CHAPTER EIGHT

8. Complex Numbers

When we solve $x^{2}+2 x+2=0$ and use the Quadratic Formula we get

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{(2)^{2}-4(1)(2)}}{2(1)} \\
& =\frac{-2 \pm \sqrt{-4}}{2}
\end{aligned}
$$

Since we know that $\sqrt{-4}$ is not a real number it follows that there is no REAL solution to the equation $\mathrm{x}^{2}+2 \mathrm{x}+2=0$.

However, mathematicians like to investigate conjectures "I wonder what would happen if we define"

Consequently we define $\sqrt{-1}$ to be a "number" which we will call i (not to be confused with $\dot{\mathrm{i}}=\overrightarrow{(1,0,0)}$. Note $i^{2}=-1$.

It turns out that defining $\sqrt{-1}$ like this does not lead to contradictions in later mathematics study and in fact is extremely helpful. Numbers containing i in some form are called COMPLEX NUMBERS

Theorem

i is not a real number.
This theorem may seem self-evident but it should be remembered that there are some curious numbers out there and the fact that i is not real is not as obvious as it first seems.

For example
a) Is $2^{\sqrt{2}}$ real?
b) Is $\lim _{x \rightarrow 0^{+}} \frac{1}{\mathrm{X}}$ real?
c) Is (-2$)^{3.1}$ real?
d) Is $\lim _{x \rightarrow 0^{+}} \frac{1}{\mathrm{x}^{2}}$ real?
e) Is $\log (-8)$ real? \quad f) Is $(-8)^{\frac{1}{3}}$ real?

It all depends upon one's perspective.

For example

$$
(-2)=(-8)^{\frac{1}{3}}=(-8)^{\frac{2}{6}}=\left(\left(-8^{2}\right)\right)^{\frac{1}{6}}=(64)^{\frac{1}{6}}=+2 \text { (a contradiction) }
$$

My own opinion is that $(-8)^{\frac{1}{3}}$ is not equal to -2 because $(-8)^{\frac{1}{3}}$ is not defined properly but many mathematicians would argue otherwise.

Back to Theorem (i is not real.)
We will use a contra-positive argument.
Assume i is real
Then i is zero or positive or negative.
Case 1
$i=0$
Then $i \cdot i=0 \cdot 0$

$$
i^{2}=0
$$

contradiction since $i^{2}=-1$ by definition.
Case 2
i is positive
$\therefore i>0$
$\therefore i \cdot i>0$ (preserving the inequality under the assumption that i is POSITIVE)
$\therefore i^{2}>0$
$\therefore-1>0$
contradiction.

Case 3

i is negative
$\therefore i<0$
$\therefore i \cdot i>0$ (reversing the inequality since i is assumed negative here)
$\therefore i^{2}>0$
$\therefore-1>0$
Since all three cases fail it follows that the original assumption is false and hence i is not real.

Powers of i

Since $i^{2}=-1$
then $i^{4}=+1 \quad$ and $i^{3}=-\mathrm{i}$.
It follows that powers of i can be easily obtained by considering the remainder when the power is divided by 4 .
e.g. \quad a) $i^{43}=i^{40} i^{3}=\left(i^{4}\right)^{10} i^{3}=1^{10} \cdot i^{3}=-i$
b) $i^{37}=i^{36} i^{1}=1 \cdot i=i$
c) $i^{46}=i^{44} i^{2}=1(-1)=-1$.

Note that for example

$$
\begin{aligned}
(1+i)^{2} & =1+2 i+i^{2}=1+2 i+(-1)=2 i \\
\sqrt{-4} & =\sqrt{4} \sqrt{-1}=2 i
\end{aligned}
$$

Furthermore note that when solving $x^{2}+2 x+2=0$ earlier we found that $x=\frac{-2 \pm \sqrt{-4}}{2}$
i.e. $x=\frac{-2+2 i}{2}$ or $x=\frac{-2-2 i}{2}$
i.e. $x=-1+i$ or $-1-i$

In general mathematical operations for complex numbers are as for real numbers.
e.g. $(1+2 i)+(3+4 i)=4+6 i$

$$
(7-2 i)-(5+4 i)=2-6 i
$$

$$
(2+3 i)(3+4 i)=6+17 i+12 i^{2}=-6+17 i
$$

In fact as we shall see later the set of real numbers is a subset of the set of complex numbers.

Exercise 8.1

1. Express in terms of i
a) $\sqrt{-25}$
b) $\sqrt{-16}$
c) $\sqrt{-4}+\sqrt{-9}$
d) $\sqrt{-36} \sqrt{-4}$
2. Write in form of $\mathrm{a}+\mathrm{b} i$
a) $(2+3 i)+(4+5 i)$
b) $(1+2 i)(1+3 i)$
c) $(1+i)^{2}$
d) $(1+i)(1-i)$
3. Simplify
a) i^{14}
b) i^{55}
c) i^{72}
4. Solve for z where z is a complex number
$z^{2}+8 z+20=0$
5. Solve for z.
$3 z^{2}+z+1=0$
6. Simplify $(1+i)^{6}$
7. Solve for z.

$$
z^{3}-z^{2}+z-1=0
$$

8. Solve for z.
$z^{3}-z^{2}+4 z=4$

Exercise 8.1 Answers

1. a) $5 i \quad$ b) $4 i \quad$ c) $5 i \quad$ d) -12
2. a) $6+8 i$
b) $-5+5 i$
c) $2 i \quad$ d) 2
3. a) -1
b) $-i$
c) 1
4. $-4+2 i,-4-2 i$
5. $\frac{-1+\sqrt{11} i}{6}$ or $\frac{-1-\sqrt{11} i}{6}$
6. $-8 i$
7. $1, i,-i$
8. $1,2 i,-2 i$

Standard Form of a Complex Number

When a complex number is written in the form $\mathrm{a}+\mathrm{b} i$ this is called STANDARD FORM and it helps to represent the complex number on a diagram called an ARGAND

DIAGRAM as shown below.
$\mathrm{a}+\mathrm{b} i$ is represented by a dot at the position (a, b) as we understand from elementary co-ordinate geometry

Note how (say) the number 2 can be thought of as $2+0 i$ and represented by a dot at $(2,0)$ establishing the fact that the set of real numbers is a subset of the set of Complex Numbers.

To write $\frac{2+3 i}{1+i}$ in standard form.
$\frac{2+3 i}{1+i}=\frac{(2+3 i)}{(1+i)} \frac{(1-i)}{(1-i)}=\frac{2+i-3 i^{2}}{1-i^{2}}=\frac{5+i}{2}=\frac{5}{2}+\frac{1}{2} i$
i.e. $\frac{2+3 i}{1+i}$ can be presented by a dot at $\left(\frac{5}{2}, \frac{1}{2}\right)$.

Note that $\mathrm{a}-\mathrm{b} i$ is called the CONJUGATE of $\mathrm{a}+\mathrm{b} i$
e.g. $2+3 i$ and $2-3 i$ are conjugates of each other.

Complex numbers are often represented by the letter z . The conjugate of z is written \bar{z}.
From the Quadratic Formula it is clear that for (say) $x^{2}-4 x+13=0$

$$
\begin{aligned}
x & =\frac{4+\sqrt{-36}}{2} \text { or } \frac{4-\sqrt{-36}}{2} \\
& =2+3 i \text { or } 2-3 i
\end{aligned}
$$

From this it is easy to deduce for a quadratic equation with real co-efficients that if a complex number is a root then so is its conjugate.

In fact this is true for any polynomial equation with real co-efficients.

Example

Given $1+i$ is a root of $\mathrm{x}^{3}-26 \mathrm{x}^{2}+50 \mathrm{x}-24=0$, find its three roots.

Solution:

Since $1+i$ is a root then $1-i$ is a root.
i.e. $[\mathrm{x}-(1+i)][\mathrm{x}-(1-i)][\mathrm{x}-$ other root $]=\mathrm{x}^{3}-26 \mathrm{x}^{2}+50 \mathrm{x}-24$

By equating constant terms on both sides of the equation we can see that
$(1+i)(1-i)($ other root $)=24$
i.e. other root $=12$
\therefore roots are $1+i, 1-i$ and 12 .

Note also that a polynomial equation with real co-efficients whose maximum power is ODD must always have a REAL root since complex roots of such an equation always occur in pairs of conjugates. Note how this last concepts is confirmed by the fact for example that a cubic equation can be essentially presented by a graph such as that shown below which must have an x-intercept.

Furthermore two complex numbers can only be equal if their real parts and their i parts are equal separately.
For example if $\mathrm{a}+3 i=5-\mathrm{c} i$
Then $\mathrm{a}=5$ and $\mathrm{c}=-3$.

Exercise 8.2

1. Show that $x^{2}+2 x+3=0$ has no solutions in real numbers.
2. Solve $x^{2}+x+1=0$ where x can be a complex number.
3. Evaluate
a) $\sqrt{-9}$
b) $\sqrt{-16}$
c) $\sqrt{-9} \sqrt{-16}$
d) i^{4}
e) $i^{8} \quad$ f) i^{18}
4. Simplify $(1+i)(1-i)$
5. Simplify $(1+i)^{8}$
6. Write $\frac{1}{1+i}$ in the form $\mathrm{a}+\mathrm{b} i$
7. Simplify $(2+3 i)+(3-4 i)$
8. Express $\sqrt{-36}+\sqrt{-25}+\sqrt{-49}$ as a complex number
9. Evaluate $\frac{1+i}{1-i}$ and write its value in the form $\mathrm{a}+\mathrm{b} i$
10. Find all four roots of the equation $x^{4}=16$
11. Is it true that $\sqrt{a} \sqrt{b}$ equals $\sqrt{\mathrm{ab}}$ for all numbers a and b ? Does it make any difference if a and/or b is a negative number?
12. Solve $z^{2}-2 z+2=0$ where z is a complex number.
13. Solve $z^{3}-9 z^{2}+26 z-24=0$ where z is a complex number.
14. If $(a+b i)^{2}=-5-12 i$ find a and b.
15. Simplify a) $\frac{1+i}{1-i}$
b) $\frac{2}{1-i}+\frac{2}{1+i}$
c) $\frac{1-i}{1+i}+\frac{1+i}{1-i}$
16. $1+i$ is a root of the equation $z^{3}-26 z^{2}+50 z=48$ (fact). Find the real roots of this equation.
17. Given that $2+i$ is a root of $\mathrm{z}^{4}-6 \mathrm{z}^{2}+25=0$ solve the equation completely.
18. If z is a complex number and $(\mathrm{z}+1)(2-i)=3-4 i$ find z in standard form.
19. Solve for x and y :

$$
-4+(\mathrm{x}+\mathrm{y}) i=2 \mathrm{x}-5 \mathrm{y}+5 i
$$

20. $1+i$ is a root of $z^{3}-126 z^{2}+250 z-248=0$ (Fact). Find the real root.
21. Show that $x-i$ is a factor of $x^{3}+h x^{2}+x+h$ regardless of the value of h.

Exercise 8.2 Answers

2. $\mathrm{x}=\frac{-1+\sqrt{3} i}{2}$ or $\frac{-1-\sqrt{3} i}{2}$
3. a) $3 i$
b) $4 i$
c) -12
d) 1
e) 1
f) -1
4. 2
5. 16
6. $\frac{1}{2}-\frac{1}{2} \mathrm{i}$
7. $5-i$
8. $18 i$
9. i
10. $2,-2 i, 2 i,-2$
11. No.
12. $\mathrm{z}=1+i$ or $1-i$
13. $2,3,4$
14. $\mathrm{a}=2, \mathrm{~b}=-3$ or $\mathrm{a}=-2, \mathrm{~b}=+3$
15. a) i
b) 2
c) 0
16. 24
17. $\mathrm{z}=2+i$ or $2-i$ or $-2+i$ or $-2-i$
18. $1-i$
19. $x=3, y=2$
20. Other root is +124

Argand Diagram

As has been proven, complex numbers cannot be represented on a number line and are often represented on an Argand Diagram as shown below.

$|z|$ is the magnitude or modulus of z and means the distance of z from the origin on the Argand Diagram. It therefore follows that $|z|$ is a real number since it represents a distance. For example $|2+3 i|=\sqrt{13}$ which is similar to saying $|(\overrightarrow{2,3})|=\sqrt{13}$ The set represented by the following $\{\mathrm{z}:|\mathrm{z}|=5\}$ is therefore a circle since the set contains those complex numbers on the Argand Digram which are 5 units from the origin. For example $4+3 i$ is in the set.

Exercise 8.3

Argand Diagram

1. Solve $z^{4}=1$ where z is a complex number. Graph the four roots on an Argand Diagram.
2. What is the distance between $2+3 i$ and $5+7 i$ on the Argand Diagram?
3. Solve $z^{3}=1$ where z is a complex number. Graph the three roots on a Argand Diagram.
4. Using questions 1 and 3 as hints try to guess the roots of $z^{8}=1$. Check by multiplication to see if your guesses are correct.
5. Find a) $|4-3 i|$
b) $|4+3 i|$
c) $|3-4 i|$
d) $|3+4 i|$
e) $|1+i| \quad$ f) $|1-i|$
6. Try to find a complex number z , other than 13 such that $|z|=13$.
7. Graph on an Argand Diagram the set $\{z \in C,|z|=5\}$
8. Graph on an Argand Diagram the set $\{z \in C,|z|=4\}$
9. Graph on an Argand Diagram the set $\{z \in C,|z-1|=4\}$
10. Graph on an Argand Diagram the set $\{\mathrm{z} \in \mathrm{C},|\mathrm{z}-i|=4\}$
11. Graph on an Argand Diagram the set $\{z \in C,|z-1|=z+3\}$
12. If $|\mathrm{z}|=\sqrt{13}$ and the real part of z is 2 write down z in the form of $\mathrm{a}+\mathrm{b} i$.
13. Convince yourself that if $\mathrm{a}+\mathrm{b} i=3+4 i$ then $\mathrm{a}=3$ and $\mathrm{b}=4$ is the only possible solution. Use this fact to express $\sqrt{-7+24 i}$ in the form $\mathrm{a}+\mathrm{b} i$. Hint let $\sqrt{-7+24 i}$ be $\mathrm{a}+\mathrm{b} i$ and square both sides of the equation.
14. $\{\mathrm{z}:|\mathrm{z}-i|=2\}$ represents the same circle as $\{\mathrm{z}:|\mathrm{z}+3 i|=\mathrm{m}|\mathrm{z}|\}$ Find the values of m.

Exercise 8.3 Answers

1. $1,-1, i,-i$
2. 5
3. $1, \frac{-1-\sqrt{3 i}}{2}, \frac{-1+\sqrt{3 i}}{2}$
4. $1,-1, i,-i, \frac{l}{\sqrt{2}}+\frac{l}{\sqrt{2}} i, \frac{l}{\sqrt{2}}-\frac{l}{\sqrt{2}} i,-\frac{l}{\sqrt{2}}+\frac{l}{\sqrt{2}} i,-\frac{l}{\sqrt{2}}-\frac{l}{\sqrt{2}} i$
5. a) 5
b) 5
c) 5
d) 5
e) $\sqrt{2}$
f) $\sqrt{2}$
6. $5+12 i$
7. $2+3 i$
8. $3+4 i$
9. $m=2$

Polar Form of a Complex Number

A complex number may be represented on the Argand Diagram not only in the standard form of $\mathrm{a}+\mathrm{b} i$ but also as $\mathrm{r}(\cos \theta+i \sin \theta)$ where r represents the distance of the complex number from the origin and θ is the angle which the line from the origin to the complex number makes with the positive real axis. θ is sometimes called the argument.

Argand Diagram

$\mathrm{r}(\cos \theta+i \sin \theta)$ is often abbreviated to rcis θ (especially in North America but less so elsewhere).

Note that r is always positive and θ is the angle in standard position.
When two complex numbers are multiplied the result yields a complex number whose magnitude is the PRODUCT of the MAGNITUDES of the two original complex numbers and whose angle made with the positive real axis is the ADDITION of the two angles of the original complex numbers.
i.e $\mathrm{r}(\cos \theta+i \sin \theta)$ times $\mathrm{s}(\cos \alpha+i \sin \alpha)$

$$
=\mathrm{rs}(\cos (\theta+\alpha)+i \sin (\theta+\alpha))
$$

$$
\begin{aligned}
\text { Example } & 2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) \text { times } 3\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \\
& =6\left(\cos 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} i \sin 60^{\circ}+i \sin 30^{\circ} \cos 60^{\circ}+i^{2} \sin 30 \sin 60^{\circ}\right) \\
& =6\left(\cos 30^{\circ} \cos 60^{\circ}-\sin 30^{\circ} \sin 60^{\circ}+i\left(\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}\right)\right) \\
& =6\left(\cos \left(30^{\circ}+60^{\circ}\right)+i \sin \left(30^{\circ}+60^{\circ}\right)\right) \\
& =6(0+i) \\
& =6 i
\end{aligned}
$$

As an example $2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$ times $5\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)$

$$
\begin{aligned}
& =10\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& =10 i
\end{aligned}
$$

It follow as a natural consequence that when dividing complex numbers we divide the magnitudes and subtract the angles.

Example

$$
\frac{6\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)}{2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}=3\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)
$$

de Moivre's Theorem

A most important theorem in complex numbers is de Moivre's Theorem which states that

$$
[\mathrm{r}(\cos \theta+i \sin \theta)]^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}(\cos (\mathrm{n} \theta)+i \sin (\mathrm{n} \theta))
$$

Let's see a simple example.

$$
\begin{aligned}
{\left[2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)\right]^{3} } & =8\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& =8 i
\end{aligned}
$$

It is left as an exercise for the student to see that $(\sqrt{3}+i)^{3}=8 i$ by multiplication.
In fact de Moivre's Theorem is true for $\underline{\mathbf{A N Y}}$ value of n (positive, negative, fraction or otherwise). e.g. $\left[4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)\right]^{\frac{1}{2}}=2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$

Example

Roots of Unity

To solve $z^{6}=1$
Let $\mathrm{z}=\cos \theta+i \sin \theta=\operatorname{cis} \theta$
Then $\mathrm{z}^{6}=\cos 6 \theta+i \sin 6 \theta=\operatorname{cis} 6 \theta$
$\therefore \cos 6 \theta+i \sin 6 \theta=1=\operatorname{cis} 0$ or cis 360° or cis $720^{\circ} \ldots$.
$\therefore 6 \theta=0^{\circ}$ or 360° or 720° or 1080° or 1440° or 1800°.
$\therefore \theta=0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}$ or 300°
$\therefore \mathrm{z}=\operatorname{cis} 0^{\circ}$ or cis 60° or $\operatorname{cis} 120^{\circ}$ or cis 180° or cis 240° or cis 300°
$\therefore \mathrm{z}=1$ or $\frac{1}{2}+\frac{\sqrt{3}}{2} i$ or $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ or -1 , or $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$ or $\frac{1}{2}-\frac{\sqrt{3}}{2} i$

Exercise 8.4

1. Express $1+i$ in polar form
2. Express $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$ in standard form.
3. Express the following in polar form.
a) $\frac{\sqrt{3}}{2}+\frac{1}{2} i$
b) $2+2 i$
c) $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
4. Express the following in standard form.
a) $4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
b) $6 \operatorname{cis} 120^{\circ}$
c) $2 \operatorname{cis} 90^{\circ}$
d) $\operatorname{cis} 270^{\circ}$
5. Express cis $30^{\circ} \cdot \operatorname{cis} 60^{\circ}$ in simple form.
6. Write $\operatorname{cis} \theta \cdot \operatorname{cis} \alpha$ in polar form.
7. Express $(1+i)^{2}$ in polar form.
8. Express $(1+i)^{4}$ in polar form.
9. Express $(1+i)^{20}$ in polar form.

10 . If $z=2 \operatorname{cis} 70^{\circ}$ what is a) $|z|$
b) \bar{z}
c) $|\bar{Z}|$?
11. Evaluate $\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$ in your head.

Exercise 8.4 (cont'd)

12. Evaluate $\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{32}$ in your head
13. Write $2 \operatorname{cis} 70^{\circ} \cdot 3 \operatorname{cis}\left(-40^{\circ}\right)$ in standard form.
14. Multiplying a complex number by i in the complex plane is equivalent to a rotation of θ°. State the value of θ.
15. Using polar form methods, write $i^{\frac{2}{3}}$ in standard form.
16. Express $(1-i)^{7}$ in standard form
17. Solve $z^{4}=-8-8 \sqrt{3} i$ expressing the roots in the form $a+b i$
18. Express $-2 \sqrt{3}+2 i$ in polar form
19. Solve $z^{5}=1$ using polar form methods i.e. de Moivre's Theorem. Write the roots in polar form.
20. Solve $\mathrm{z}^{3}=i$. Write the three roots in standard form.
21. Simplify a) $\frac{12 \operatorname{cis} 75^{\circ}}{3 \operatorname{cis} 15^{\circ}}$
b) $\frac{18 \operatorname{cis} 30^{\circ}}{3 \operatorname{cis}(-30)^{\circ}}$

Exercise 8.4 Answers

1. $\sqrt{2} \operatorname{cis} 45^{\circ}$
2. $1+\sqrt{3} i$
3. a) $\operatorname{cis} 30^{\circ}$
b) $2 \sqrt{2}$ cis 45°
c) $\operatorname{cis} 120^{\circ}$
4. a) $2 \sqrt{3}+2 i$
b) $-3+3 \sqrt{3} i$
c) $2 i$
d) $-i$
5. i
6. $\operatorname{cis}(\theta+\alpha)$
7. $2 \operatorname{cis} 90^{\circ}$
8. $4 \operatorname{cis} 180^{\circ}$
9. $1024 \mathrm{cis} 180^{\circ}$
10. a) 2
b) $2 \operatorname{cis}\left(-70^{\circ}\right)$
c) 2
11. i
12. $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
13. $3 \sqrt{3}+3 i$
14. 90°
15. $\frac{1}{2}+\frac{\sqrt{3}}{2} i$
16. $8+8 i$
17. $1+\sqrt{3} i$
18. $4 \mathrm{cis} 150^{\circ}$
19. 1 or $\operatorname{cis} 72^{\circ}$ or $\operatorname{cis} 144^{\circ}$ or $\operatorname{cis} 216^{\circ}$ or $\operatorname{cis} 288^{\circ}$
20. $\frac{\sqrt{3}}{2}+\frac{1}{2} i$ or $-\frac{\sqrt{3}}{2}+\frac{1}{2} i$ or $-i$
21. a) $4 \operatorname{cis} 60^{\circ}$
b) $6 \mathrm{cis} 60^{\circ}$

Exercise 8.5

1. Graph on an Argand Diagram the set $\{\mathrm{z} \in \mathrm{C}, 1 \leq|\mathrm{z}| \leq 2\}$
2. Graph on an Argand Diagram the set $\{\mathrm{z} \in \mathrm{C}, \mathrm{z}+\overline{\mathrm{z}}=2\}$
3. Solve $\mathrm{z}^{3}-(3+i) \mathrm{z}+2+i=0$
4. Solve for x and y

$$
(3-2 i)(\mathrm{x}+\mathrm{y} i)=2(\mathrm{x}-2 \mathrm{y} i)+2 i-1
$$

5. Find a complex number z such that $\mathrm{z}=(\overline{\mathrm{z}})^{2}$
6. Evaluate $\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)^{18}$
7. Simplify $\frac{8 \operatorname{cis} 140^{\circ}}{2 \operatorname{cis} 50^{\circ}}$
8. Solve for z .

$$
z^{4}=-4
$$

9. Evaluate $\left|i^{101}-1\right|$
10. Solve completely $z^{3}-2 z=4$ where $z \in$ Complex Numbers.
11. Does a quintic polynomial equation with real co-efficients always have a real root?
12. Solve completely $z^{4}-3 z^{3}-6 z^{2}+18 z+20=0$ where $z \in$ Complex Numbers
13. a) Draw the set $\{z:|z-1|+|z-5|=8\}$ on an Argand Diagram
14. b) Draw the set $\{\mathrm{z}:|\mathrm{z}-1|=|\mathrm{z}-i|\}$ on an Argand Diagram
15. Solve the following equation where z is a complex number.

$$
z^{3}=2-2 i
$$

16. Using de Moivre's Theorem prove that

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

17. Name the minimum positive integer n so that

$$
\left(\frac{3}{7}+\frac{3}{7} i\right)^{\mathrm{n}} \text { is a real number. }
$$

Exercise 8.5 Answers

3. $1,2+i$
4. $x=-1, y=0$
5. $\operatorname{cis} 120^{\circ}$
6. -1
7. $4 i$
8. $1+i, 1-i,-1+i,-1-i$
9. $\sqrt{2}$
10. $2,-1+i,-1-i$
11. Yes
12. $-1,-2,3+i, 3-i$
13. a)

b)

14. $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
15. $\sqrt{2} \operatorname{cis} 105^{\circ}, \sqrt{2} \operatorname{cis} 225^{\circ}, \sqrt{2} \operatorname{cis} 340^{\circ}$
16. $n=4$
