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Abstract

Riemannian manifolds with exceptional holonomy groups G2 and Spin(7) have en-
joyed a recent bout of popularity in the last few years, both in mathematics and in
physics. In physics, their popularity stems from the fact that G2-manifolds arise as
the natural space on which to compactify 11-dimensional M-theory. In this essay we
review Berger’s classification of the holonomy groups and the status of the exceptional
holonomy groups. We also review the basic algebraic and geometric properties of the
Lie group G2 and its relation to the octonion algebra. Finally, we highlight some of
the properties of 7-manifolds with G2 holonomy.
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1 Introduction

The classification of Riemannian holonomy groups (see Theorem 3 below) includes two
exceptional cases: that of G2 holonomy on a 7-dimensional manifold and Spin(7) holon-
omy on an 8-manifold. These holonomy groups are called the exceptional holonomy
groups. Although the list has been around for a long time, little was known about the
exceptional cases until quite recently. One of the basic difficulties is that there is no
basic existence theorem for the exceptional holonomy groups like Yau’s proof of the
Calabi conjecture for manifolds with SU(n) holonomy. So examples have to be con-
structed on a case by case basis, and these are not easy to come by. One should note
that even though existence has been proven there are still no known explicit examples
of metrics with G2 holonomy (or, for that matter, SU(n) holonomy) on a compact
manifold.

Physicists studying string theory have been extremely interested in manifolds of
special holonomy for the primary reason that they are natural spaces on which to
compactify the extra spatial dimensions present in those theories. In order to get
the correct low energy physics in four dimensions (namely N = 1 supersymmetry)
it is necessary that the manifold on which you compactify admit a nonzero parallel
(covariantly constant) spinor, which in turn implies that the manifold be Ricci-flat
(see Lemma 4). For 10-dimensional string theory the necessary space is a Calabi-Yau
3-fold (a 6-manifold with SU(3) holonomy), while for 11-dimensional supergravity or
M-theory the correct space turns out, as we shall see, to be a 7-manifold with G2

holonomy.
Given the importance of G2-manifolds in physics and their recent popularity in

mathematics we decided to review in this essay the basic concepts needed to understand
these ideas in greater detail. In section 2 we review the notion of holonomy groups
and present Berger’s classification theorem. In section 3 we discuss the definition and
some of the basic properties of the, perhaps unfamiliar, exceptional Lie group G2 and
discuss its relation to the octonion algebra. Finally, in section 4 we discuss manifolds
with G2 holonomy.

The standard reference for this material is the monograph by Joyce [1] although
the much briefer review [2] of the construction of compact G2 manifolds is also useful.
A good introduction to exceptional holonomy in string theory is Gubser [3]. Most of
the material on the octonions and the algebraic structure of G2 was taken from Baez
[4] and Harvey [5].

2 Holonomy Groups

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the Levi-Civita
connection on M . Let γ : [0, 1] → M be a piecewise smooth curve with γ(0) = x
and γ(1) = y. Parallel transport then defines an linear map Pγ : TxM → TyM . For
the Levi-Civita connection this map is actually an isometry as the metric is constant,
∇g = 0. If γ is a loop then parallel transport defines a self-isometry of TxM . The
set of all loops based at x then gives rise to a group of isometries of TxM called the
holonomy group based at x, denoted Holx(g). It is a subgroup of the group of all
isometries at x, which is isomorphic to O(n). On a connected manifold the holonomy

2



groups based at different points are conjugate subgroups of O(n):

Pγ Holx(g)P−1
γ = Holy(g) (1)

where γ is any path from x to y in M . This fact allows us to drop reference to the
base point and simply define the holonomy group Hol(g) of M as a subgroup of O(n)
defined up to conjugation.

Often one is interested only in the local (or restricted) holonomy group Hol0(g)
which is obtained by restricting the parallel transport to topologically trivial loops
(i.e. loops that can be contracted to a point). We state here, without proof, some
basic properties of holonomy groups:

Proposition 1. Let (M, g) be a connected Riemannian manifold of dimension n. Then

• Hol(g) is a subgroup of O(n); it is a subgroup of SO(n) iff M is orientable,

• Hol0(g) is a closed, connected Lie subgroup of SO(n),

• Hol0(g) is the identity component of Hol(g),

• There is a natural, surjective group homomorphism φ : π1(M) → Hol(g)/Hol0(g),

• Hol(g̃) ∼= Hol0(g) where (M̃, g̃) is the universal Riemannian cover of (M, g),

• Hol0(g) is trivial iff g is flat.

2.1 Classification Theorem

We know that the holonomy group of a Riemannian manifold is necessarily a subgroup
on O(n), but one might wonder which subgroups of O(n) actually occur. A complete
classification, at least for the simply connected case, was completed by Berger in 1955.
Before we get to that theorem, however, we need a few preliminaries.

Proposition 2. Let (M1 × M2, g1 × g2) be a Riemannian product manifold. Then
Hol(g1 × g2) = Hol(g1)×Hol(g2).

A Riemannian metric is said to be locally reducible if it is locally isometric to
a product metric, otherwise the metric is said to be irreducible. In classifying the
possible holonomy groups it makes sense to restrict oneself to the irreducible case, for
if g is locally reducible its holonomy will be a product of holonomy groups in lower
dimensions.

Cartan concerned himself with the problem of classifying the holonomy groups of
Riemannian manifolds M with ∇R = 0, called locally symmetric spaces. Locally
symmetric spaces turn out to be locally isometric to symmetric homogenous spaces
G/H with restricted holonomy Hol0 = H acting by the adjoint representation. By ap-
plying his classification of simple Lie groups, Cartan was able to classify the holonomy
groups of all irreducible, simply-connected, symmetric spaces. For the (long) list of the
possibilities we refer the reader to [6].

If M is not locally symmetric (∇R 6= 0) then the possible holonomy turns out to
be very restricted. The basic reason is that holonomy group determines the curvature
tensor R and by symmetries of that tensor most groups would actually force ∇R = 0.
The remaining possibilities are as follows:
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Theorem 3 (Berger). Let (M, g) be a simply-connected, irreducible, nonsymmetric
n-dimensional manifold. Then one of the following cases holds

(i) Hol(g) = SO(n),

(ii) n = 2m and Hol(g) = U(m),

(iii) n = 2m and Hol(g) = SU(m),

(iv) n = 4m and Hol(g) = Sp(m) Sp(1),

(v) n = 4m and Hol(g) = Sp(m),

(vi) n = 7 and Hol(g) = G2,

(vii) n = 8 and Hol(g) = Spin(7),

Note that if one wishes to relax the requirement that M be simply-connected then
the theorem still holds for the restricted holonomy group Hol0(g). In cases (ii)–(v) we
should really restrict m ≥ 2 to avoid redundancy. Cases (vi) and (vii) are exceptional in
this list and so the holonomy groups G2 and Spin(7) are referred to as the exceptional
holonomy groups. The groupG2 is a particular simply-connected, compact Lie group
that will be defined in §3.2.

At the time Berger constructed his list it was not known whether or not all of the
groups on the list actually appeared as holonomy groups of nonsymmetric manifolds.1

This question has now been answered in the affirmative. The two exceptional cases
held out until 1987 when Bryant [7] first proved their existence. In 1989, Bryant and
Salamon [8] found examples of complete metrics with with G2 and Spin(7) holonomy,
and Joyce constructed the first examples on compact manifolds in 1996 [9, 10, 1].

2.2 Parallel Spinors and Holonomy

Much of the interest in manifolds with special holonomy, especially in physics, stems
from the fact that they are precisely the manifolds which admit nonzero constant
spinors.

Let (M, g) be an oriented, Riemannian n-manifold. Then there is a principal sub-
bundle P →M of the frame bundle with fiber SO(n) called the oriented, orthonormal
frame bundle. As the structure group SO(n) is not simply-connected, one is concerned
with whether or not there exists a suitable “double-cover” of P with structure group
Spin(n) (the universal cover of SO(n)). Such a cover is called a spin structure on M .
If M admits a spin structure then it is said to be a spin manifold. The spinor repre-
sentation of Spin(n) then gives rise to an associated vector bundle S → M called the
spin bundle. Sections of the spin bundle are called spinors. Finally, the Levi-Civita
connection ∇ of g induces a natural connection on S, also denoted by ∇, called the spin
connection. The holonomy group associated to the spin connection will, in general, be
a subgroup of Spin(n) (rather than SO(n)). It may be isomorphic to to Hol(g) or it
may be a double cover.

Given a spin manifold M , a parallel spinor (or in the physics literature: a covari-
antly constant spinor) on M is a spinor ψ such that

∇ψ = 0 (2)

1Actually, an eighth case, n = 16 and Hol(g) = Spin(9), was eliminated when it was shown that every
manifold with Spin(9) holonomy was symmetric.
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Parallel spinors are simply those that are fixed by parallel transport in the spin bundle
and so their existence naturally restricts the holonomy group of g and, in turn, the
curvature. The key result is the following [11, 12]:

Lemma 4. Every Riemannian spin manifold admitting a nonzero parallel spinor is
Ricci-flat.

Suppose M is an irreducible, Ricci-flat manifold. It cannot be locally symmetric
since Ricci-flat, locally symmetric manifolds are flat and hence locally reducible (at
least for n > 1). Berger’s classification (Theorem 3) then tells us what the possible
holonomy groups can be. Wang [12] applied this reasoning to show that for a simply-
connected, irreducible manifold the only possible holonomy groups are2

SU(m) n = 2m
Sp(m) n = 4m
G2 n = 7
Spin(7) n = 8

Furthermore, manifolds with one of the above holonomy groups are always spin, with a
preferred spin structure, and each such manifold will have at least one nonzero parallel
spinor. Therefore, an irreducible Riemannian manifold admits a nonzero parallel spinor
if and only if it has one of the above Ricci-flat holonomy groups.

3 The Exceptional Lie Group G2

Cartan’s classification of the simple Lie algebras includes four infinite families of
classical algebras, su(n), so(2n + 1), sp(n), so(2n), as well as five exceptional cases,
g2, f4, e6, e7, e8. The classical algebras and their corresponding Lie groups

SO(n), SU(n), and Sp(n)

are all related to the classical division algebras R,C and H. Specifically, they arise as
groups preserving a natural inner product on vector spaces built from these algebras.
They also arise as isometry groups of the corresponding projective spaces.

The exceptional Lie algebras and the corresponding groups are all related in one
way or another to the fourth and largest normed division algebra, the octonions3

O. Unlike its better known cousins the octonions have the misfortune of being non-
associative. For which reason John Baez calls them “the crazy old uncle nobody lets
out of the attic” [4]. It is also for this reason that it is difficult to construct groups
out of them—groups must always be associative. However, there are a few meaningful
ways in which one can do so, giving rise to the exceptional Lie groups. In fact, Cartan
showed in 1914 that the smallest exceptional Lie group, G2, is nothing more than the
automorphism group of O.

2In the non-simply-connected case the restricted holonomy group will still belong to this list but the
entire group may be larger [13].

3The octonion algebra is sometimes called the Cayley algebra even though it was first discovered by
Graves in 1843.
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Since our interest in G2 is as the holonomy group of a 7-manifold, it will be sufficient
to realize G2 as a particular subgroup of SO(7), or equivalently as an abstract group
with a particular 7-dimensional orthogonal representation. In light of this we will
simply define G2 to be the automorphism group of the octonions together with its
natural representation on the 7-dimensional space of pure imaginary octonions, Im O.
We will not make any attempt to connect this group with the exceptional Lie group
defined in Cartan’s classification, though they are, in fact, equivalent. We refer the
interested reader to [14] for details.

Remark 5. We introduce the octonions in the next section primarily as a tool for
describing the exceptional group G2. However, before we lose our physics readership
in what may appear to be a sea of mundane algebra we offer some extra words of
motivation. The octonions and structures related to them seem be ubiquitous in string
theory, M-theory, and supersymmetry. In particular, all of the exceptional Lie groups
make an appearance somewhere. Most notable, perhaps, is the E8 heterotic string
which, together with its E6 subgroup, is important in grand unification schemes. Other
structures related to the octonions such as Spin(7) and Spin(8), as well as the octonionic
projective line OP and plane OP2 also crop up in strange places. For these reasons and
others, there has been some recent interest [15] in studying the role of the octonions in
M-theory. The hope being that if M-theory is truly a unique theory it should depend
in some critical way on unique mathematical structures.

3.1 The Octonions

Just as the quaternions can be constructed from pairs of complex numbers, H = C⊕Cj,
the octonions can be defined as O = H⊕H` where ` is a new imaginary anticommut-
ing with i, j and k. This process is known as the Cayley-Dickson construction.
Multiplication in O is defined by

(a, b)(c, d) = (ac− db, ad+ cb) (3)

for a, b, c, d ∈ H.
The octonions O form an eight-dimensional algebra with basis {1, i, j, k, `, `i, `j, `k}.

The seven-dimensional subspace spanned by the imaginary basis elements is denoted
Im O. The seven imaginary basis elements form an anticommuting set with each ele-
ment squaring to −1.

The multiplication rules for the octonions can be succinctly described with a dia-
gram know as the Fano plane (Figure 1). This diagram has exactly seven points and
seven lines (the circle through i, j, k is considered a line). The seven points correspond
to the seven standard basis elements of Im O. Note that each pair of distinct points lies
on a unique line and each line runs through exactly three points. Let (ep, eq, er) be an
ordered triple of points lying on a given line with the order specified by the direction
of the arrow. Then multiplication is given by

epeq = er eqep = −er (4)

together with cyclic permutations. These rules together with

• 1 is the multiplicative identity,
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Figure 1: The Fano plane

• e2
p = −1 for each point in the diagram

completely defines the algebraic structure of the octonions. Note that each of the seven
lines generates a subalgebra of O isomorphic to H.

Using this diagram we can easily see that the octonions are non-associative:

`(ij) = k′ (`i)j = −k′ (5)

where k′ = `k. They do, however, satisfy a weaker form of associativity. We say
that an algebra K is alternative if the subalgebra generated by any two elements is
associative. There is a theorem due to Artin that says an algebra is alternative if any
two of the following three conditions hold:

a(ab) = (a2)b (6a)

(ab)b = a(b2) (6b)
a(ba) = (ab)a (6c)

The remaining condition then follows automatically.

Proposition 6. The octonions form an alternative algebra.

In fact, one can show that the subalgebra of O generated by any two elements is
isomorphic to R, C, or H. For a proof consult [5] or [16].

For any algebra K defined by the Cayley-Dickson construction we can define con-
jugation by

a = Re(a)− Im(a)

for a ∈ K. It has the properties that

a = a ab = b a

The norm of an element a ∈ K is given by

‖a‖2 = aa = aa
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One can show that ‖·‖2 is a real-valued, positive-definite, quadratic form on K. The
existence of a positive-definite norm shows that every nonzero element of K has a
multiplicative inverse:

a−1 =
a

‖a‖2

We can also define a symmetric, bilinear form—that is, an inner product—on K via
the polarization identity. In other words, we set c = a+ b in the formula ‖c‖2 = 〈c, c〉
to obtain

‖a+ b‖2 = ‖a‖2 + 2 〈a, b〉+ ‖b‖2

or

〈a, b〉 = 1
2

(
‖a+ b‖2 − ‖a‖2 − ‖b‖2

)
= 1

2(ab+ ba) (7)

= Re(ab) = Re(ab)

The norm and inner product defined above are just the standard Euclidean norm and
inner product on K considered as a real vector space. While all of this holds for any
Cayley-Dickson algebra K there is a special property shared by only the first four
algebras in the sequence:

‖ab‖ = ‖a‖‖b‖ (8)

A normed algebra for which (8) holds is called a normed division algebra. Note
that a normed division algebra cannot have zero-divisors.4

Theorem 7 (Hurwitz). The only normed division algebras are R, C, H, and O.

The next algebra in the sequence, the sedenions, is neither alternative nor a division
algebra—it has zero-divisors.

Forms

It is convenient to introduce two structures on O that measure the failure of O to be
commutative or associative. The commutator is given by

[a, b] = ab− ba (9)

and the associator by
[a, b, c] = (ab)c− a(bc) (10)

for a, b, c ∈ O. Both functions are separately linear in each of their arguments. More-
over, they both vanish when any argument is real. Together these facts imply that we
can always take the arguments to be pure imaginary.

It is follows immediately from the definition that the commutator is antisymmetric,
but what about the associator? Equations (6) tells us that the associator vanishes
when any two of its arguments are equal. Polarization then implies that the associator
is alternating. Conversely, if the associator for an algebra K is alternating equations
(6) follow and K is alternative. That is,

4Recall that a ∈ K is a zero-divisor if there exists b 6= 0 in K such that ab = 0 or ba = 0.
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Proposition 8. The associator for an algebra K is totally antisymmetric if and only
if K is alternative.

Another useful fact which can be verified with some simple algebra is

Lemma 9. Let a, b, c ∈ O then

[a, b] ∈ Im O and 〈a, [a, b]〉 = 0
[a, b, c] ∈ Im O and 〈a, [a, b, c]〉 = 0

The last two statements, together with antisymmetry, say that the commutator and as-
sociator are always orthogonal to the space spanned by their arguments. This prompts
the definition of two natural forms associated with O:

φ(x, y, z) =
〈

1
2 [x, y], z

〉
(11)

ψ(w, x, y, z) =
〈

1
2 [w, x, y], z

〉
(12)

called the associative 3-form and the coassociative 4-form respectively.5 The fact
that they are alternating follows from Lemma 9. It also follows that these forms vanish
when any of their arguments are real. By linearity, we can then consider the forms
restricted to Im O. That is, φ ∈ Λ3(Im O) and ψ ∈ Λ4(Im O).

Let ep for p = 1, 2, . . . 7 denote the basis {i, j, k, `, `i, `j, `k} of Im O. In terms of
components we have

{ep, eq} = −2δpq (13a)
[ep, eq] = 2φpq

r er (13b)
[ep, eq, er] = 2ψpqr

s es (13c)

where {·, ·} is the anti-commutator. Brute force calculation shows that

φ = e123 + e415 + e426 + e437 + e617 + e725 + e536 (14)
ψ = e4567 + e6273 + e7351 + e5162 + e3524 + e1634 + e2714 (15)

where epqr = ep ∧ eq ∧ er, etc. These values actually follow fairly easily from the Fano
plane diagram once you understand how to read it.

We see from the above expressions that the standard volume form on Im O is given
by

Ω = 1
7φ ∧ ψ = e1234567 (16)

Using this orientation one can easily check that the 4-form ψ is simply the Hodge dual
of the 3-form6

ψ = ∗φ (17)

5The reason for these names somewhat mysterious names is explained in [5]
6There seem to be as many choices of basis for Im O as there are authors; some even chose a different

orientation. In all cases however ψ is always chosen to be the dual of φ, so that ψ will differ by a sign when
the orientation is reversed.
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3.2 The Automorphism Group

The most natural and straightforward definition of the exceptional Lie group G2 is as
the automorphism group of the octonions:

G2 ≡ Aut(O) = {g ∈ GL(O) | g(ab) = g(a)g(b) for all a, b ∈ O} (18)

Note that since G2 is a linear group we have g(x) = xg(1) = x for all x ∈ R = Re O
and g ∈ G2. Hence G2 acts trivially on R ⊆ O and preserves the decomposition
O = R⊕ Im O. It follows that g(x) = g(x) and

‖g(x)‖2 = g(x)g(x) = g(xx) = ‖x‖2g(1) = ‖x‖2 (19)

Hence G2 preserves the bilinear form on O defined by the norm so that G2 ⊆ O(Im O) ⊆
O(O).

Proposition 10. The group G2 fixes both the associative 3-form φ and the coassociative
4-form ψ.

Proof. Let x, y, z ∈ Im O. Then

φ(g(x), g(y), g(z)) =
〈

1
2 [g(x), g(y)], g(z)

〉
=

〈
g(1

2 [x, y]), g(z)
〉

=
〈

1
2 [x, y], z

〉
= φ(x, y, z)

and likewise for the 4-form ψ.

Proposition 11. The group G2 is a compact Lie subgroup of the orientation preserving
isometries of O leaving invariant the decomposition O = R⊕ Im O:

G2 ⊆ SO(Im O) ⊆ SO(O)

Proof. We have already established thatG2 acts trivially on R ∈ O and that it preserves
the metric on O. The fact that it is a closed subgroup of the compact group O(O)
implies that it is a compact Lie subgroup. Furthermore, it follows from Proposition
10 that the standard volume form (16) on Im O is invariant under the action of G2, so
that the action preserves the orientation of Im O.

The converse of Proposition 10 states that the total isotropy group of φ and ψ
is nothing more than G2. Actually, the isotropy group of φ is exactly G2 but the
isotropy group of ψ is slightly larger, namely G2 × Z2. This is because the parity
transformation −1 ∈ O(7) preserves ψ (but not φ). Proving these claims takes a little
more work. Basically the idea is that any g ∈ GL(Im O) satisfying g∗φ = φ can be
shown to preserve the volume form Ω on Im O and the inner product via the identity7

1
6
(x y φ) ∧ (y y φ) ∧ φ = 〈x, y〉Ω (20)

7Here x y φ denotes the 2-form obtained by contracting x with φ, (x y φ)(y, z) = φ(x, y, z).
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Thus g ∈ SO(Im O). Any such g will then preserve the commutator as well (which only
differs from φ by raising an index). Finally, one can show that any g which preserves
the commutator is necessarily an automorphism. For a detailed proof the interested
reader should consult [5] or [7]. It is for this reason that many authors simply define
G2 as the subgroup of GL7 R that preserves the 3-form φ given by (14).

A basic triple or Cayley triangle in Im O is an orthonormal 3-frame (v1, v2, v3)
in Im O such that each element is orthogonal the the subalgebra generated by the other
two. This is equivalent to saying that φ(v1, v2, v3) = 0. For example (i, j, `) forms a
basic triple. Define the set of all basic triples as

C = {(v1, v2, v3) ∈ (Im O)3 | 〈vi, vj〉 = δij and φ(v1, v2, v3) = 0} (21)

The set C is a 14-dimensional submanifold of the 21-dimensional vector space (Im O)3.
To see this note that v1 can be chosen to any unit imaginary in S6 ⊂ Im O and v2 can
be chosen to be any unit in the 5-sphere orthogonal to v1. Finally, v3 can be taken as
any element in the 3-sphere orthogonal to v1, v2, and v1v2. So

dim C = 6 + 5 + 3 = 14 (22)

Because G2 preserves the metric and 3-form on O every automorphism necessarily
takes basic triples into basic triples. That is, G2 acts on manifold C. The action is
necessarily free as each basic triple generates the entire algebra. Zorn showed that it
is transitive as well:

Theorem 12 (Zorn). The group G2 acts freely and transitively on set of basic triples
C. Hence, G2 is diffeomorphic to C and dimG2 = 14.

By examining the isotropy groups of this action we obtain some useful corollaries:

Proposition 13. The group G2 acts transitively on S6 ⊂ Im O with isotropy group
SU(3). That is, S6 is a homogeneous G2-space with

G2/SU(3) ∼= S6

Proof. If follows immediately from 12 that G2 acts transitively on S6 ⊂ Im O, we have
only to establish the isotropy group. Fix v1 ∈ S6 and let H be the isotropy group of
v1. We note that dimH = dimG2 − dimS6 = 14− 6 = 8.

Let V = v1
⊥ ∩ Im O be the 6-dimensional subspace of Im O orthogonal to v1. H

clearly takes V into itself. Define a function on J : V → V by

J(y) = 1
2 [v1, y] = v1y

Note that J(y) is indeed an element of V as the commutator is always pure imaginary
and orthogonal to its arguments by Lemma 9. Also note that J2 = −1,

J2(y) = v1(v1y) = (v1)2y = −y

so that J defines a complex structure on V . The action of H on V clearly commutes
with J . Also the inner product of O when restricted to V becomes a Hermitian form
with respect to J ,

〈Jx, Jy〉 = 〈v1x, v1y〉 = ‖v1‖2 〈x, y〉 = 〈x, y〉
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The group H preserves this Hermitian form so that H ⊆ U(3) ⊆ SO(6). Direct
computation shows that H also preserves the orientation of V considered as a complex
vector space so that H ⊆ SU(3). But because H is necessarily an 8-dimensional closed
group we have H ∼= SU(3).

Likewise, we can consider the isotropy group of an orthonormal 2-frame (v1, v2) in
Im O. Such a group is also the stabilizer of the entire quaternion subalgebra generated
by v1 and v2. The set of all orthonormal 2-frames in Im O is called a Stiefel manifold
and is denoted

V7,2 = {(v1, v2) ∈ (Im O)2 | 〈vi, vj〉 = δij} (23)

It is an 11-dimensional manifold.

Proposition 14. The group G2 acts transitively on V7,2 with isotropy group SU(2).
That is, V7,2 is a homogeneous G2-space with

G2/SU(2) ∼= V7,2

The proof proceeds in much the same way as the previous one, with the exception
that the complex structure is given by the associator instead of the commutator. In
summary, we have a sequence of closed Lie subgroups in G2:

1 −→ SU(2) −→ SU(3) −→ G2 (24)

with actions on Im O as given above.
It follows from Proposition 13 that G2 is both connected and simply-connected. To

see this, note that the long exact sequence for fibrations says that for a homogeneous
space G/H, πk(G) = πk(H) if πk(G/H) = πk+1(G/H) = 0. Since πi(S6) = 0 for
i = 0, . . . , 5 we can conclude that that

πi(G2) = 0 i = 0, 1, 2, and 4 (25)
π3(G2) = Z

We summarize the results regarding G2 in the following:

Theorem 15. G2 is a 14-dimensional compact, connected, simply-connected, Lie sub-
group of SO(7).

Remark 16. The group G2 is tied up in a rather interesting way to a property of
Spin(8) known as triality. We lack the time and space to go into the details, but the
basic idea is as follows. The group Spin(8) has three 8-dimensional representations:
the standard vector representation as well as the right and left-handed spinor represen-
tations. The triality automorphism, θ, is an outer automorphism of Spin(8) of order
three that permutes these representations. It turns out that the subgroup left invariant
by this automorphism is isomorphic to G2,

G2
∼= {g ∈ Spin(8) | θ(g) = g} (26)

If we identify each of the representations with the octonions, O, then G2 will be the
subgroup that fixes 1 ∈ O in each of the three representations. For more details see
[16, 5, 4].
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4 G2 Holonomy

4.1 General Features

We now want to consider 7-dimensional manifolds with holonomy group contained in
G2. To this end it is useful to recall the notion of a G-structure on a smooth n-
manifold M . Recall that the frame bundle of M is a principal bundle F → M with
fiber GLn R. We define a G-structure on M as a principal subbundle of F with
fiber G ⊆ GLn R. Many of the interesting geometric structures that can be placed on
manifolds can be formulated as G-structures. For example, a Riemannian structure on
M can be defined as a O(n)-structure. The metric on M is completely determined by
the O(n)-structure. A complex manifold M can be defined as a 2n-manifold together
with a GLn C-structure satisfying some suitable torsion-freeness condition.

If we demand that a G-structure on M be compatible with a given connection on
M we find that the holonomy of the connection restricts what structures are allowed:

Proposition 17. Let M be a smooth n-dimensional manifold and let ∇ be a connection
on M . For each Lie subgroup G ⊆ GLn R, there exists a G-structure P on M compatible
with ∇ if and only if Hol(∇) ⊆ G. If P exists it is unique.

Thus to every Riemannian 7-manifold (M, g) with Hol(g) ⊆ G2 there exists a unique
G2-structure on M compatible with the Levi-Civita connection. Hence a necessary
condition for a manifold to have G2 holonomy is that it admit a G2-structure. We
will see shortly that a sufficient condition is that this structure be torsion-free in some
suitable sense.

Recall that the group G2 preserves the flat Euclidean metric

g0 = dx2
1 + · · ·+ dx2

7 (27)

and associative 3-form8

φ0 = dx123 + dx415 + dx426 + dx437 + dx617 + dx725 + dx536 (28)

arising from the octonionic structure on R7 ∼= Im O. Hence, every oriented G2-structure
on a 7-manifold M gives rise to a Riemannian metric g and a 3-form φ on M , such
that each tangent space, TmM , admits an orientation-preserving isomorphism with
Im O identifying g with g0 and φ with φ0. Given g and φ we can also construct the
associated 4-form ψ = ∗φ on M . By a slight abuse of notation we will refer to the pair
(g, φ) as a G2-structure on M . Though this is not exactly rigorous, one can show that a
properly chosen 3-form φ (called a positive 3-form) uniquely determines a G2-structure
on M .

Proposition 18. Let M be a 7-manifold and let (g, φ) be a G2-structure on M , and
let ∇ be the Levi-Civita connection of g. Then the following statements are equivalent:

(i) Hol(g) ⊆ G2 and φ is the induced 3-form,

(ii) ∇φ = 0,

(iii) dφ = d∗φ = 0

8Note that our choice of basis for Im O differs from Joyce’s [1] by a sign change in x1 and x2.
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Define the torsion9 of a G2-structure (g, φ) to be the tensor ∇φ. A G2-structure
is said to be torsion-free if ∇φ = 0. By Proposition 18, a manifold with holonomy
contained in G2 is precisely one which admits a torsion-free G2-structure. We then
define a G2-manifold, (M, g, φ), as a 7-manifold together with a torsion-free G2-
structure (g, φ). Recalling our discussion in §2.2 we note the following:

Theorem 19. Let (M, g, φ) be a G2-manifold. Then M is Ricci-flat. Moreover, M
is a spin manifold with a preferred spin structure. The space of parallel spinors on M
has dimension one. If S is the spin bundle of M , then there is a natural decomposition

S ∼= Λ0(M)⊕ Λ1(M)

Note that, as we have defined it, a G2-manifold does not necessarily have G2 holon-
omy. The holonomy group may actually be a proper subgroup of G2. But from Berger’s
classification theorem and our discussion of the subgroups of G2 in §3.2 we can deduce

Proposition 20. Let (M, g, φ) be a G2-manifold. The restricted holonomy group
Hol0(g) is one of

1 ⊂ SU(2) ⊂ SU(3) ⊂ G2

The holonomy representation on TM for each of these groups is just the standard one
described in §3.2. The next result shows that for a compact G2-manifold the holonomy
can be determined solely from the topology of M .

Proposition 21. Let (M, g, φ) be a compact G2-manifold. Then M admits a finite
cover isometric to N × Tk where Tk is a flat torus, N is a compact, simply-connected
Riemannian manifold, and

• k = 0 when Hol0(g) = G2

• k = 1 when Hol0(g) = SU(3)

• k = 3 when Hol0(g) = SU(2)

• k = 7 when Hol0(g) = 1

Thus π1(M) ∼= H n Zk where H is a finite group. In particular, Hol(g) = G2 if and
only if π1(M) is finite.

Based on the above it is easy to see how one might construct compact G2-manifolds
with holonomy less then G2 given that one understands how to construct compact 2n-
manifolds with holonomy SU(n). Such manifolds are called Calabi-Yau n-folds, and
have been extensively studied. Calabi-Yau manifolds are always compact, Ricci-flat,
Kähler manifolds with trivial canonical bundle.

Proposition 22. Let Y be a Calabi-Yau 3-fold with metric h, Kähler form ω, and
holomorphic volume form θ. Let T = R/Z be the unit circle with periodic coordinate
x. Define a metric g and three-form φ on T× Y by

g = dx2 + h

and
φ = dx ∧ ω + Re θ

then (T× Y, g, φ) is a G2-manifold with holonomy SU(3).

9This torsion has nothing to do with the torsion of the Levi-Civita connection, ∇, which vanishes as
always.

14



An analogous result for 2-folds is the following,

Proposition 23. Let Y be a Calabi-Yau 2-fold with metric h, Kähler form ω, and holo-
morphic volume form θ. Let T3 = R3/Z3 be the flat 3-torus with periodic coordinates
(x1, x2, x3). Define a metric g and three-form φ on T3 × Y by

g = dx2
1 + dx2

2 + dx2
3 + h

and
φ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ω + dx2 ∧ Re θ − dx3 ∧ Im θ

then (T3 × Y, g, φ) is a G2-manifold with holonomy SU(2).

Of course, the simplest example of a compact G2-manifold is just T7 with trivial
holonomy. The metric and three-form are just those inherited form R7 = Im O. Con-
structing a compact G2-manifold with the full G2 holonomy is much more difficult. By
Proposition 21 this amounts to finding a compact 7-manifold with a torsion-free G2

structure whose fundamental group is finite. This is the topic of the next section.

4.2 Joyce’s Construction

Joyce’s construction [1, 9, 10] of compact 7-manifolds with G2 holonomy proceeds as
follows:

1. Start with a flat G2-structure (g0, φ0) on a 7-torus, T7. Quotient T7 by a finite
group Γ of isometries preserving φ0. The quotient space T7/Γ will be a singular,
compact 7-manifold, also known as a orbifold. The singularities of the orbifold
will correspond to the fixed point set of Γ.

2. If Γ is chosen carefully, one can resolve the singularities of T7/Γ in natural way
to obtain a nonsingular, compact 7-manifold M .

3. Define on M a 1-parameter family of G2-structures (gt, φt) for t ∈ (0, ε). These
G2-structures will not be torsion-free, but they will have small torsion for small
t.

4. Show that for sufficiently small t, one can deform (gt, φt) to a nearby torsion-free
G2-structure (g, φ). If π1(M) is finite, then M is a compact 7-manifold with G2

holonomy, as desired.

This principal difficulty in this process lies in step 2, resolving the orbifold singu-
larities. We do not know how to do this in general. However, if the singularity is of a
special type one can use methods of complex geometry to find a suitable resolution. In
particular, let S be the singular set of T7/Γ. Suppose that every connected component
of S is locally isomorphic to either

• T3 × C2/G, for a finite subgroup G ⊆ SU(2), or

• T1 × C3/G, for a finite subgroup G ⊆ SU(3) acting freely on C3 − {0}.
Using algebraic geometry one can find resolutions of C2/G and C3/G called crepant
resolutions. A crepant resolution of Cn/G is a noncompact, complex manifold Y with
vanishing first Chern class, c1(Y ) = 0, together with a resolving map π : Y → Cn/G.
One can show that there exist Calabi-Yau metrics (i.e. Ricci-flat, Kähler metrics),
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one in each Kähler class, on Y such that the metrics approximate at infinity the
flat Euclidean metric on Cn/G. Such metrics are said to asymptotically locally
Euclidean (ALE). Furthermore, one can show that the ALE Calabi-Yau metrics on Y
necessarily have holonomy SU(n). Hence, we can think of Y as a noncompact version
of a Calabi-Yau n-fold.

If Y is a crepant resolution of C2/G or C3/G then we can use either T3 × Y or
T1 × Y as a local model for repairing the singularities described above. Furthermore,
Propositions 22 and 23 remain true when Y is noncompact, so that both T3 × Y and
T1 × Y admit torsion-free G2-structures. Thus these spaces allow us to repair the
singular G2-structure on T7/Γ as well.

Step 3 in the process is then to construct a suitable G2-structure on the resolved
manifold M . This is done by gluing together the torsion-free G2-structures on T7/Γ
and T3 × Y (or T1 × Y ) using a partition of unity. The G2-structure thus defined is
not quite torsion-free as the gluing process introduces errors in the regions where the
partition of unity changes. However, by writing down a 1-parameter family of ALE
metrics on Y we can make the torsion as small as we like by asymptotically approaching
the flat metric. The final step is then to prove, using analysis, that for sufficiently small
torsion the G2-structure can be deformed to a torsion-free one. The gory details of this
proof, as well as rigorous definitions of the above steps, can be found in Joyce’s book
[1].

Using Joyce’s construction one can construct a compact G2-manifolds provided one
can find an orbifold group Γ with the requisite singularities. We illustrate this with an
example below. We should mention that there many be several topologically distinct
choices in making the resolution of T7/Γ so that one can potentially find numerous
G2-manifolds all arising from a single orbifold.

Example

Let (x1, . . . , x7) be periodic coordinates on T7 = R7/Z7, and let (g0, φ0) be the flat
G2-structure on T7 inherited from R7,

φ0 = dx123 + dx415 + dx426 + dx437 + dx617 + dx725 + dx536 (29)

Let Γ ∼= (Z2)3 be the finite group generated by the involutions

α(x1, . . . , x7) = (x1, x2, x3,−x4,−x5,−x6,−x7) (30a)
β(x1, . . . , x7) =

(
x1,−x2,−x3, x4, x5,

1
2 − x6,−x7

)
(30b)

γ(x1, . . . , x7) =
(
−x1, x2,−x3, x4,

1
2 − x5, x6,

1
2 − x7

)
(30c)

It is easily to check that α2 = β2 = γ2 = 1 and that α, β, and γ all commute.
Furthermore, each of these generators preserves (g0, φ0) by a careful choice of which
signs to change.

By analyzing the fixed point sets of α, β, and γ, as well as the behavior of Γ near
the fixed point sets one can show the following,

Lemma 24. The singular set S of T7/Γ is a disjoint union of 12 copies of T3 with the
singularity at each T3 locally modeled on T3 × C2/{±1}.
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This type of singularity is the simplest kind that we know how to resolve. The
complex orbifold C2/Z2 can be considered as a cone on RP3 = S3/Z2 with a singularity
at the origin. The crepant resolution Y of C2/Z2 is called a Eguchi-Hanson space,
denoted EH2. Topologically, one can think of EH2 as a cone on RP3 with the singularity
at the tip replaced by a smooth S2. Thus, near the origin EH2 looks like S2×R2, while
asymptotically it looks like RP3 × R. One can show that EH2 is biholomorphic to
T ∗CP1, the holomorphic cotangent bundle of the Riemann sphere.

We can introduce a 1-parameter family of ALE Kähler metrics on Y = EH2 as
follows. Define a family of Kähler potentials on Y − π−1(0) by

Kt =
√
r4 + t4 + 2t2 log r − t2 log

(√
r4 + t4 + t2

)
(31)

where r =
(
|z1|2 + |z2|2

)1/2 is the radial coordinate on Y and t ∈ (0, ε) corresponds to
the radius of the central S2. Then we can locally define the Kähler form on Y −π−1(0)
by ωt = i∂∂̄Kt. This extends uniquely and smoothly to a closed, positive (1, 1)-form
on all of Y which is then the Kähler form associated to a Kähler metric on Y . For
large r (or small t) this metric approaches the standard Euclidean metric on C2/Z2.

To construct the G2-manifold M we then cut out the 12 copies of T3 ×C2/Z2 and
glue in 12 copies of T3 × EH2. In order to claim that the resultant manifold M has
G2 holonomy we must show that π1(M) is finite. One can show that if the resolutions
Yi are simply-connected, then π1(M) = π1(T7/Γ). This will always be the case for
the crepant resolutions of C2/G and C3/G that we are considering here. Indeed, the
reader should be able to verify that π1(EH2) = 1. In addition, one can show that any
of the non-trivial loops in T7 can be shrunk to a point using the identifications in (30),
so that π1(M) = π1(T7/Γ) = 1. By Joyce’s construction we can then conclude that M
admits metrics with G2 holonomy as desired. �

Remark 25. We should comment briefly on the relevance of Joyce’s construction to
string theory/M-theory. From the mathematics point of view, the inherent appearance
of orbifold singularities in the construction of G2-manifolds leaves a little to be desired.
One might like to see a more direct description in which there are no singularities
to smooth out. But from the physics point of view this is actually an advantage.
The reason goes back to Witten’s 1983 argument [17] that compactification of 11-
dimensional supergravity on any smooth 7-manifold cannot lead to chiral matter or
nonabelian gauge theories in 4 dimensions, both of which are fundamental ingredients
in the world as we know it. On the other hand, singular 7-manifolds can lead to
both chiral matter and nonabelian gauge fields. It has been known for some time
that strings can propagate quite smoothly on spaces possessing orbifold singularities.
Thus the primary focus of studying G2 holonomy in physics has been centered around
studying the singularities in such manifolds where interesting physics can develop. See
for example [18, 19].
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