CHAPTER REVIEW EXERCISE

1. True or False?

i)
$$(|\mathbf{a}| |\mathbf{b}|) |\mathbf{c}| = |\mathbf{a}| (|\mathbf{b}| |\mathbf{c}|)$$

ii) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} - \mathbf{b}| \Rightarrow (\mathbf{a} \text{ or } \mathbf{b} = \mathbf{0} \text{ or } \mathbf{a} \text{ is perpendicular to } \mathbf{b})$
iii) $|\mathbf{a} + \mathbf{b}| \ge |\mathbf{a} + \mathbf{c}| \Rightarrow |\mathbf{b}| \ge |\mathbf{c}|$
iv) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} + \mathbf{c}| \Rightarrow |\mathbf{b}| = |\mathbf{c}|$
v) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a} + \mathbf{c}| \Rightarrow |\mathbf{b}| = |\mathbf{c}|$
vi) $\frac{1}{|\mathbf{a}|} \mathbf{a} = \frac{1}{|\mathbf{b}|} \mathbf{b} \Rightarrow \mathbf{a} = \mathbf{b}$
vii) $\mathbf{a} = \mathbf{m} \mathbf{b} \Rightarrow \mathbf{a}$ and \mathbf{b} are parallel
viii) $\mathbf{r} (\mathbf{a} + \mathbf{b}) = \mathbf{r} \mathbf{a} + \mathbf{r} \mathbf{b}$
ix) $(\mathbf{r} + \mathbf{s}) \mathbf{a} = \mathbf{r} \mathbf{a} + \mathbf{s} \mathbf{a}$
x) $\mathbf{AB} = \mathbf{DC} \Rightarrow \mathbf{BC} = \mathbf{AD}$
2. $\mathbf{A} = \begin{bmatrix} \mathbf{A} \\ \mathbf{ABCD} \end{bmatrix} \mathbf{b} = \mathbf{a} = \mathbf{a} + \mathbf{b} \\ \mathbf{ABCD} = \mathbf{a} = \mathbf{a} = \mathbf{a} + \mathbf{b} \\ \mathbf{ABCD} = \mathbf{a} = \mathbf{a} = \mathbf{a} = \mathbf{a} + \mathbf{b} \\ \mathbf{ABCD} = \mathbf{a} = \mathbf{a} = \mathbf{a} = \mathbf{b} \\ \mathbf{ABCD} = \mathbf{a} = \mathbf{b} \\ \mathbf{ABCD} = \mathbf{b} \\ \mathbf{ABCD} = \mathbf{b} = \mathbf{b} \\ \mathbf{ABCD} = \mathbf{b} = \mathbf{b} \\ \mathbf{$

3. $\frac{1}{3}$ **OP** = m **OR** + $\frac{5}{6}$ **OQ**. Find m so that P, Q, R, are collinear. Which point is between the other two and into what ratio does it divide the line segment?

ABCD is a rectangle. G divides AB in ratio $\frac{2}{5} : \frac{3}{5}$ E divides AD in ratio $\frac{2}{3} : \frac{1}{3}$

In triangle ABC, D and E are on AC and AB respectively so that BD and CE intersect at F.

EF:FC =
$$\frac{1}{3}:\frac{2}{3}$$

DF: FB = $\frac{2}{5}:\frac{3}{5}$

Find i) AE: EB and ii) AD:DC

6. If $\mathbf{PQ} = \frac{3}{5}\mathbf{PR} + \frac{2}{5}\mathbf{QR}$ find ratio of PQ:QR. Are P, Q, R necessarily collinear?

- Let a and b be two vectors represented in a clockwise fashion on two adjacent sides of a regular 12-gon. Express the next consecutive clockwise side as a vector in terms of a and b.
- 8. Prove $| \mathbf{a} + \mathbf{b} |^2 + | \mathbf{a} \mathbf{b} |^2 = 2 (|\mathbf{a}|^2 + |\mathbf{b}|^2)$ Hint: Use diagram

9. Show that if $(\mathbf{a} + \mathbf{b})$ is perpendicular to $(\mathbf{a} - \mathbf{b})$ then $|\mathbf{a}| = |\mathbf{b}|$

- 10. P, Q, R, S are centroids of faces ABC, BCD, ACD, ABD respectively of tetrahedron ABCD. Prove DP, AQ, BR, CS intersect at a point X such that DX:XP = AX:XQ = BX:XR = CX:XS = 3/4 :1/4
- 11. Draw a picture where $|\mathbf{a}| = |\mathbf{b}|$ and $|\mathbf{a} + \mathbf{b}| = |\mathbf{a}|$
- 12. P, Q, R, S are centroids of triangles ABC, ABD, DEF and CEF respectively. Prove PQRS is a parallelogram.

(Hint:
$$\mathbf{OP} = \frac{1}{3} (\mathbf{OA} + \mathbf{OB} + \mathbf{OC})$$

- 13. Prove, by vector methods, that the median of a trapezoid is parallel to the bases and equal in length to the average of the lengths of the bases.
- 14. Given ABCD is a regular tetrahedron with E and F as mid-points of AD and BC respectively, prove that EF is perpendicular to BC and EF is perpendicular to AD.
- 15. Prove that if AM, BN and CP are medians of triangle ABC then AM+BN+CP =0.

Chapter 1 Review Exercise

1. i) True ii) True iii) False iv) False v) False vi)False vii) True viii) True ix) True x) True 2. i) $\mathbf{a} + \mathbf{b}$ ii) $\mathbf{a} - \mathbf{b}$ iii) $\mathbf{b} - \mathbf{a}$ iv) $\frac{1}{2} \mathbf{a} - \frac{1}{2} \mathbf{b}$ v) $-\frac{1}{2} \mathbf{b}$ vi) $-\frac{1}{2} \mathbf{a}$ 3. m = -1/2. Q is between R and P. 2/5: 3/5 4. i) $\frac{2}{11} : \frac{9}{11}$ and ii) $\frac{6}{11} : \frac{5}{11}$ 5. i) $\frac{3}{5} : \frac{2}{5}$ ii) $\frac{5}{9} : \frac{4}{9}$ 6. $\frac{5}{7} : \frac{2}{7}$ Yes. 8. $\sqrt{3} \mathbf{b} - \mathbf{a}$

PRACTICE TEST 1 on Chapter 1

- 1. True or False?
 - a) OA = OB + BC + CA for all points O, A, B, C
 - b) (OA = OB + BC + CA) implies A, B and C are collinear
 - c) $\left| \vec{a} + \vec{b} \right| \ge \left| \vec{a} \right|$
 - d) If $\vec{a} = \vec{b}$ and $|\vec{c}| = |\vec{d}|$ then $|\vec{a} + \vec{c}| = |\vec{b} + \vec{d}|$
 - e) Any three points are coplanar?
 - f) $\left|\vec{a}\right| + \left|\vec{b} + \vec{c}\right| = \left|\vec{c}\right|$
- 2. Draw a picture illustrating the FALSITY of the implication

$$\left| \vec{a} + \vec{b} \right| \ge \left| \vec{a} \right|$$
 implies $\left| \vec{a} - \vec{b} \right| \le \left| \vec{a} \right|$

3. In the diagram below $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, AC : CD = $\frac{3}{4} : \frac{1}{4}$ and OD : DC = $\frac{2}{5} : \frac{3}{5}$. Express \overrightarrow{AD} in terms of \vec{a} and \vec{b} .

4. In the diagram below ABCD is a parallelogram. M and N are midpoints of BC and DC respectively. Let $\overrightarrow{AN} = \vec{a}$ and let $\overrightarrow{AM} = \vec{b}$. Express a) \overrightarrow{AB} in terms of \vec{a} and \vec{b} (b) \overrightarrow{AD} in terms of \vec{a} and \vec{b} .

- 5. The figure shown is a cube where $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ and $\overrightarrow{OC} = \vec{c}$.
 - a) Let N be the midpoint of AD (not drawn). Express \overrightarrow{ON} in terms of $\vec{a}, \vec{b}, \vec{c}$.
 - b) Let M be the midpoint of EC. Express \overrightarrow{OM} in terms of $\vec{a}, \vec{b}, \vec{c}$.
 - c) Do M and N have to be the same point?

Practice Test 1 on Chapter 1 Answers

1.a) T b) F c) F d) F e) T f) F
2. ---- 3.
$$-\frac{9}{10}\vec{a} + \frac{3}{10}\vec{b}$$
 4. a) $\vec{AB} = \frac{4}{3}\vec{b} - \frac{2}{3}\vec{a}$ (b) $\vec{AD} = \frac{4}{3}\vec{a} - \frac{2}{3}\vec{b}$
5. a) $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c}$ (b) $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c}$ (c) Yes

1. True or false? No explanation required.

a)
$$|\vec{a} + \vec{b}| \ge |\vec{a}|$$

b) $|\vec{a} + \vec{b}| = |\vec{a} + \vec{c}| \Rightarrow |\vec{b}| = |\vec{c}|$
c) $\vec{a} + \vec{b} = \vec{a} + \vec{c} \Rightarrow \vec{b} = \vec{c}$
d) Any three points are coplanar
e) Any three vectors are coplanar
f) $\overrightarrow{AB} = \overrightarrow{AC} + 2\overrightarrow{CD} \Rightarrow A$, B, C and D are coplanar
g) $\overrightarrow{RF} = \overrightarrow{SW} \Rightarrow \overrightarrow{RS} = \overrightarrow{FW}$
h) $m\vec{a} + n\vec{a} = (m+n)\vec{a}$
i) If $|\vec{a}| = |\vec{b}|$ and $|\vec{c}| = |\vec{d}|$ then $|\vec{a} + \vec{c}| = |\vec{b} + \vec{d}|$
j) $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{DB}$ implies D and C are the same point

- 2. Draw a large, clear, neat diagram in which $|\vec{a}| = 2|\vec{b}|$ and $|\vec{a}| = |\vec{a} + \vec{b}|$. You need not explain, but please show the directions of the vectors.
- 3. In the diagram below, ABCD is a parallelogram, P is the mid-point of BC and Q is the mid-point of DC. Express \overrightarrow{BD} in terms of \overrightarrow{AP} and \overrightarrow{AQ} only.

4. ABCDEF is a regular hexagon and O is the centre of the hexagon. Let $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$. Express \overrightarrow{BF} in terms of \vec{a} and \vec{b} .

- 5. In the diagram below, let $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$. M is the mid-point of OB and N is the mid-point of AM.
 - a. Express \overrightarrow{ON} in terms of \vec{a} and \vec{b} .
 - b. (Bonus) If ON is extended to meet AB at point H, in what ratio would H divide AB? That is, determine AH : HB. What is ON : NH?

- 6. OADCFEGB is a cube (all sides equal). Let $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$ and let $\overrightarrow{OC} = \vec{c}$. Let H be the mid-point of GC (not shown).
 - a. Express \overrightarrow{HC} in terms of $\vec{a}, \vec{b}, \vec{c}$.
 - b. (Bonus) Find $\angle OHA$ (you will need a calculator)

Practice Test 2 on Chapter 1 Answers

1. a) F b) F c) T d) T e) F f) T g) T h) T i) F j) T k) F

- 2. Answers may vary.
- 3. $2\overrightarrow{AQ} 2\overrightarrow{AP}$ 4. $\overrightarrow{a} - 2\overrightarrow{b}$ 5. a) $\frac{1}{2}\overrightarrow{a} + \frac{1}{4}\overrightarrow{b}$ 6. a) $-\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}$ b) 70.52°

Practice Test 3 on Chapter 1

- 1. True or False (no explanation required)
 - a) $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ b) $|\overrightarrow{OA}| + |\overrightarrow{AB}| = |\overrightarrow{OB}|$ c) $\overrightarrow{AB} = \overrightarrow{MAC}$ implies that A, B and C are collinear d) $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ implies that O, A, B, C are coplanar e) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD}$ implies that O, A, B, C, D are coplanar f) $(|\overrightarrow{a}| \ge |\overrightarrow{b}| \quad and \quad |\overrightarrow{b}| \ge |\overrightarrow{c}|)$ together implies that $|\overrightarrow{a} + \overrightarrow{b}| \ge |\overrightarrow{a} + \overrightarrow{c}|$ g) $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ h) $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{c}$ implies that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are parallel vectors i) $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{c}$ implies that $|\overrightarrow{a}| + |2\overrightarrow{b}| = |\overrightarrow{c}|$ j) $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{c}$ implies that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are coplanar k) $\overrightarrow{OP} = 11\overrightarrow{OQ} - \overrightarrow{OR}$ implies P, Q, R are collinear l) $|\overrightarrow{a}| + |\overrightarrow{b}| \ge |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$ m) $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| \ge |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$ n) If $|\overrightarrow{a}| = 4$ and $|\overrightarrow{b}| = 7$ then it is possible for $|\overrightarrow{a} - \overrightarrow{b}| = 2$.

2. In the diagram below AE : EC = $\frac{1}{3}:\frac{2}{3}$ and AD : DB = $\frac{1}{3}:\frac{2}{3}$.

- a) Find the ratio BF : FE
- b) If AF were extended to point M on BC would M necessarily be the midpoint of BC? A little explanation please.
- c) Find the location of point N on BC so that \overrightarrow{FN} is parallel to \overrightarrow{AB} .
- 3. In the diagram below AOCEFGBD is a cube. P is the mid-point of GB. Let $\overrightarrow{OA} = \vec{a}$ and let $\overrightarrow{OB} = \vec{b}$ and let $\overrightarrow{OC} = \vec{c}$. Express \overrightarrow{AD} in terms of $\vec{a}, \vec{b}, \vec{c}$.

- 4. Draw a NEAT, LARGE, CLEAR diagram in which $|\vec{a} + \vec{b}| = |\vec{a} + \vec{c}|$ and $|\vec{b} + \vec{c}| = |\vec{a}|$. An approximate figure will do.
- 5. In the diagram below, ABCD is a quadrilateral in which AC intersects BD at M so that M is the mid-point of BD and such that AM : $MC = \frac{2}{3} : \frac{1}{3}$. Express \overrightarrow{BD} in terms of \vec{a} and \vec{b} .

6. G is the centroid of triangle ABC. Let $\overrightarrow{AB} = \overrightarrow{a}$ and let $\overrightarrow{AC} = \overrightarrow{b}$. Express $\overrightarrow{GA} + \overrightarrow{GB}$ in terms of \overrightarrow{a} and \overrightarrow{b} .

Practice Test 3 on Chapter 1 Answers

1. a) T b) F c) T d) T e) F f) F g) T h) F i) F j) T k) T l) T m) T n) T

2. a) $\frac{3}{4} : \frac{1}{4}$ b) Yes c) BN : NC = $\frac{1}{4} : \frac{3}{4}$ 3. $-2\vec{a} + 3\vec{b} + \vec{c}$ 4. -----5. $\overrightarrow{BC} = -\frac{1}{4}\vec{a} + \frac{3}{4}\vec{b}$ 6. $\frac{1}{3}\vec{a} - \frac{2}{3}\vec{b}$