Chapter 10

10. Binomial Theorem

When we multiply out (say) $(x-1)(x-2)(x-3)$ we are considering all the possible terms where we are choosing one of the elements from each bracket and combining the results. e.g. $(x-1)(x-2)(x-3)$
$=\quad \mathrm{x}^{3}+(-1-2-3) \mathrm{x}^{2}+((-1)(-2)+(-1)(-3)+(-2)(-3)) \mathrm{x}+(-1)(-2)(-3)$

choosing	choosing	choosing x	choosing
x from	x from	from one of the	no x s
each	two of	brackets	from the
bracket	the		brackets

$=x^{3}-6 x^{2}+11 x-6$.
Similarly, $(x-1)(x-2)(x-3)(x-4)$

$$
=\mathrm{x}^{4}+(-10) \mathrm{x}^{3}+(+35) \mathrm{x}^{2}+(-50) \mathrm{x}+24 .
$$

Now consider

$$
\begin{aligned}
& (x+1)(x+1)(x+1)(x+1) \\
= & x^{4}+(+4) x^{3}+(+6) x^{2}+(+4) x+1 \\
= & x^{4}+4 x^{3}+6 x^{2}+4 x+1
\end{aligned}
$$

Note for example that +6 is obtained by choosing +1 from two of the 4 brackets.
i.e. $\binom{4}{2}$.

It follows that

$$
(\mathrm{x}+1)^{\mathrm{n}}=\mathrm{x}^{\mathrm{n}}+\binom{\mathrm{n}}{1} \mathrm{x}^{\mathrm{n}-1} \cdot 1+\binom{\mathrm{n}}{2} \mathrm{x}^{\mathrm{n}-2} \cdot 1^{2}+\ldots .1^{\mathrm{n}}
$$

For example
$(x+1)^{7}=x^{7}+\binom{7}{1} x^{6} \cdot 1+\binom{7}{2} x^{5} \cdot 1^{2}+\binom{7}{3} \mathrm{x}^{4} \cdot 1^{3}+\ldots .1^{7}$
i.e. $(x+1)^{7}=x^{7}+7 x^{6}+21 x^{5}+35 x^{4}+35 x^{3}+21 x^{2}+7 x+1$

In general,

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\ldots .+b^{n} .
$$

This is called the BINOMIAL THEOREM.
For example

$$
(2 \mathrm{x}+3)^{4}=(2 \mathrm{x})^{4}+\binom{4}{1}(2 x)^{3} \cdot 3+\binom{4}{2}(2 x)^{2} \cdot 3^{2}+\binom{4}{3}(2 x) \cdot 3^{3}+3^{4}
$$

$\therefore(2 x+3)^{4}=16 x^{4}+96 x^{3}+216 x^{2}+216 x+81$.
Note that in the expression since $\binom{4}{r}=\binom{4}{4-r}$ it does not matter whether the co-efficient is, for example, $\binom{4}{1}$ or $\binom{4}{3}$.

Question

Find the middle term in the expression $(3 x-4)^{6}$.

Answer

$$
\text { Middle term is }\binom{6}{3}(3 x)^{3}(-4)^{3}=-34560 x^{3}
$$

Question

Find the co-efficient of x^{3} in the binomial expansion of $\left(2 x-\frac{3}{x}\right)^{7}$

Answer

The term we want is $\binom{7}{2}(2 \mathrm{x})^{5}\left(\frac{-3}{\mathrm{x}}\right)^{2}$
$=(21) \cdot\left(32 x^{5}\right)\left(\frac{9}{x^{2}}\right)=6048 \mathrm{x}^{3}$.

Question

Without using a calculator, find to the nearest $\$ 1$ the amount that $\$ 1000$ will accrue to, in 10 years, at 4% p.a. compound interest.

$$
\begin{aligned}
\text { Amount } & =1000(1+0.04)^{10} \\
& =1000\left(1^{10}+\binom{10}{1} 1^{9}(0.04)+\binom{10}{2} 1^{8}(0.04)^{2}+\binom{10}{3} 1^{7}(0.04)^{3}+\ldots .\right. \\
& =1000(1+0.4+45(0.0016)+120(0.000064)+\ldots . \\
& \approx 1480
\end{aligned}
$$

Question

Write out the binomial expansion of $(a+b+c)^{4}$

Answer

Remember that $(a+b+c)^{4}=(a+b+c)(a+b+c)(a+b+c)(a+b+c)$ and we are choosing all possible combinations where we choose one element from each bracket.

$$
\begin{aligned}
\therefore(a+b+c)^{4}= & a^{4}+\binom{4}{1} a^{3} b+\binom{4}{1} a^{3} c+\binom{4}{2} a^{2} b^{2}+\binom{4}{2} a^{2} c^{2}+\binom{4}{2}\binom{2}{1} a^{2} b c+\binom{4}{1} a b^{3}+\binom{4}{1} a c^{3} \\
& +\binom{4}{1}\binom{3}{2} a b^{2} c+\binom{4}{1}\binom{3}{2} a b c^{2}+\binom{4}{1} b c^{3}+\binom{4}{1} b c^{3}+\binom{4}{2} b^{2} c^{2}+b^{4}+c^{4} \\
\therefore(a+b+c)^{4}= & a^{4}+4 a^{3} b+4 a^{3} c+6 a^{2} b^{2}+6 a^{2} c^{2}+12 a^{2} b c+4 a b^{3}+4 a c^{3}+12 a b^{2} c \\
& +12 a b c^{2}+4 b c^{3}+4 b^{3} c+6 b^{2} c^{2}+b^{4}+c^{4} .
\end{aligned}
$$

Question

Find the value of r if the co-efficients of x^{r} and x^{r+1} are equal in the binomial expansion of $(3 x+2)^{19}$.

Answer

$$
\text { Co-efficients of the following terms }\binom{19}{r}(3 x)^{r}(2)^{19-r} \text { and }\binom{19}{r+1}(3 x)^{r+1}(2)^{18-\mathrm{r}} \text { are }
$$

equal.

$$
\begin{aligned}
& \therefore\binom{19}{\mathrm{r}} \beta^{\mathrm{r}} \cdot 2^{19-\mathrm{r}}=\binom{19}{\mathrm{r}+1} 3^{\mathrm{r}+1} \cdot 2^{18-\mathrm{r}} \\
& \therefore \frac{19!}{\mathrm{r}!(19-\mathrm{r})!} 3^{\mathrm{r}} \cdot 2^{19-\mathrm{r}}=\frac{19!}{(\mathrm{r}+1)!(18-\mathrm{r})!} \cdot 3^{\mathrm{r}+1} \cdot 2^{18-\mathrm{r}}
\end{aligned}
$$

Canceling both sides by $19!3^{\mathrm{r}} \cdot 2^{18-\mathrm{r}}$ we get

$$
\left.\begin{array}{l}
\frac{2}{r!(19-r)!}=\frac{3}{(r+1)!(18-r)!} \\
\therefore 2(r+1)!(18-r)!=3 r!(19-r)! \\
2(r+1)=3(19-r) \\
\text { i.e. } 2 r+2=573 r \\
5 r=55 \\
r
\end{array}\right)=118
$$

\therefore co-efficients of x^{11} and x^{12} are equal.

Although a proof (except for positive integers) is beyond the scope of this book the
BINOMIAL THEOREM is true for any real power (positive, negative, fractional, irrational) subject to certain restrictions on the value of x.

For example

$$
\begin{aligned}
(1+x)^{-1} & =1^{-1}+(-1) 1^{-3} x+\frac{(-1)(-2)}{1 \times 2} 1^{-3} x^{2}+\ldots \\
& =1-x+x^{2}-x^{3}+\ldots
\end{aligned}
$$

This is true for $-1<\mathrm{x}<1$.
Note how this result conforms to the sum of an infinite geometric series.

Exercise 10.1

Binomial Theorem

1. State the middle term in the expansion of $(a+b)^{20}$.
2. Find the term not containing x in the expansion of $\left(2 x+\frac{1}{x}\right)^{12}$.
3. Find the coefficient of x^{20} in the expansion of $\left(x^{2}+2 x\right)^{12}$.
4. Expand $(a+b+c)^{3}$. $\left(\operatorname{Hint}(a+(b+c))^{3}\right)$.
5. Find n if the coefficients of x^{3} and x^{12} are equal in the expansion of $(1+x)^{n}$
6. Find an approximate value for $(1.0001)^{100}$ in your head.
7. Find the coefficient of x^{11} in the expansion of $\left(2 x^{2}+\frac{3}{2 x}\right)^{10}$.
8. Expand $\left(1+x+x^{2}\right)^{3}$ in ascending powers of x as far as x^{3}.
9. Write down the binomial expansion of $\left(y+\frac{1}{y}\right)^{6}$.
10. Write down the binomial expansion of $(3 x-2 y)^{6}$.
11. Find the next term in the expansion if $1+12 x+54 x^{2}$ are the first three terms.
12. Find r if the coefficients of x^{r} and x^{r+1} are equal in the expansion of $(3 x+2)^{9}$.
13. What is the sum of the coefficients of $(a+b)^{10}$?
14. What is the sum of the coefficients of $(a-b)^{10}$?
15. What is the sum of the coefficients of $(a-2 b)^{10}$?
16. For two values of x, the middle term in the expansion of $(1+x)^{24}$ in ascending powers of x is the arithmetic mean of the term immediately before it and after it. Find those values of x.
17. What is the coefficient of $x^{3} y^{4} z^{2}$ in the expansion of $(x+2 y+z)^{9}$?
18. Find the term not containing x in the expansion of $\left(x+\frac{1}{x}\right)^{3}\left(x-\frac{1}{2}\right)^{5}$.
19. Is it possible for two consecutive terms in the expansion of $(2 x+3)^{9}$ to have equal coefficients? If so, find them.

Exercise 10.1 Answers

1. $\binom{20}{10} a^{10} b^{10}$
2. 59136
3. 7920
4. $a^{3}+3 a^{2} b+3 a^{2} c+3 a b^{2}+3 a c^{2}+6 a b c+b^{3}+3 b^{2} c+3 b c^{2}+c^{3}$
5. 15
6. 1.01
7. 51840
8. $1+3 \mathrm{x}+6 \mathrm{x}^{2}+7 \mathrm{x}^{3}$
9. $\mathrm{y}^{6}+6 \mathrm{y}^{4}+15 \mathrm{y}^{2}+20+\frac{15}{\mathrm{y}^{2}}+\frac{6}{\mathrm{y}^{4}}+\frac{1}{\mathrm{y}^{6}}$
10. $729 x^{6}-1916 x^{5} y+4861 x^{4} y^{2}-4320 x^{3} y^{3}+2160 x^{2} y^{4}-576 x y^{5}+64 y^{6}$
11. $108 \mathrm{x}^{3}$
12. $r=5$
13. 1024
14. 0
15. 1
16. $\frac{2}{3}$ or $\frac{3}{2}$
17. 20160
18. $\frac{55}{16}$
19. Yes. $489888 \mathrm{x}^{4}$ and $489888 \mathrm{x}^{3}$

Exercise 10.2

Binomial Theorem Harder Questions

1. For what values of x is it possible to expand $(1+x)^{-1}$ as a binomial expression?
2. Expand $(1+x)^{-2}$. For what values of x is the expansion valid?
3. What is the first negative coefficient in the expansion of $(1+x)^{3 \cdot 5}$?
4. Write down the first negative coefficient in the expansion of $\left(1-x^{2}\right)^{-5 / 3}$
5. Write $1-x+x^{2}-x^{3}+x^{4}-\ldots$ in a different way. For what values of x does the series converge?
6. Find the sum of $x+2 x^{2}+3 x^{3}+\ldots$ assuming that the sum is finite.
7. Find the largest coefficient in the expansion of $\left(2+\frac{x}{3}\right)^{9}$.
8. Find the term in the expansion of $\left(2+\frac{1}{x}+x\right)^{5}$ which does not contain x.
9. What is the coefficient of $x^{2} y^{2} z^{2}$ in the expansion of $(2 x+3 y-z)^{6}$?
10. Show that the number of terms in the expansion of

$$
\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots . . \mathrm{x}_{\mathrm{r}}\right)^{\mathrm{n}} \text { is }\binom{\mathrm{n}+\mathrm{r}-1}{\mathrm{r}-1}
$$

11. Show that $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots . .+\binom{n}{n}^{2}=\binom{2 n}{n}$

$$
\text { Hint: }(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}
$$

Exercise 10.2 Answers

1. $-1<\mathrm{x}<+1$
2. $1-2 \mathrm{x}+3 \mathrm{x}^{2}-4 \mathrm{x}^{3},-1<\mathrm{x}<1$
3. $-\frac{7}{256} x^{5}$
4. $-\frac{440}{27} \mathrm{x}^{6}$
5. $\frac{1}{1+\mathrm{x}}$ for $-1<\mathrm{x}<+1$
6. $\frac{x}{(1-x)^{2}}$
7. 768
8. 42
9. 3240
