CHAPTER REVIEW EXERCISE

1. True or False?
i) $\quad(|\mathbf{a}||\mathbf{b}|)|\mathbf{c}|=|\mathbf{a}|(|\mathbf{b}||\mathbf{c}|)$
ii) $\quad|\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}| \Rightarrow(\mathbf{a}$ or $\mathbf{b}=\mathbf{0}$ or \mathbf{a} is perpendicular to $\mathbf{b})$
iii) $\quad|\mathbf{a}+\mathbf{b}| \geq|\mathbf{a}+\mathbf{c}|=>|\mathbf{b}| \geq|\mathbf{c}|$
iv) $\quad|\mathbf{a}+\mathbf{b}|+|\mathbf{c}|=|\mathbf{a}|+|\mathbf{b}+\mathbf{c}|$
v) $\quad|\mathbf{a}+\mathbf{b}|=|\mathbf{a}+\mathbf{c}|=>|\mathbf{b}|=|\mathbf{c}|$
vi) $\quad \frac{1}{|\mathbf{a}|} \mathbf{a}=\frac{1}{|\mathbf{b}|} \mathbf{b} \rightarrow \mathbf{a}=\mathbf{b}$
vii) $\quad \mathbf{a}=\mathrm{mb}=>\mathbf{a}$ and \mathbf{b} are parallel
viii) $\quad r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+\mathrm{rb}$
ix) $\quad(r+s) \mathbf{a}=r \mathbf{a}+\mathrm{sa}$
x) $\quad \mathbf{A B}=\mathbf{D C}=>\mathbf{B C}=\mathbf{A D}$
2.

ABCD is a parallelogram.
F is the mid-point of DC.
Let $\mathbf{A D}=\mathbf{a}$ and $\mathbf{A B}=\mathbf{b}$

Express the following in terms of \mathbf{a} and \mathbf{b}
i) AC
ii) $\mathbf{B D}$
iii) DB
iv) $\mathbf{E D}$
v) FD
vi) $\mathbf{F E}$
3. $\frac{1}{3} \mathbf{O P}=\mathrm{m} \mathbf{O R}+\frac{5}{6} \mathbf{O Q}$. Find m so that $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, are collinear. Which point is between the other two and into what ratio does it divide the line segment?
4.

In triangle $A B C, D$ and E are on $A C$ and $A B$ respectively so that BD and CE intersect at F .
$\mathrm{EF}: \mathrm{FC}=\frac{1}{3}: \frac{2}{3}$
DF: $\mathrm{FB}=\frac{2}{5}: \frac{3}{5}$
Find i) AE: EB and ii) AD:DC
6. If $\mathbf{P Q}=\frac{3}{5} \mathbf{P R}+\frac{2}{5} \mathbf{Q R}$ find ratio of $\mathrm{PQ}: Q R$. Are $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ necessarily collinear?
7. Let \mathbf{a} and \mathbf{b} be two vectors represented in a clockwise fashion on two adjacent sides of a regular 12-gon. Express the next consecutive clockwise side as a vector in terms of \mathbf{a} and \mathbf{b}.
8. Prove $|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a}-\mathbf{b}|^{2}=2\left(|\mathbf{a}|^{2}+|\mathbf{b}|^{2}\right)$

Hint: Use diagram

9. Show that if $(\mathbf{a}+\mathbf{b})$ is perpendicular to $(\mathbf{a}-\mathbf{b})$ then $|\mathbf{a}|=|\mathbf{b}|$
10. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are centroids of faces $\mathrm{ABC}, \mathrm{BCD}, \mathrm{ACD}, \mathrm{ABD}$ respectively of tetrahedron ABCD . Prove $\mathrm{DP}, \mathrm{AQ}, \mathrm{BR}, \mathrm{CS}$ intersect at a point X such that $\mathrm{DX}: \mathrm{XP}=\mathrm{AX}: \mathrm{XQ}=\mathrm{BX}: \mathrm{XR}=\mathrm{CX}: \mathrm{XS}=3 / 4: 1 / 4$
11. Draw a picture where $|\mathbf{a}|=|\mathbf{b}|$ and $|\mathbf{a}+\mathbf{b}|=|\mathbf{a}|$
12. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are centroids of triangles $\mathrm{ABC}, \mathrm{ABD}, \mathrm{DEF}$ and CEF respectively. Prove PQRS is a parallelogram.
(Hint: $\mathbf{O P}=\frac{1}{3}(\mathbf{O A}+\mathbf{O B}+\mathbf{O C})$
13. Prove, by vector methods, that the median of a trapezoid is parallel to the bases and equal in length to the average of the lengths of the bases.
14. Given ABCD is a regular tetrahedron with E and F as mid-points of AD and BC respectively, prove that EF is perpendicular to BC and EF is perpendicular to AD .
15. Prove that if AM, BN and CP are medians of triangle ABC then $\mathbf{A M}+\mathbf{B N}+\mathbf{C P}=\mathbf{0}$.

Chapter 1 Review Exercise

1. i) True
ii) True
iii) False
iv) False
v) False
vi)False
vii) True
viii) True
ix) True
x) True
2. i) $\mathbf{a}+\mathbf{b}$
ii) $\mathbf{a}-\mathbf{b}$
iii) $\mathbf{b}-\mathbf{a}$
iv) $\frac{1}{2} \mathbf{a}-\frac{1}{2} \mathbf{b}$
v) $-\frac{1}{2} \mathbf{b}$
vi) $-\frac{1}{2} \mathbf{a}$
3. $m=-1 / 2 . Q$ is between R and P. 2/5:3/5
4. i) $\frac{2}{11}: \frac{9}{11} \quad$ and
ii) $\frac{6}{11}: \frac{5}{11}$
5. i) $\frac{3}{5}: \frac{2}{5}$
ii) $\frac{5}{9}: \frac{4}{9}$
$\begin{array}{lll}\text { 6. } \frac{5}{7}: \frac{2}{7} & \text { Yes. } & \text { 8. } \sqrt{3} \mathbf{b}-\mathbf{a}\end{array}$

PRACTICE TEST 1 on Chapter 1

1. True or False?
a) $\mathbf{O A}=\mathbf{O B}+\mathbf{B C}+\mathbf{C A}$ for all points $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$
b) $(\mathbf{O A}=\mathbf{O B}+\mathbf{B C}+\mathbf{C A})$ implies A, B and C are collinear
c) $|\vec{a}+\vec{b}| \geq|\vec{a}|$
d) If $\vec{a}=\vec{b}$ and $|\vec{c}|=|\vec{d}|$ then $|\vec{a}+\vec{c}|=|\vec{b}+\vec{d}|$
e) Any three points are coplanar?
f) $|\vec{a}|+|\vec{b}+\vec{c}|=|\vec{c}|$
2. Draw a picture illustrating the FALSITY of the implication

$$
|\vec{a}+\vec{b}| \geq|\vec{a}| \text { implies }|\vec{a}-\vec{b}| \leq|\vec{a}|
$$

3. In the diagram below $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \mathrm{AC}: \mathrm{CD}=\frac{3}{4}: \frac{1}{4}$ and $\mathrm{OD}: \mathrm{DC}=\frac{2}{5}: \frac{3}{5}$.

Express $\overrightarrow{A D}$ in terms of \vec{a} and \vec{b}.

4. In the diagram below ABCD is a parallelogram. M and N are midpoints of BC and DC respectively. Let $\overrightarrow{A N}=\vec{a}$ and let $\overrightarrow{A M}=\vec{b}$. Express a) $\overrightarrow{A B}$ in terms of \vec{a} and \vec{b} (b) $\overrightarrow{A D}$ in terms of \vec{a} and \vec{b}.

5. The figure shown is a cube where $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$.
a) Let N be the midpoint of AD (not drawn). Express $\overrightarrow{O N}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
b) Let M be the midpoint of EC. Express $\overrightarrow{O M}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
c) Do M and N have to be the same point?

Practice Test 1 on Chapter 1 Answers

1.a) T b) F
c) F
d) F
e) T
f) F
2. -----
3. $-\frac{9}{10} \vec{a}+\frac{3}{10} \vec{b}$
4. a) $\overrightarrow{A B}=\frac{4}{3} \vec{b}-\frac{2}{3} \vec{a}$
(b) $\overrightarrow{A D}=\frac{4}{3} \vec{a}-\frac{2}{3} \vec{b}$
5. a) $\frac{1}{2} \vec{a}+\frac{1}{2} \vec{b}+\frac{1}{2} \vec{c}$
(b) $\frac{1}{2} \vec{a}+\frac{1}{2} \vec{b}+\frac{1}{2} \vec{c}$
(c) Yes

Practice Test 2 on Chapter 1

1. True or false? No explanation required.
a) $|\vec{a}+\vec{b}| \geq|\vec{a}|$
b) $|\vec{a}+\vec{b}|=|\vec{a}+\vec{c}| \Rightarrow|\vec{b}|=|\vec{c}|$
c) $\vec{a}+\vec{b}=\vec{a}+\vec{c} \Rightarrow \vec{b}=\vec{c}$
d) Any three points are coplanar
e) Any three vectors are coplanar
f) $\overrightarrow{A B}=\overrightarrow{A C}+2 \overrightarrow{C D} \Rightarrow \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D are coplanar
g) $\overrightarrow{R F}=\overrightarrow{S W} \Rightarrow \overrightarrow{R S}=\overrightarrow{F W}$
h) $m \vec{a}+n \vec{a}=(m+n) \vec{a}$
i) If $|\vec{a}|=|\vec{b}|$ and $|\vec{c}|=|\vec{d}|$ then $|\vec{a}+\vec{c}|=|\vec{b}+\vec{d}|$
j) $\overrightarrow{A B}=\overrightarrow{A C}+\overrightarrow{D B}$ implies D and C are the same point
2. Draw a large, clear, neat diagram in which $|\vec{a}|=2|\vec{b}|$ and $|\vec{a}|=|\vec{a}+\vec{b}|$. You need not explain, but please show the directions of the vectors.
3. In the diagram below, ABCD is a parallelogram, P is the mid-point of BC and Q is the mid-point of DC. Express $\overrightarrow{B D}$ in terms of $\overrightarrow{A P}$ and $\overrightarrow{A Q}$ only.

4. ABCDEF is a regular hexagon and O is the centre of the hexagon. Let $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$. Express $\overrightarrow{B F}$ in terms of \vec{a} and \vec{b}.

5. In the diagram below, let $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b} . \mathrm{M}$ is the mid-point of OB and N is the mid-point of AM.
a. Express $\overrightarrow{O N}$ in terms of \vec{a} and \vec{b}.
b. (Bonus) If ON is extended to meet AB at point H , in what ratio would H divide AB ? That is, determine $\mathrm{AH}: \mathrm{HB}$. What is ON : NH?

6. OADCFEGB is a cube (all sides equal). Let $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$ and let $\overrightarrow{O C}=\vec{c}$. Let H be the mid-point of GC (not shown).
a. Express $\overrightarrow{H C}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
b. (Bonus) Find $\angle O H A$ (you will need a calculator)

Practice Test 2 on Chapter 1 Answers

1. a) F
b) F
c) T
d) T
e) F
f) T
g) T
h) T
i) F
j) $T \quad$ k) F
2. Answers may vary.
3. $2 \overrightarrow{A Q}-2 \overrightarrow{A P}$
4. $\vec{a}-2 \vec{b}$
5. a) $\frac{1}{2} \vec{a}+\frac{1}{4} \vec{b}$
6. a) $-\frac{1}{2} \vec{a}-\frac{1}{2} \vec{b}+\frac{1}{2} \vec{c}$
b) 70.52°

Practice Test 3 on Chapter 1

1. True or False (no explanation required)
a) $\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}$
b) $|\overrightarrow{O A}|+|\overrightarrow{A B}|=|\overrightarrow{O B}|$
c) $\overrightarrow{A B}=m \overrightarrow{A C}$ implies that A, B and C are collinear
d) $\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O C}$ implies that $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are coplanar
e) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}$ implies that $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar
f) $(|\vec{a}| \geq|\vec{b}|$ and $|\vec{b}| \geq|\vec{c}|)$ together implies that $|\vec{a}+\vec{b}| \geq|\vec{a}+\vec{c}|$
g) $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
h) $\vec{a}+2 \vec{b}=\vec{c}$ implies that $\vec{a}, \vec{b}, \vec{c}$ are parallel vectors
i) $\vec{a}+2 \vec{b}=\vec{c}$ implies that $|\vec{a}|+|2 \vec{b}|=|\vec{c}|$
j) $\vec{a}+2 \vec{b}=\vec{c}$ implies that $\vec{a}, \vec{b}, \vec{c}$ are coplanar
k) $5 \overrightarrow{O P}=11 \overrightarrow{O Q}-6 \overrightarrow{O R}$ implies $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear
1) $|\vec{a}|+|\vec{b}| \geq|\vec{a}+\vec{b}|$
m) $|\vec{a}|+|\vec{b}|+|\vec{c}| \geq|\vec{a}+\vec{b}+\vec{c}|$
n) If $|\vec{a}|=4$ and $|\vec{b}|=7$ then it is possible for $|\vec{a}-\vec{b}|=2$.
2. In the diagram below $\mathrm{AE}: \mathrm{EC}=\frac{1}{3}: \frac{2}{3}$ and $\mathrm{AD}: \mathrm{DB}=\frac{1}{3}: \frac{2}{3}$.

a) Find the ratio $\mathrm{BF}: \mathrm{FE}$
b) If AF were extended to point M on BC would M necessarily be the midpoint of BC ? A little explanation please.
c) Find the location of point N on BC so that $\overrightarrow{F N}$ is parallel to $\overrightarrow{A B}$.
3. In the diagram below AOCEFGBD is a cube. P is the mid-point of $G B$. Let $\overrightarrow{O A}=\vec{a}$ and let $\overrightarrow{O B}=\vec{b}$ and let $\overrightarrow{O C}=\vec{c}$. Express $\overrightarrow{A D}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

4. Draw a NEAT, LARGE, CLEAR diagram in which $|\vec{a}+\vec{b}|=|\vec{a}+\vec{c}|$ and $|\vec{b}+\vec{c}|=|\vec{a}|$. An approximate figure will do.
5. In the diagram below, ABCD is a quadrilateral in which AC intersects BD at M so that M is the mid-point of BD and such that $\mathrm{AM}: \mathrm{MC}=\frac{2}{3}: \frac{1}{3}$. Express $\overrightarrow{B D}$ in terms of \vec{a} and \vec{b}.

6. G is the centroid of triangle ABC . Let $\overrightarrow{A B}=\vec{a}$ and let $\overrightarrow{A C}=\vec{b}$. Express $\overrightarrow{G A}+\overrightarrow{G B}$ in terms of \vec{a} and \vec{b}.

Practice Test 3 on Chapter 1 Answers

1. a) T
b) F
c) T
d) T
e) F
f) F
g) T
h) F
i) F
j) T
k) T
1) T
m) T
n) T
2. a) $\frac{3}{4}: \frac{1}{4}$
b) Yes
c) $\mathrm{BN}: \mathrm{NC}=\frac{1}{4}: \frac{3}{4}$
3. $-2 \vec{a}+3 \vec{b}+\vec{c}$
4. ------
5. $\overrightarrow{B C}=-\frac{1}{4} \vec{a}+\frac{3}{4} \vec{b}$
6. $\frac{1}{3} \vec{a}-\frac{2}{3} \vec{b}$
