of the limit L 

Define F(x) = 
f(x)

1 and G(x) = 
g(x)

1 and hence F(a) = G(a) = 0. 

Then L  = 
g(x)

f(x)
lim

ax!
=

(x)F

(x)G
lim

ax!
= lemma)  the(using  

(x)F'

(x)G'
lim

ax!
 

     = 
(x)' f ](x)(-1)[f

(x)g'](x)(-1)[g
lim

2-

-2

ax!
 = 

(x)' f 

(x)g'

]g(x)[

]f(x)[
lim

2

ax!
 

     = L2 

(x)' f

(x)g'
lim

ax!
  

i.e. L = L2 

(x)' f

(x)g'
lim

ax!
 

required as   
(x)g'

(x)' f
limL

(x)' f

(x)g'
lim

L

1

ax

ax

!

!

="

="
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Ex 11.1 

 

1.   Prove n4 + 6n3 + 11n2 + 6n is divisible by 24. 

2. Find a counter-example to the conjecture that n2 + n + 41 is always a prime 

number for any positive integer n.  

3. Find the value of 1)x(2lim x

1

x
!

"#

 

4.Using any method prove that the angle in a semi-circle is 90° 

5. Given the quadratic polynomial equation  

x4 – ax3 + bx2 – cx + d = 0 has ONE root of multiplicity 4, prove that bc = 6ad. 

6. Find the error in the following “proof” 

  
4

1

2

1
>  

 

21

2

1
ln2

2

1
ln

2

1
ln

2

1
ln

2

1

2

1

2

2

>!

"
#
$

%
&
'

>!

"
#
$

%
&
'

>!

"
#
$

%
&
'

>!

 

7. Given the Fibonacci sequence  

1, 1, 2, 3, 5, 8, 13, 21, …. 

Where each term is the sum of the two previous terms i.e. tn = tn-1+ tn – 2 Prove that 

2

51

t

t
lim

1n

n

n

+
=

!
"#

(the Golden Mean) 

8.  Find a) 
2xx

2xx
lim

2

2

x
!

+

"#

 

         b) 2xx2xxlim
22

x

!!+
"#

  

9. Prove that if p is an odd integer and q is an odd integer that p + q + pq is also odd.  

10. Prove that if we are given 10 different integers each below 100 then there always 

exists two sets of numbers chosen from these 10 which have the same sum. 

(Answer proof is given below) 
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Exercise 11.1 Answers 

 

2.  n = 41 

3.  ln 2 

6. 
2

1
ln  is negative 

8. a) 1 b) 2 

10. There exists 210 (= 1024) subsets of this set of numbers. If each of these subsets 

had a different sum then that means there exists 1024 different sums. (i.e. numbers) 

below the sum of all the ten numbers in the set. This is false since the sum of all 

numbers in the set is less than 1000.  

 

Contra-Positive Proof 

 

A contra-positive proof involves the idea of assuming that the required result is not true 

and showing that that assumption leads to a contradiction hence negating the assumption 

and establishing the validity of the theorem.  

 In logical terms it can perhaps be explained by the following 

 “If it is Sunday then the Post-Office is closed.” Is completely equivalent to the 

implication 

 “If the Post-office is open then it is not Sunday” 

e.g. “p” implies “q” is equivalent to “not q” implies “not p” 

 

Example 7 

Theorem 

 

 

 

 

 

 

 

B C 

D E 

A 
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Given  

BDE  ABC !=! prove that BC is parallel to DE.  

 

Proof (by Contra-Positive) 

 

Assume BC is not parallel to DE then BC intersects DE at some point (say) F. Without 

loss of generality let’s say BC and DE intersect as shown.  

 

 

 

 

 

 

 

 

 

Now ABC! is an exterior angle of BDF! and hence ABC!  = BDE! + F!  

contradicting the given fact since F! is clearly not zero degrees.  

 

Hence the assumption is false and BC is parallel to DE.  

 

Example 8 

To prove 2 is irrational  

 

Proof (by contradiction) 

Assume 2 is rational.  

Then 
b

a
2 =  for some integers a and b 

i.e. 2 = 
2

2

b

a  

and 2b2 = a2 * 

 

A 

B 
C 

E 
F 

D 
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Now let’s consider the prime factorisation of each side of this equation.  

For example if 2 divides into b, then 22 divides into b2 and hence the number of factors of 

2 which do divide into b2 must be even.  

 

 By reference to * the number of factors of 2 in the left-hand side is ODD and the 

number of factors of 2 in the right-hand side is EVEN.  

 

 This is a contradiction, hence our assumption is false and hence 2 is irrational.  

 

Example 9 

Theorem 

 The number of prime numbers is infinite.  

 

Proof (by contra-positive) 

 Assume that the number of prime numbers is finite. Therefore there exists a largest 

prime number. Call it P.  

 

Now consider the number N where  

 

N = (P1)(P2)(P3)…..(P) + 1 

 

Where P1 is the first prime number, P2 is the second number etc. i.e. N is 1 more than the 

product of all prime numbers. Clearly N is larger than P and hence N cannot be a prime 

number. Therefore N has some factor (say) Pi where Pi is not 1.  

Then N = k Pi for some integer k.  

! k Pi = (P1)(P2)(P3)…..(Pi)…. (P)  + 1 

! k Pi – (P1)(P2)(P3)…..(Pi)…. (P)  = 1 

! Pi is a factor of the left-hand side and clearly Pi is not a factor of 1 on the right-hand 

side.  

Contradiction.  

 

Hence the assumption is false and there is an infinite number of primes.  
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Example 10 

 Given a set X then P(X ) is defined to be the set of all subsets of X  

e.g. If X  = {4, Susan, tree} 

then P(X ) = {0, {4}, {Susan}, {tree}, {4, Susan}, {4, tree}, {Susan, tree}, {4, Susan, 

tree}} 

WE have seen earlier that if X has n elements then P(X ) has 2n elements.  

 

Theorem 

 The number of elements in P(X ) is always larger than the number of elements in 

X .  

This theorem seems self-evident since surely 2n is larger than n for all finite integers n.  

 

 But suppose X  is an infinite set. What happens for example if X  is the set of all 

real numbers? This clearly is not a high-school problem and yet the proof can be 

understood by able high-school students.  

 To establish that two sets have an equal number of elements, even when the sets are 

infinite, we say that if we can establish a 1 – 1 correspondence between the sets then the 

sets have the same number of elements.  

 For example the set of all positive even integers and the set of all positive odd 

integers have an equal number of elements as shown below.  

 

odd  even 

1  2 

3  4 

5  6 

7  8 

9  10 

 . . 

 . . 

 . . 



 270 

A 1 – 1 function mapping an odd integer to an even integer is f(n) = n + 1.  

Let’s return to our theorem.  

 

Proof (by contra-positive) 

 

Assume there exists some function f which is a 1 – 1 mapping X  to P(X ) 

[e.g. if X  = {1,2,3} then P(X ) = {{0}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} then 

possibly f(1) = {1,2} (say) and f(2) = {0}] 

 

Consider the set A = {x !  X  such that x !  f(x)} 

For the example above 2 !  A but 1 !  A.  

 

Now A is a subset of X and therefore there must exist some y !  X so that f(y) = A.  

Now let’s consider whether y!  A.  

 

Case 1 Case 2 

If y !  A If y !  A then by definition of A 

Then y !  f(y) y !  A 

!by definition of A, y !  A 

 

Clearly these are contradictions and hence our own assumptions is false and hence no 1-1 

correspondence exists.  

!clearly the # of elements in P(X ) is larger than the # of elements in X  
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Exercise 11.2 (All questions can be proven using a contra-positive method) 

 

1. Prove that the shortest distance from a point to a line is the perpendicular distance.  

2. Given four points A,B,C,D (in that order) in a circle it is well known that 

ACD  ABD !=!  (inscribed angles in a circle). Prove the converse of this theorem. 

3. Prove that no integer value of m exists such that (2m – 1) and (4m2 – 4m + 2) are 

both perfect squares.  

4. Prove that if v! in R2 is expressed as a linear combination of vectors i
!

, j
!

 then that 

representation is unique. 

5. Prove that if A is a 2 x 2 matrix such that detA = 2 then there is only one vector 

which A maps to ( )4,3 ,  

6. Three boxes A,B,C are coloured red, white and blue not necessarily respectively.  

Of the following statements only ONE is true 

1. A is red 

2. B is not red 

3. C is not blue. 

What colour is each box?  

7. a) Prove 3 is irrational. 

 b) Find where the “proof” of 4 is irrational breaks down in comparison with a) 

8. Prove that if A,B,C are 2 x 2 matrices and AB = BC and B ≠ C then det A = 0. 
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Mathematical Induction 

 

 Induction is a method of proof used where it is required to show that a statement is 

true for a countably infinite number of values.  

 

For example it could be used to prove 

1 + 2 + 3 + …. + n = 
2

1 n(n + 1) where n is any positive integer.  

 The method of proof depends upon the idea of showing FIRSTLY that the 

statement is true for some small value of the variable (usually 1). SECONDLY we show 

that if we assume the statement is true for some arbitrarily chosen (but fixed) value of the 

variable then it will be true for the next larger value of the variable.  

 This concept can be compared to saying that we can climb up an infinite ladder if 

1. we can get on the first rung and  

2. we are capable of going from any rung to the next higher rung. 

 

Example 11 

 Prove that 1 + 3 + 5 + …. (2n – 1) = n2 for all positive integers n.  

 

Proof 

 FIRST when n = 1, L.H.S. = 1 and R.H.S. = 12 = 1 

!statement is true when n = 1.  

SECONDLY 

 Assume that the statement is true when n = k. (k is randomly chosen but is a fixed 

value.) 

 

Then 1 + 3 + 5 + … (2k – 1) = k2. 

 

It suffices now to show, on the basis of the assumption stated above, that  

 1 + 3 + 5 + … + (2k – 1) + (2k + 1) = (k + 1)2.  
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Proof: 

L.H.S.  = 1 + 3 + 5 + … (2k – 1) + (2k + 1)  

 = [1 + 3 + 5 + … + (2k – 1)] + 2k + 1  

by Assumption 

 = k2 + 2k + 1 

 = k2 + 2k + 1 

 = (k + 1)2 as required.  

!statement is true for all positive integers n.  

 

Example 12 

 The number of diagonals of a polygon with n sides is 
2

3)n(n ! . 

 

Proof 

 FIRSTLY, when n = 4 we have a quadrilateral which has 2 diagonals. Note that 

2

)34(4 !  does equal 2.  

Therefore the statement is true when n = 4.  

SECONDLY, 

 Assume that a k-gon has 
2

3)k(k !
 diagonals. It suffices to show on the assumption 

above that a k + 1-gon has 
2

2)1)(k(k !+
 diagonals.  

Consider  

 

 

 

 

 

 

 

 

Ak 

Ak+1 

A1 

A2 

A3 
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In the k-gon A1A2…Ak by Assumption are 
2

3)k(k !
diagonals. In the k+1-gon 

A1A2…AkAk+1 there are the diagonals described above plus all the diagonals emanating 

from the Ak+1 i.e. k-2 diagonals plus the new diagonal A1Ak which was originally an edge 

of the k-gon.  

The number of diagonals in the k+1-gon is therefore 
2

3)k(k !
+(k – 2) + 1 

required as   
2

2)1)(k(k

2

2kk

2

242k3kk

2

2

!+
=

!!
=

+!+!
=

 

 

Example 13 

 To prove de Moivre’s Theorem by Induction. 

(cos 

  

!+ isin

  

! )n = cos(n

  

! ) + isin(n

  

! ) 

 

FIRSTLY 

 When n = 1 clearly the theorem is true 

SECONDLY 

 Assume (cos

  

!  + isin

  

! )k = cosk

  

!  + isink

  

!  

Show, on the basis of this assumption, that  

(cos

  

!  + isin

  

! )k+1 = cos(k+1) 

  

!  + isin(k+1) 

  

!  

 

L.H.S.  = (cos

  

!  + isin

  

! )k+1 

 =(cos

  

!+ isin

  

! )k(cos

  

!  + isin

  

! ) 

by Assumption 

 = (cosk

  

!  + isink

  

! ) (cos

  

!  + isin

  

! ) 

 = cosk

  

! cos

  

!  + i2sink

  

! sin

  

!  +sink

  

! cos

  

!
   + icosk

  

! sin

  

!  

 = cos(k

  

!  + 

  

! ) + isin(k

  

!  + 

  

! ) 

 = cos(k + 1) 

  

!  + isin(k + 1) 

  

!  

    �  
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This completes the proof of DeMoivre’s Theorem.  

Example 14 

 Given the Fibonacci sequence 1,1,2,3,5,8,13, …. Where tn + 2 = tn + 1 + tn  

Show that Sn = tn + 2 – 1 where Sn means the sum of the first n terms.  

 

FIRSTLY 

 When n = 4, S4 = 1 + 1 + 2 + 3 = 7 and t6 = 8  

hence the theorem is true when n = 4. 

 

SECONDLY 

 Assume Sk = tk + 2 – 1 

We need to show on the basis of this assumption that  

 Sk+1 = tk+3 – 1 

    Sk+1  = Sk + tk+1 by definition of a sum. 

by Assumption 

 = tk+2 – 1 + tk+1 

 = tk+1 + tk+2 – 1 

 = tk+3 – 1 by definition of the Fibonacci Sequence 

 

Exercise 11.3 

 

1. Prove that 1 + 5 + 9 + …. (4n – 3) = n(2n – 1) 

2. Prove by induction that 12 + 22 + 32 + 42 + … + n2 = 
6

1)1)(2nn(n ++  

3. Prove that the number of lines determined by n points is 1)n(n
2

1
! . (Assume that 

no three points are collinear). How many points of intersection are determined by 

n random lines?  

4. Prove by induction that 
12n

n

1)1)(2n(2n

1
...

75

1

53

1

31

1

+
=

+!
+

"
+

"
+

"
 

5. Prove that the sum of the interior angles of a polygon is (n-2)180°. 
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6. Prove by induction or otherwise that n
2

n

n
...

2

n

1

n

0

n
=!!

"

#
$$
%

&
!!
"

#
$$
%

&
+!!

"

#
$$
%

&
+!!

"

#
$$
%

&  

7. Prove by induction that n(n2 + 5) is divisible by 6 for all positive integer values of 

n.  

8. Prove by mathematical induction that the sum of the cubes of any three 

consecutive natural numbers is divisible by 9. 

9. A motorist estimates that, by traveling along a main road at a certain steady speed, 

the probability that the next set of traffic lights will be green if the last set was 

green is 
4

3 and the probability that the next set of lights will be green if the last set 

was red is 
2

1 . He sets out one day to test his theory. Prove that, if the first light he 

meets is green then the probability that the nth set of lights is green is 
1n

4

1

3

1

3

2
!

"
#
$

%
&
'

+  

10. Let f(x) = 
x1

x

!
. Define f2(x) = f(f(x)), f3(x) = f(f(f(x))) etc for all integers. Prove 

by induction that fn(x) = 
nx1

x

!
 for all positive integers n.  

11. Show by Induction or otherwise that 3 is a factor of n3 - n for all positive integers 

n.  

12. Prove !
=

""
#

$
%%
&

'
+

+
=""

#

$
%%
&

'n

ri 1r

1n

r

i
by Induction. Use Pascal’s Theorem 

!!
"

#
$$
%

& '
+!!

"

#
$$
%

&
'
'

=!!
"

#
$$
%

&
r

1n

1r

1n

r

n
. 

13. One square is deleted from a square checkerboard with 22n squares. Show that the 

remaining 22n – 1 squares can always be tiled with shapes of the form 

      which cover three squares. 

 

14. The Towers of Hanoi is a classical ancient puzzle dating from, at least 1883. It 

consists of a board with three vertical pegs and a number of discs of a differing 

diameter each with a central hole which allows them to be threaded on to one of 
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the pegs. Initially the discs are all threaded on to one peg so that a disc with 

smaller diameter is always placed on top of a disc of larger diameter. The object 

of the puzzle is to transfer all the discs to another peg by a succession of moves. A 

move is defined as transferring a disc from one peg to another peg so that pegs 

with small diameter are always on top of discs with larger diameter (see diagram) 

 

 

 

 

 

 

 

 

 

 

Use the method of induction to prove that if the puzzle has n discs then the 

minimum number of moves required to transfer all the discs from one peg to 

another is 2n -1 

 

15. Find the smallest value of n, n !  N, for which 10n < n!. Use the method of 

induction to prove that n!> 10n for all integers equal to and greater than this value 

of n.  

16. Prove by induction that if f(x) = xn then f’(x) =  nxn – 1 [Hint: you will need to use 

the product rule for differentiation] 

17. If M = !
"

#
$
%

&

10

21
 find M2, M3, and M4 and suggest a value for Mn. Use induction to 

test the validity of your suggestion. 

18. Find the number of intersections when:  

a) 2 b) 3 c) 4 non parallel, non-trisecting lines are drawn in a plane. Suggest 

a formula for Pn, the number of points of intersection of n non-parallel, non-

trisecting lines in the plane. Use the method of induction to test the validity of 

your conjecture.  
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19. P = !
"

#
$
%

&

10

ba
 , a, b, !"  and a ≠ 1. Evaluate P2, P3, P4 …. And suggest a formula 

for Pn in terms of a, b, and n. Test the validity of your formula using induction. 

20. What is wrong with the following “proof” 

To prove 2n – 1 = 1 for all positive integers n.  

            Firstly when n = 1, 21 -1 = 20 = 1 !Statement is true when n = 1 

 Secondly on the assumption 2k-1 = 1 prove 2k = 1 

  2k = 1
1

11

2

22

2k

1k1k

=
!

=
!

"

""

 

21. A sequence of integers t0, t1, t2, … is defined by t0 = 0, t1= 1, t2 = 4, and  

tn = 3tn-1 – 3tn-2
 + tn – 3 for n > 3. Prove that tn = n2 for all n.  

22. Suppose tn = 15tn-1 - 75tn-2 + 1253tn-3 for n > 3, and t0 = 1, t1 = 5, t2 = 35. Prove  

tn= 5n for all n. 

 

Vector Proof 

 

 In geometry and occasionally elsewhere it is helpful to use vectors to prove 

theorems.  

 

Example 15 

Theorem  

Given A,B,C,D are four points (not necessarily co-planar) forming a figure ABCD with 

M, N, P, Q as the mid-points of AB, BC, CD and DA respectively, prove that MNPQ is a 

parallelogram.  

 

Proof 

 

 

 

 

 

 

A 

B 

C 

D 

M N 

Q P 



 279 

In 

  

!ABC, MN =
1

2
AC  

In AC
2

1
QP ADC, =!  

QPMN =!  

!MNPQ is a parallelogram.  

 

Example 16 

 

 Prove that the diagonals AB and BD of trapezoid ABCE intersect each other in the 

same ratio at point E.  

 

 

 

 

 

 

 

Let wBC and vAB
!!

== . Then wcAD
!

= for some scalar c.  

Let BE : ED = n:1 – n 

Let CE : EA = m : 1 – m 

 

In ABD!  

 

 

 

 

 

 

 

 

A 

B C 

D 

E 

A 

B 

cw D 

E 

1 – n 

n 

v
!
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vn)(1wncAE
!!

!+=  

 

Also we have  

 

 

 

 

 

)BCABm)((1AE

ACm)-(1 AE that so

+!="

=
 

)wvm)((1AE
!!

+!=  

 

Comparing  and  leads to the equation 

(1 – n) wm)-(1vm)-(1wncv
!!!!

+=+  

But v! ,w! is an independent set of vectors and a linear combination of them is unique.  

ratio. same in theother each intersect  BD and AC

mv

v of scalars     m1n1

!

=!

"="!
!

  

 

 

A 

C 

E 
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Example 17 

 

 To prove that the altitudes of a tetrahedron do not, in general, intersect.  

 

Proof (by contra-positive argument)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the altitude from A to the plane of triangle OBC.  

 

Then AD is a normal of plane OBC. i.e. AD=s )cb(
!!

! for some scalar s. 

Assumption Let G be the point on ADwhich is the common point of intersection of the 

four altitudes.  

 

(1)     )cbrs(a 

))cbr(s( a 

rscalar  somefor    ADrOA

AGOAOGThen 

!!!

!!!

!+=

!+=

+=

+=

 

mutatis mutandis 

OG = (2)  )camn(bBGOB
!!"

!+=+  

A 

B 

C 

O 

G 

D 

a
!

b
!

c
!

Let 

cOC

bOB

aOA

!

!

!

=

=

=
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Comparing (1) and (2) we have 

a
! + rs )cb(

!!
! = )camn(b

!!"
!+  

c)brsa(mn            

)cbrs(-)camn(ba
!!!

!!!!!!

!"=

!!="#
 

 Now note that this last statement is a contradiction since it implies that ba

!!
! is 

perpendicular to c!  i.e. it implies that BA is perpendicular to OC which in general is not 

true.  

 Hence the assumption is false and the altitudes do not intersect.  

 

Example 18 

 Given square ABCD, each side length 1. Let M,N,P,Q be mid-points of AB, BC, 

CD, DA respectively. Join AN, BP, CQ, DM forming a quadrilateral (as shown) FGHK. 

Find area of FGHK.  

 
 

 

 

 

 

 

A 

D 

F 

G 

H 

K 

M 

N 

P 

Q 

C 

B 
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An algebraic solution exists as follows 

Consider  

  
Continuing, by similarity, the diagram can be labeled in terms of area as follows 

 
 

By Similarity it is clear that FGHK is a square 

Area ABCD = 20x = 1 

Area FGHK = 4x 

∴Area FGHK = 
5

1  

Certain assumptions have been made in this solution but they are surely quite clear. 

However, consider this Linear Algebra solution 

A 

D 

F 

G 

H 

K 

M 

N 

P 

Q 

C 

B 
x 

x 

x 

x 

3x 

3x 

3x 

3x 

4x 

N 

B 

T 

G 

C 

H 

P 

Extend GN and draw CT parallel to PB.  

It is clear that ΔGBN ≈ TCN and have same area.  

It is also clear that Area GTCH = 4 times area ΔGBN 

Let Area ΔGBN = x then Area BNCH = 3x 
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Let center of square be 0 (0,0) and let ∠ PBC = θ 

 

 

 

P is (0, 
2

1 )  

Let’s rotate about O, θ° anti-clockwise 

The matrix is !
"

#
$
%

&

cosèsinè

sinè-cosè
 

But tanθ = 
2

1  ∴ cosθ = 
5

2  and sinθ = 
5

1  

 

∴ Point P is moved to 
!
!
!

"

#

$
$
$

%

&

'
!
!
!
!

"

#

$
$
$
$

%

&

2

1

0

5

2

5

1

5

1
-

5

2

 = )
5

1
,
52

1
( !  

G 

H 

1 

P C 

B 

θ 

 

2

1
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This means B’G’H’P’ is vertical but most importantly  

 

The x co-ordinate of H’ and G’ is 
52

1  

∴The rotated square F’G’H’K’ has dimensions 
5

1  by 
5

1  and hence its area is 
5

1 . 

Remember that rotations preserve area.  

 

Example 19 

 

To sovle (say)  x + y + 2z = 5   

  x + 2y + z = 5 

  2x + y + z = 5 

 

it is “clear” that , because of symmetry of the equations, the roles played by x, y and z are 

the same. Therefore, since there is a unique solution (n1 • n2 × n3 ≠ 0) then that solution 

must occur when x = y = z i.e. 4x = 5 and  x = y = z = 
4

5 . 

 

G’ 

H’ 

P’ 

B’ 

O 
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Question:  

Investigate whether it is true that if x + y = 14 and x2 + y2 = 100 then x2 + y3 = y2 + x3.  

 

 At first sight it seems that because the two equations are symmetric in x and y that x 

= y and hence the “proof” is trivial but note that the system of equations 

100yx

14 y  x 

22
=+

=+

does not have a unique solution and hence x is not necessarily equal to y. 

In fact the solutions are (6,8) and (8,6). The two solutions are however symmetric in x 

and y.  

 It follows that x2 + y3 is not equal to y2 + x3 and hence the proof fails because 

clearly for example when x = 6 and y = 8, 62 + 82 is not equal to 82 + 63.  

 

Exercise 11.4 

 

All these proofs can be done using vector methods.  

 

1.Prove that the angle in a semi-circle is 90°. 

2.Prove that in 
2

BC

BC)ACAB(
 ÄABC

!!  is the vector ADwhere AD is an altitude of 

ÄABC  

3.Prove the Cosine Rule using vectors 

4. Prove that the diagonals of a parallelogram bisect each other. 

5.Prove that if DCAB =  then BCAD =  

6.Given A,B,C,D are 4 coplanar but not collinear points with M,N as mid-points of 

AC and BD respectively, prove )CDAB(
2

1
MN +=  

7.Prove that the diagonals of a parallelepiped bisect each other at a common point. 

Remember that a parallelepiped is a figure whose 3 pairs of opposite faces are 

parallel parallelograms. 
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8.Given tetrahedron ABCD such that M,N,P,Q,R,S are the mid-points of edges AC, 

BC, CD, BD, AD, AB respectively prove that MQ, NR and SP bisect each other 

at a common point.  

 

 

9. 

 

 

 

 

 

 

 

 

 

 

 

 

  ABCD is a regular tetrahedron i.e. each of its faces is an equilateral triangle.  

  Prove 0CDAB =•  

10. Prove that a parallelogram whose diagonals are perpendicular is a rhombus.  

11. ABCD is a regular tetrahedron. E is the mid-point of AD and F is the mid-point of 

BC. Prove EF is perpendicular to AD and EF is perpendicular to BC. 

12. In ÄOPQ let OP = x! and yOQ
!

= . 

Show that 
  

  

! 
x 
! 
x +
" 
y 

" 
y +

" 
y 
! 
x +
" 
y 

" 
x   is the angle bisector of POQ!  

 

A 

B 

C 

D 


