CHAPTER EIGHT

8. Complex Numbers

When we solve $x^2 + 2x + 2 = 0$ and use the Quadratic Formula we get

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(2)}}{2(1)}$$
$$= \frac{-2 \pm \sqrt{-4}}{2}$$

Since we know that $\sqrt{-4}$ is <u>not</u> a real number it follows that there is no <u>**REAL**</u> solution to the equation $x^2 + 2x + 2 = 0$.

However, mathematicians like to investigate conjectures "I wonder what would happen if we define "

Consequently we define $\sqrt{-1}$ to be a "number" which we will call i (not to be confused with $\vec{i} = (1,0,0)$. Note $i^2 = -1$.

It turns out that defining $\sqrt{-1}$ like this does not lead to contradictions in later mathematics study and in fact is extremely helpful. Numbers containing *i* in some form are called <u>COMPLEX NUMBERS</u>

Theorem

i is <u>not</u> a real number.

This theorem may seem self-evident but it should be remembered that there are some curious numbers out there and the fact that *i* is not real is not as obvious as it first seems.

For example

a) Is
$$2^{\sqrt{2}}$$
 real?
b) Is $\lim_{x \to 0^+} \frac{1}{x}$ real?
c) Is $(-2)^{3.1}$ real?
d) Is $\lim_{x \to 0^+} \frac{1}{x^2}$ real?
e) Is log(-8) real?
f) Is $(-8)^{\frac{1}{3}}$ real?

It all depends upon one's perspective.

For example

$$(-2) = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = ((-8^2))^{\frac{1}{6}} = (64)^{\frac{1}{6}} = +2$$
 (a contradiction)

My own opinion is that $(-8)^{\frac{1}{3}}$ is not equal to -2 because $(-8)^{\frac{1}{3}}$ is not defined properly but many mathematicians would argue otherwise.

Back to Theorem (*i* is not real.)

We will use a contra-positive argument.

<u>Assume</u> *i* is real

Then *i* is zero or positive or negative.

Case 1

i = 0

Then $i \cdot i = 0 \cdot 0$

$$i^2 = 0$$

contradiction since $i^2 = -1$ by definition.

Case 2

i is positive

 $\therefore i > 0$

 $\therefore i \cdot i > 0$ (preserving the inequality under the assumption that *i* is **<u>POSITIVE</u>**)

 $\therefore i^2 > 0$

 $\therefore -1 > 0$

contradiction.

Case 3

i is negative

 $\therefore i < 0$

 $\therefore i \cdot i > 0$ · (reversing the inequality since *i* is assumed negative here)

$$\therefore i^2 > 0$$

$$\therefore -1 > 0$$

Since all three cases fail it follows that the original assumption is false and hence *i* is not real.

Powers of i Since $i^2 = -1$ then $i^4 = +1$ and $i^3 = -i$.

It follows that powers of *i* can be easily obtained by considering the remainder when the power is divided by 4.

e.g. a)
$$i^{43} = i^{40} i^3 = (i^4)^{10} i^3 = 1^{10} \cdot i^3 = -i$$

b) $i^{37} = i^{36} i^1 = 1 \cdot i = i$
c) $i^{46} = i^{44} i^2 = 1(-1) = -1$.

Note that for example

$$(1 + i)^2 = 1 + 2i + i^2 = 1 + 2i + (-1) = 2i$$

 $\sqrt{-4} = \sqrt{4}\sqrt{-1} = 2i$

Furthermore note that when solving $x^2 + 2x + 2 = 0$ earlier we found that $x = \frac{-2 \pm \sqrt{-4}}{2}$

i.e.
$$x = \frac{-2+2i}{2}$$
 or $x = \frac{-2-2i}{2}$
i.e. $x = -1+i$ or $-1-i$

In general mathematical operations for complex numbers are as for real numbers.

e.g.
$$(1+2i) + (3+4i) = 4 + 6i$$

 $(7-2i) - (5+4i) = 2 - 6i$
 $(2+3i)(3+4i) = 6 + 17i + 12i^2 = -6 + 17i$

In fact as we shall see later the set of real numbers is a subset of the set of complex numbers.

Exercise 8.1

1. Express in terms of *i*

a)
$$\sqrt{-25}$$
 b) $\sqrt{-16}$ c) $\sqrt{-4} + \sqrt{-9}$ d) $\sqrt{-36}\sqrt{-4}$

- 2. Write in form of a + bia) (2 + 3i) + (4 + 5i) b) (1 + 2i)(1 + 3i) c) $(1 + i)^2$ d) (1 + i)(1 - i)
- 3. Simplify
 a) i¹⁴ b)i⁵⁵ c) i⁷²
- 4. Solve for z where z is a complex number $z^2 + 8z + 20 = 0$
- 5. Solve for z.

$$3z^2 + z + 1 = 0$$

- 6. Simplify $(1 + i)^6$
- 7. Solve for z. $z^3 - z^2 + z - 1 = 0$
- 8. Solve for z. $z^{3} - z^{2} + 4z = 4$

Exercise 8.1 Answers

1. a)
$$5i$$
 b) $4i$ c) $5i$ d) -12
2. a) $6 + 8i$ b) $-5 + 5i$ c) $2i$ d) 2
3. a) -1 b) $-i$ c) 1
4. $-4 + 2i$, $-4 - 2i$
5. $\frac{-1 + \sqrt{11}i}{6}$ or $\frac{-1 - \sqrt{11}i}{6}$
6. $-8i$
7. 1, *i*, $-i$
8. 1, $2i$, $-2i$

Standard Form of a Complex Number

When a complex number is written in the form a + bi this is called **<u>STANDARD FORM</u>** and it helps to represent the complex number on a diagram called an **<u>ARGAND</u>**

<u>DIAGRAM</u> as shown below.

a + bi is represented by a dot at the position (a,b) as we understand from elementary co-ordinate geometry

Note how (say) the number 2 can be thought of as 2 + 0i and represented by a dot at (2,0) establishing the fact that the set of real numbers is a subset of the set of Complex Numbers.

To write
$$\frac{2+3i}{1+i}$$
 in standard form.
 $\frac{2+3i}{1+i} = \frac{(2+3i)}{(1+i)} \frac{(1-i)}{(1-i)} = \frac{2+i-3i^2}{1-i^2} = \frac{5+i}{2} = \frac{5}{2} + \frac{1}{2}i$
i.e. $\frac{2+3i}{1+i}$ can be presented by a dot at $(\frac{5}{2}, \frac{1}{2})$.

Note that a - bi is called the **<u>CONJUGATE</u>** of a + bi

e.g. 2 + 3i and 2 - 3i are conjugates of each other.

Complex numbers are often represented by the letter z. The conjugate of z is written \overline{z} . From the Quadratic Formula it is clear that for (say) $x^2 - 4x + 13 = 0$

$$x = \frac{4 + \sqrt{-36}}{2} \text{ or } \frac{4 - \sqrt{-36}}{2}$$

= 2 + 3i or 2 - 3i

From this it is easy to deduce for a quadratic equation with real co-efficients that if a complex number is a root then so is its conjugate.

In fact this is true for <u>any</u> polynomial equation with real co-efficients. Example

Given 1 + i is a root of $x^3 - 26x^2 + 50x - 24 = 0$, find its three roots. Solution: Since 1 + i is a root then 1 - i is a root. i.e. $[x - (1 + i)] [x - (1 - i)] [x - other root] = x^3 - 26x^2 + 50x - 24$ By equating constant terms on both sides of the equation we can see that (1 + i)(1 - i)(other root) = 24i.e. other root = 12 \therefore roots are 1 + i, 1 - i and 12.

Note also that a polynomial equation with real co-efficients whose maximum power is ODD must always have a REAL root since complex roots of such an equation always occur in pairs of conjugates. Note how this last concepts is confirmed by the fact for example that a cubic equation can be essentially presented by a graph such as that shown below which must have an x-intercept.

Furthermore two complex numbers can only be equal if their real parts and their *i* parts are equal separately.

For example if a + 3i = 5 - ciThen a = 5 and c = -3.

- 1. Show that $x^2 + 2x + 3 = 0$ has no solutions in real numbers.
- 2. Solve $x^2 + x + 1 = 0$ where x can be a complex number.
- 3. Evaluate a) $\sqrt{-9}$ b) $\sqrt{-16}$ c) $\sqrt{-9}\sqrt{-16}$ d) i^4 e) i^8 f) i^{18}
- 4. Simplify (1 + i)(1 i)
- 5. Simplify $(1 + i)^8$
- 6. Write $\frac{1}{1+i}$ in the form a + bi
- 7. Simplify (2+3i) + (3-4i)
- 8. Express $\sqrt{-36} + \sqrt{-25} + \sqrt{-49}$ as a complex number
- 9. Evaluate $\frac{1+i}{1-i}$ and write its value in the form a + bi
- 10. Find all <u>four</u> roots of the equation $x^4 = 16$
- 11. Is it true that $\sqrt{a}\sqrt{b}$ equals \sqrt{ab} for all numbers a and b? Does it make any difference if a and/or b is a negative number?
- 12. Solve $z^2 2z + 2 = 0$ where z is a complex number.
- 13. Solve $z^3 9z^2 + 26z 24 = 0$ where z is a complex number.
- 14. If $(a + bi)^2 = -5 12i$ find a and b.
- 15. Simplify a) $\frac{1+i}{1-i}$ b) $\frac{2}{1-i} + \frac{2}{1+i}$ c) $\frac{1-i}{1+i} + \frac{1+i}{1-i}$
- 16. 1 + i is a root of the equation $z^3 26z^2 + 50z = 48$ (fact). Find the <u>real</u> roots of this equation.
- 17. Given that 2 + i is a root of $z^4 6z^2 + 25 = 0$ solve the equation completely.
- 18. If z is a complex number and (z + 1)(2 i) = 3 4i find z in standard form.
- 19. Solve for x and y:

$$-4 + (x + y)i = 2x - 5y + 5i$$

- 20. 1 + i is a root of $z^3 126z^2 + 250z 248 = 0$ (Fact). Find the real root.
- 21. Show that x i is a factor of $x^3 + hx^2 + x + h$ regardless of the value of h.

Exercise 8.2 Answers

2. $x = \frac{-1 + \sqrt{3}i}{2}$ or $\frac{-1 - \sqrt{3}i}{2}$ 3. a) 3i b) 4i c) -12 d) 1 e) 1 f) -1 4. 2 5. 16 6. $\frac{1}{2} - \frac{1}{2}i$ 7. 5 - i8. 18*i* 9. i 10. 2, -2*i*, 2*i*, -2 11. No. 12. z = 1 + i or 1 - i13. 2, 3, 4 14. a = 2, b = -3 or a = -2, b = +315. a) *i* b) 2 c) 0 16. 24 17. z = 2 + i or 2 - i or -2 + i or -2 - i18. 1 - i19. x = 3, y = 220. Other root is +124

Argand Diagram

As has been proven, complex numbers cannot be represented on a number line and are often represented on an Argand Diagram as shown below.

|z| is the magnitude or modulus of z and means the distance of z from the origin on the Argand Diagram. It therefore follows that |z| is a real number since it represents a distance. For example $|2 + 3i| = \sqrt{13}$ which is similar to saying $|(\overrightarrow{2,3})| = \sqrt{13}$ The set represented by the following $\{z : |z| = 5\}$ is therefore a circle since the set contains those complex numbers on the Argand Digram which are 5 units from the origin. For example 4 + 3i is in the set.

Exercise 8.3

Argand Diagram

- 1. Solve $z^4 = 1$ where z is a complex number. Graph the four roots on an Argand Diagram.
- 2. What is the distance between 2 + 3i and 5 + 7i on the Argand Diagram?
- Solve z³ = 1 where z is a complex number. Graph the three roots on a Argand Diagram.
- 4. Using questions 1 and 3 as hints try to guess the roots of $z^8 = 1$. Check by multiplication to see if your guesses are correct.
- 5. Find a) |4-3i| b) |4+3i| c) |3-4i| d) |3+4i| e) |1+i| f) |1-i|
- 6. Try to find a complex number z, other than 13 such that |z| = 13.
- 7. Graph on an Argand Diagram the set $\{z \in C, |z| = 5\}$
- 8. Graph on an Argand Diagram the set $\{z \in C, |z| = 4\}$
- 9. Graph on an Argand Diagram the set $\{z \in C, |z-1| = 4\}$
- 10. Graph on an Argand Diagram the set $\{z \in C, |z i| = 4\}$
- 11. Graph on an Argand Diagram the set $\{z \in C, |z-1| = z+3\}$
- 12. If $|z| = \sqrt{13}$ and the real part of z is 2 write down z in the form of a + bi.
- 13. Convince yourself that if a + bi = 3 + 4i then a = 3 and b = 4 is the only possible solution. Use this fact to express $\sqrt{-7 + 24i}$ in the form a + bi. Hint let $\sqrt{-7 + 24i}$ be a + bi and square both sides of the equation.

14. $\{z : |z - i| = 2\}$ represents the same circle as $\{z : |z + 3i| = m|z|\}$ Find the values of m.

Exercise 8.3 Answers

1. 1, -1, *i*, -*i* 2. 5 3. 1,
$$\frac{-1-\sqrt{3i}}{2}$$
, $\frac{-1+\sqrt{3i}}{2}$
4. 1, -1, *i*, -*i*, $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$, $-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, $-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$
5. a) 5 b) 5 c) 5 d) 5 e) $\sqrt{2}$ f) $\sqrt{2}$ 6. 5 + 12*i*
12. 2 + 3*i* 13. 3 + 4*i* 14. m = 2

Polar Form of a Complex Number

A complex number may be represented on the Argand Diagram not only in the standard form of a + bi but also as $r(\cos \theta + i\sin \theta)$ where r represents the distance of the complex number from the origin and θ is the angle which the line from the origin to the complex number makes with the positive real axis. θ is sometimes called the argument.

Argand Diagram

 $r(\cos \theta + i\sin \theta)$ is often abbreviated to rcis θ (especially in North America but less so elsewhere).

Note that r is always positive and θ is the angle in standard position.

When two complex numbers are multiplied the result yields a complex number whose magnitude is the <u>**PRODUCT**</u> of the <u>**MAGNITUDES**</u> of the two original complex numbers and whose angle made with the positive real axis is the <u>**ADDITION**</u> of the two angles of the original complex numbers.

i.e $r(\cos \theta + i\sin \theta)$ times $s(\cos \alpha + i\sin \alpha)$ = $rs(\cos(\theta + \alpha) + i\sin(\theta + \alpha))$

Example
$$2(\cos 30^{\circ} + i\sin 30^{\circ})$$
 times $3(\cos 60^{\circ} + i\sin 60^{\circ})$
= $6(\cos 30^{\circ}\cos 60^{\circ} + \cos 30^{\circ}i\sin 60^{\circ} + i\sin 30^{\circ}\cos 60^{\circ} + i^{2}\sin 30\sin 60^{\circ})$
= $6(\cos 30^{\circ}\cos 60^{\circ} - \sin 30^{\circ}\sin 60^{\circ} + i(\sin 60^{\circ}\cos 30^{\circ} + \cos 60^{\circ}\sin 30^{\circ}))$
= $6(\cos (30^{\circ} + 60^{\circ}) + i\sin (30^{\circ} + 60^{\circ}))$
= $6(0 + i)$
= $6i$

As an example $2(\cos 20^\circ + i\sin 20^\circ)$ times $5(\cos 70^\circ + i\sin 70^\circ)$ = $10(\cos 90^\circ + i\sin 90^\circ)$ = 10i

It follow as a natural consequence that when dividing complex numbers we divide the magnitudes and subtract the angles.

Example

$$\frac{6(\cos 70^\circ + i \sin 70^\circ)}{2(\cos 30^\circ + i \sin 30^\circ)} = 3(\cos 40^\circ + i \sin 40^\circ)$$

de Moivre's Theorem

A most important theorem in complex numbers is de Moivre's Theorem which states that

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Let's see a simple example.

$$[2(\cos 30^\circ + i\sin 30^\circ)]^3 = 8(\cos 90^\circ + i\sin 90^\circ) = 8i$$

It is left as an exercise for the student to see that $(\sqrt{3} + i)^3 = 8i$ by multiplication.

In fact de Moivre's Theorem is true for <u>ANY</u> value of n (positive, negative, fraction or otherwise). e.g. $[4(\cos 60^\circ + i \sin 60^\circ)]^{\frac{1}{2}} = 2(\cos 30^\circ + i \sin 30^\circ)$

Example

Roots of Unity

To solve
$$z^6 = 1$$

Let $z = \cos \theta + i \sin \theta = \sin \theta$
Then $z^6 = \cos 6 \theta + i \sin 6 \theta = \sin 6 \theta$
 $\therefore \cos 6 \theta + i \sin 6 \theta = 1 = \sin 0 \text{ or } \sin 360^\circ \text{ or } \sin 720^\circ \dots$
 $\therefore 6 \theta = 0^\circ \text{ or } 360^\circ \text{ or } 720^\circ \text{ or } 1080^\circ \text{ or } 1440^\circ \text{ or } 1800^\circ$.
 $\therefore \theta = 0^\circ, 60^\circ, 120^\circ, 180^\circ, 240^\circ \text{ or } 300^\circ$
 $\therefore z = \operatorname{cis0^\circ} \operatorname{or } \operatorname{cis60^\circ} \text{ or } \operatorname{cis120^\circ} \text{ or } \operatorname{cis240^\circ} \text{ or } \operatorname{cis300^\circ}$
 $\therefore z = 1 \text{ or } \frac{1}{2} + \frac{\sqrt{3}}{2}i \text{ or } -\frac{1}{2} + \frac{\sqrt{3}}{2}i \text{ or } -1, \text{ or } -\frac{1}{2} - \frac{\sqrt{3}}{2}i \text{ or } \frac{1}{2} - \frac{\sqrt{3}}{2}i$

Exercise 8.4

- 1. Express 1 + i in polar form
- 2. Express $2(\cos 60^\circ + i \sin 60^\circ)$ in standard form.
- 3. Express the following in polar form.

a)
$$\frac{\sqrt{3}}{2} + \frac{1}{2}i$$
 b) $2 + 2i$ c) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

- 4. Express the following in standard form.
 a) 4(cos30° + isin30°)
 b) 6cis120°
 c)2cis90°
 d) cis270°
- 5. Express $cis30^{\circ} \cdot cis60^{\circ}$ in simple form.
- 6. Write $\operatorname{cis} \theta \cdot \operatorname{cis} \alpha$ in polar form.
- 7. Express $(1 + i)^2$ in polar form.
- 8. Express $(1 + i)^4$ in polar form.
- 9. Express $(1 + i)^{20}$ in polar form.

10. If
$$z = 2cis70^\circ$$
 what is a) $|z|$ b) z c) $|z|$?

11. Evaluate $(\frac{\sqrt{3}}{2} + \frac{1}{2}i)(\frac{1}{2} + \frac{\sqrt{3}}{2}i)$ in your head.

Exercise 8.4 (cont'd)

- 12. Evaluate $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^{32}$ in your head
- 13. Write $2\operatorname{cis}70^\circ \cdot 3\operatorname{cis}(-40^\circ)$ in standard form.
- 14. Multiplying a complex number by *i* in the complex plane is equivalent to a rotation of θ° . State the value of θ .
- 15. Using polar form methods, write $i^{\frac{1}{3}}$ in standard form.
- 16. Express $(1 i)^7$ in standard form
- 17. Solve $z^4 = -8 8\sqrt{3}i$ expressing the roots in the form a + bi
- 18. Express $-2\sqrt{3} + 2i$ in polar form
- 19. Solve $z^5 = 1$ using polar form methods i.e. de Moivre's Theorem. Write the roots in polar form.
- 20. Solve $z^3 = i$. Write the three roots in standard form.
- 21. Simplify a) $\frac{12 \text{cis}75^{\circ}}{3 \text{cis}15^{\circ}}$ b) $\frac{18 \text{cis}30^{\circ}}{3 \text{cis}(-30)^{\circ}}$

Exercise 8.4 Answers

1. $\sqrt{2} \operatorname{cis45^{\circ}}$ 2. $1 + \sqrt{3}i$ 3. a) $\operatorname{cis30^{\circ}}$ b) $2\sqrt{2} \operatorname{cis45^{\circ}}$ c) $\operatorname{cis120^{\circ}}$ 4. a) $2\sqrt{3} + 2i$ b) $-3 + 3\sqrt{3}i$ c) 2i d) -i 5. i 6. $\operatorname{cis}(\theta + \alpha)$ 7. $2\operatorname{cis90^{\circ}}$ 8. $4\operatorname{cis180^{\circ}}$ 9. $1024\operatorname{cis180^{\circ}}$ 10. a) 2 b) $2\operatorname{cis}(-70^{\circ})$ c) 2 11. i 12. $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ 13. $3\sqrt{3} + 3i$ 14. 90° 15. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ 16. 8 + 8i 17. $1 + \sqrt{3}i$ 18. $4\operatorname{cis150^{\circ}}$ 19. 1 or $\operatorname{cis72^{\circ}}$ or $\operatorname{cis144^{\circ}}$ or $\operatorname{cis216^{\circ}}$ or $\operatorname{cis288^{\circ}}$ 20. $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ or $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ or -i21. a) $4\operatorname{cis60^{\circ}}$ b) $6\operatorname{cis60^{\circ}}$

- 1. Graph on an Argand Diagram the set $\{z \in C, 1 \le |z| \le 2\}$
- 2. Graph on an Argand Diagram the set $\{z \in C, z + \overline{z} = 2\}$
- 3. Solve $z^3 (3+i)z + 2 + i = 0$
- 4. Solve for x and y

$$(3-2i)(x+yi) = 2(x-2yi) + 2i - 1$$

- 5. Find a complex number z such that $z = (\overline{z})^2$
- 6. Evaluate $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^{18}$ 7. Simplify $\frac{8 \text{cis} 140^\circ}{2 \text{cis} 50^\circ}$
- 8. Solve for z.

$$z^4 = -4$$

- 9. Evaluate $|i^{101} 1|$
- 10. Solve completely $z^3 2z = 4$ where $z \in$ Complex Numbers.
- 11. Does a quintic polynomial equation with real co-efficients always have a <u>real</u> root?
- 12. Solve completely $z^4 3z^3 6z^2 + 18z + 20 = 0$ where $z \in Complex$ Numbers
- 13. a) Draw the set $\{z : |z-1| + |z-5| = 8\}$ on an Argand Diagram
- 14. b) Draw the set $\{z : |z-1| = |z-i|\}$ on an Argand Diagram
- 15. Solve the following equation where z is a complex number.

$$z^3 = 2 - 2i$$

16. Using de Moivre's Theorem prove that

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

17. Name the minimum positive integer n so that

$$\left(\frac{3}{7} + \frac{3}{7}i\right)^n$$
 is a real number.

3.
$$1, 2 + i$$

4. $x = -1, y = 0$
5. $cis120^{\circ}$
6. -1
7. $4i$
8. $1 + i, 1 - i, -1 + i, -1 - i$
9. $\sqrt{2}$
10. $2, -1 + i, -1 - i$
11. Yes
12. $-1, -2, 3 + i, 3 - i$
13. a)

14. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ 15. $\sqrt{2}cis105^{\circ}, \sqrt{2}cis225^{\circ}, \sqrt{2}cis340^{\circ}$ 17. n = 4