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CS4221	Foundations	Of	Computer	

Science	Handouts	Semester	1	(2018)	

Introduction	

This	document	contains	handouts	for	the	CS4221	lectures.	Please	note	that	these	
do	not	replace	your	own	notes,	rather	they	are	to	facilitate	your	own	note	taking	
by	reducing	the	amount	of	writing	you	need	to	do	during	lectures.	
To	get	the	maximum	benefit	from	these	handouts	you	are	recommended	to	take	
lecture	notes	and	to	reference	the	relevant	page	number	in	this	document.	In	
some	cases	there	is	space	left	in	this	document	for	you	to	add	your	own	notes.	
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1. Introductory	Material	

There	are	four	things	that	you	should	achieve	before	the	lecture	on	Friday	of	
Week	7:	
	

• Buy	the	book	of	handouts	(which	you’ve	already	apparently	done!);	
• Register	for	the	course	on	Moodle;	
• Get	the	notes	from	Lecture	1;	
• Download	the	free	Socrative	App	(we	will	use	this	on	Friday).	

	
Note:	This	set	of	notes	is	not	the	same	as	the	set	from	last	year’s	CS4221.	If	you	
have	a	classmate	who	has	second	hand	set,	feel	free	to	lord	your	more	
comprehensive	set	over	them.	

1.1. Registering	for	CS4221	on	Moodle	

	
We	will	use	Moodle	throughout	the	semester.		You	should	already	have	an	
account	on	it,	but,	if	not,	go	to:	
	
http://moodle2.csis.ul.ie/	
	
	
Once	you	are	set	up,	follow	these	instructions	to	register	for	CS4221	–	anything	
you	see	in	italics	should	be	typed	exactly	as	it	looks:	
	

• Click	on	all	courses	down	on	the	bottom	left	of	the	screen	
• Type	CS4221	into	the	search	box	
• Click	on	the	module	name	
• In	the	space	for	Location	key	type	in	the	module	enrolment	key,	which	is	

(and	include	the	exclamation	mark):	eaMM124!	
	
That’s	it!	You’re	now	registered	with	CS4221	Moodle.	
	

1.2. Notes	from	Lecture	1	

The	notes	are	available	from	the	first	section	when	you	log	into	Moodle.	
	

1.3. Download	the	Socrative	App	

We	will	use	Socrative	throughout	the	semester,	starting	on	Friday	of	Week	7.	Full	
details	are	available	on	Moodle,	but	the	link	to	download	Socrative	is	
http://socrative.com.	An	account	has	already	been	set	up	for	you;	use	your	ID	
number	to	login.	
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2. Expressions	
	

• “Mathematical	phrase”	
	
	
	
	

• Slope	of	a	line	(X1,	Y1)	and	(X2,	Y2)	
	

	

	

	

• Evaluating	expressions	
o All	numbers?	
o Some	(or	all)	variables?	

§ E.g.	Y2-Y1,	what	are	Y2	and	Y1?	
• Order	of	evaluation:	

o 1	+	2	*	3	=	?	
§ 3	*	3	=	9	
§ 1	+	6	=7	

• If	operators	are	different?		
o Give	each	a	precedence	

• Standard	precedence:		
o (	)		
o *,	/	
o +,	-	
o Draw?	Go	left	to	right	
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• Note,	all	of	these	operators	are	associative,	makes	no	difference	

	
	

	
																																										
	

• Different	kinds	of	notation:	
o So	far,	have	used	(mainly)	infix	notation	
o i.e.	operators	come	between	operands	

• Other	notations:		
o Prefix	

§ Before	operand	
§ √4	−3,	cos	45	etc.	

o Super-fix	
§ Above	(and	usually	after)	operand	
§ 32,	xy	

o Sub-fix	
§ Underneath	
§ logxY,	⅔	

• Postfix	
o After	operand	

§ 3++	
• Why	so	many?	
• Consider	

	
	
	
	

o All	four	
• Notice	

o Size	of	square	root	sign	
o Length	of	line	over	2a	
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o No	multiplication	sign	
o ac	right	up	together	

• Reminder	-	what	is	this	course	about?	
o Phrasing	things	unambiguously	
o Start	where?	
o Mix	of	notation	

• Model	Driven	Development	
o Design	

• Imperative	Programming	
o Learn	language	

• Computer	Organisation	
o Build	hardware	

• Computer	Science	
o Step	back	and	SOLVE	the	problem	

	
	
	

• Problems?	
o Square	root	sign	
o Can’t	be	typed	

§ Variable	length	
§ Variable	scope	

• Area	in	which	something	takes	effect	
o Aside:	X√	would	be	more	convenient	
o (b2-4ac)√	
o Still	pretty	ugly...	

• (b2-4ac)	
• Read	b	

o Meaning?	
o Not	clear	until	after	squared	sign	

• (b2-	
o Ambiguity	

§ Subtract	next	thing?	
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§ Evaluate	next	sub-expression?	
• Better	if	there	was	a	single	notation	

o No	ambiguity	
o Everything	evaluated	the	same	way	

• Separate	the	“what”	from	the	“how”.	
o Make	no	comment	on	how	to	do	operation	

§ e.g.	how	to	add	numbers	
o Worry	about	implementation	later	

• Prefix	problem	
o Don’t	know	how	to	deal	with	a	character	(or	number)..	
o Until	after	(at	least)	the	next	one	is	read	

	

2.1. Locality	of	reference	
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• Writing	fast	programs	
o Small	(fit	in	the	cache)	“Memory	Footprint”	
o Reuse	functionality	(stay	in	the	cache)	
o Often	faster	to	do	one	thing	many	times	than	several	things	once	

• Prefix	Notation	
o Operator	goes	before	operands	
o (+	2	3)	
o “Apply	plus	operator	to	2	and	3”	
o “Apply	operator	to	next	two	items”	
o “..	to	the	next	two	arguments”	

• Definitions	
o Syntax	

§ Representation	of	data/code	
o Semantics	

§ Meaning	of	syntax	
o Abstract	Syntax	

§ Representation	that	is	independent	of	language	
	

	
	
	
	
	

• Design	will	work	with	any	language	
o After	a	translation	process	

• Design	once,	deploy	many	times	
• Abstract	Syntax	Tree	(AST)	

o Diagram	of	expression	
o Shows	what	expression	does.	
o (+	2	3)	
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• AST	
o Convenient	graphical	notation	

• Evaluation	
o Evaluate	deepest	operator	
o Repeat	until	no	operators	are	left	

	 	
	
	
	

• Nothing	on	level	1	
• (+	3	3)	=	6	
• More	complex	tree	

	
	

• Order?	
• Infix?	

o (1	*	2)	+	(3	*	4)	
o 1	*	2	+	3	*	4	
o (+	(*	1	2)	(*	3		4))	
	
o 	

• Evaluate	(+	(	*	1	2)	(*	3	4))	
o Read	+	

§ Means?		
• Get	first	argument	
• Get	second	argument	–	Add	them		

o First	argument?	
§ Another	expression,	evaluate	it	first		
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o Read	*		
§ Means?		
§ Get	first	argument	
§ Get	second	argument	–	Multiply	them		

• What	next?	
	

• Draw	AST	from	prefix	notation	
o First	item	(always	an	operator)	in	(	)	is	a	parent		

§ Second	is	left	child	
§ Third	is	right	child		

• Notes	
o A	child	can	be	the	parent	of	another	child		
o i.e.	the	start	of	another	sub-tree		
o Children	often	called	arguments,	rather	than	operands	

	
• Evaluating	prefix?	

o Evaluate	most	deeply	nested	first	
• (+	(	*	(+	2	1)	3)	4)	

	
	

• (+	(*	3	3)	4)	
	
	
	
	
	
	 	



	 10	

2.2. Parsing	Expressions	

	
• Parse	expression:	

o Read	+		
o Evaluate	(*..	
o Read	*	
o Evaluate	(+..	
o Read	+	
o Read	2	
o Read	1	
o Add	them	

	
	
	
	
	
	
	
	
	
	
	
	

• Question	
o If	ASTs	are	representation	independent,	can	any	notation	or	

representation	be	converted	to	one?	
o Fortunately	for	us,	yes.	
o Convert	infix	to	AST	

§ First	item	on	left	
§ Second	becomes	parent	
§ Third	on	right	

	
Take	your	own	notes.	
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• How	to	write	Sin	X	in	infix?	
o Can’t	--	must	be	prefix.	
o Infix	often	contains	other	representations	

• What	have	we	achieved?	
o Language	independent	representation	for	expressions	(ASTs)	
o Prefix	notation	

§ Machine	independent	
§ Machine	readable	
§ Consistent	

	
	

	
	
	

• Rewrite	as	prefix…	
o ±	…	not	an	operator	
o use	two	different	expressions	

• b2	
o (sqr	b)	
o Is	this	fair?	

§ Consistent	with	prefix	
§ Unary	argument	

	

	

	

	

	

	

• Square	root	
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o Number	of	arguments?	One	
• Treat	same	as	sqr	

o (sqrt	x)		
o (sqrt	(-	a	b))	

	
Take	your	own	notes.	

	

	

• Conway’s	Game	of	Life	
o Less	than	two	neighbours	the	cell	dies	of	loneliness	
o Two	or	three	neighbours,	the	cell	stays	alive	
o More	than	three	neighbours	and	the	cell	dies	from	overcrowding	
o Dead	cell	with	three	neighbours	becomes	alive	
o https://bitstorm.org/gameoflife/	

• Fractals	

• One	simple	rule	(to	colour	each	pixel)		
o Zn+1	=	Zn2+c	
o c	=	Co-ordinates	(as	Complex	number)		
o Z	=	Complex	number	(start	with	0+0i)	

• If	Z	goes	to	zero,	pixel	is	coloured	black	
• If	it	goes	to	infinity,	colour	is	the	number	of	iterations	
• http://hirnsohle.de/test/fractalLab/	
• Fractals	and	self-similarity	

o Fractals	are	infinitely	zoomable	
o Zoom	in	and	the	co-ordinates	get	more	precise	
o Repeat	the	process	again	

• Are	they	really	infinitely	zoomable?	
o Yes,	but	the	hardware	doesn’t	have	infinite	precision	
o 64	bit	architecture	goes	from	±2.23×10−308	to	±1.80×10308	
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2.3. Converting	infix	to	prefix	

• We	need	a	simple	algorithm	to	convert	any	infix	expression	to	
corresponding	prefix	one	

	
	
	
	
	
	

• Stacks	
• Data	Structure	

o Way	of	organising	data	in	computer	
• Operations	

o Add	item	to	the	data	
o Look	at	item	
o Remove	item	

Take	your	own	notes.	There	will	be	a	video	of	the	animation	from	the	lecture	put	on	

the	class	website.	

	

• Back	to	infix	to	prefix	conversion	
o Reverse	the	expression	
o Read	expression	one	character	at	a	time:	
o “)”:	Push	onto	stack	
o Operator:	Push	onto	stack	
o Operand:	Push	on	and	pop	off	(straight	to	output)	
o “(“:	Keep	popping	stack	until	“)”	is	encountered	
o Reverse	the	output	

• Take	your	own	notes.	
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3. Design	
	

• Writing	programs	for	CS4221	
o Java?	
o Too	inconsistent	

§ Mix	of	pre/post/infix	(“mixfix”)		
• i++;	++i;	i+i;	
• i=i+++++i;	

o Lots	of	extra	syntax	
§ public	static	void	main(String[]	args)..	

o “Syntactic	Sugar”	
§ Doesn’t	enhance	functionality	
§ (Allegedly)	makes	program	easier	to	read	

o Is	there	any	place	for	Imperative	Programming?		
§ Yes,	it’s	just	not	as	useful	as	you	might	believe...		

• Functional	Programming	
• Write	programs	based	on	expressions/functions	

	

	
	

• >	(+	3	1)	
• Very	little	syntax	

o Short	programs	
o Mobile	Devices	
o Embedded	controllers	

• Relevance?	
o (Almost)	anything	can	be	expressed	with	an	AST.	
o Good	FP	language	copies	AST	with	little	overhead	
o Racket	

§ Dialect	(subset)	of	Lisp	
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§ http://racket-lang.org/	
o Imperative	languages	(Java/C++)	must	be	compiled	
o Racket	

§ Compilable	
§ Interpretable	

	
	
	
	

• (+	1	2	3)	
• 6	
• Not	all	operators	are	binary	

• Yet	another	reason	not	to	use	infix	
• How	many	operands	do	operators	take?	

	
	
	
	
	
	

• Depends..	
• Only	one	(sqr,	sqrt)	
• Only	two	(divide)	
• One	or	more	(most)	

• (-	1)..	
• (-	3	2	1)		
• (-	5	1	1)	

	
• Take	tail	of	list	of	numbers	from	head	
• (-	8	7	6..)	
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3.1. Car	and	Cdr	

	
• Heads	and	tails	

o car	=	first	item	in	list	
o cdr	=	rest	of	the	list	
o (car	(a	b	c	d))		
o a	
o (cdr	(a	b	c	d))	
o (b	c	d)	
o (car	(cdr	(a	b	c	d))	
o (car	(b	c	d))	
o b	

• Expressions	vs.	Lists	
o (+	1	2)	vs.	‘(+	1	2)	

	
o (car	‘(a	b	c	d))	

	
o (cdr	‘(a	b	c	d)	

	
o (reverse	‘(a	b	c))	

	
o (list	‘a	‘b)	

• Examples	of	‘	
>	(+	2	1)	
	
>	‘(+	2	1)	
	
>	‘b	
	
>	b	
Error:	reference	to	undefined	identifier:	b	

	
• (-	10	3	2	1)	
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• Algorithm	
o Get	car	and	cdr	
o Subtract	first	item	in	tail	from	the	head	
o (subtract	car	of	the	cdr	from	the	car)	
o car:	10;	cdr:	(3	2	1);car	of	cdr:	3.		
o set	head	equal	to	answer,	i.e.	7	
o Repeat	while	there	is	something	in	the	tail	

	
Expression	 car	 cdr	 car(cdr)	
(-10	3	2	1)	 	 	 	
	 	 	 	
	 	 	 	
	

• Divide	
• (/	20	5	4	2)	
• Divide	head	by	each	item	in	the	tail	
• (/	4	4	2)	
• (/	1	2)	
• ½	
• Note!	Not	0.5.	

• car	and	cdr	for	Racket...	
>	(+	1	2)	
>3	
>	’(+	1	2)	
>	(+	1	2)	
>	(car	’(a	b	c	d))		
>	a	
		>	(cdr	’(a	b	c	d))	
		>	(b	c	d)	
		>	(cdr	(car	’(a	b	c	d))	

• Error		
• cdr:	expects	argument	of	type	<pair>;	given	a	

• car	returns	an	ITEM		
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• 	cdr	expects	a	LIST		
>	(car	’(+	1	2))		
>	+	
>	(car	(+	1	2))		
cdr:	expects	argument	of	type	<pair>;	
given	3	
>	(car	(a	b	c	d))	

• Error:	a	undefined	
	

• Implications	for	ASTs?	
• Smaller	

	
	

	
	

• In	Racket	
o (function	arguments)	

• Implication	
o prefix	notation	≣	AST	≣	Racket	

• So	far	
o All	operators	are	built	in	(+,	-,	*	etc.)	
o All	arguments/operands	are	numbers	
o AST	gives	the	same	answer	

• Dynamic?	
o Behaviour	depends	on	user	input	
o Works	the	same	way	
o e.g.	Add	1	to	X	
o Where	does	X	come	from?	
o Difference	between	
o Add	1	to	X	
o Given	a	value	for	X,	add	1	to	it.	
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3.2. Lambda	Calculus	

(	λ	X.	+	1	X)	
	
Take	your	own	notes.	

	
• Needs	a	value	for	X	to	do	anything	
• Argument	names	are	ALWAYS	one	letter	in	λ	calculus	
• In	Racket?	

o (lambda	(x)	(+	1	x))	
• Function		

o “Method”	in	Java	
o Usually	takes	one	or	more	arguments	

• Two	different	kinds	of	expressions:		
o “Reducible	expression”	(redex)	

§ can	be	made	simpler	
§ e.g.	(+	2	1)=>3		

o Expression	or	λ	calculus		
§ can’t	be	simplified	(yet)		
§ (λx.	+	1	x)	

o How	to	convert	an	expression	into	a	redex?	
o Give	it	a	value	for	variables/parameters	

• Argument	gets	passed	to	parameter	
• Each	variable	in	body	corresponding	to	parameter	gets	replaced	

	

	

	

• Redexes	
o ((λ	y.	*	1	y)	2)	
o (*	1	2)	=>	2	
o ((λ	xy.	+	x	y)	2	3)	
o Take	in	order	

§ x=2,	y=3	
o ((λ	y.	+	2	y)	3)	
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o (+	2	3)	
• In	Racket	

o ((lambda	(x	y)	(+	x	y))	2	3)	
• Is	((λxy.	*	x	y)2)	a	redex?	

	
• ((λx.	x)	2)	

	
• What	if	the	argument	is	a	redex?	
• ((λx.	+3	x)(+	2	2))	
• Evaluate	argument	first	(usually):	

o ((λx.	+3	x)	4)	
o (+	3	4)	=>	7	

• Bring	in	“as	is”	
o (+	3	(+	2	2))	

	
	

• In	general	(for	the	moment…)	
o Evaluate	the	innermost	redex	first	
o i.e.	the	most	deeply	nested	and	furthest	to	the	right	

§ (λx.	x)(+	1	1)	
o Implications	for	ASTs?		

§ Need	a	new	node:	“application”	(@)	
§ i.e.	apply	λ	expression	to	one	or	more	arguments.	

	

Take	your	own	notes.	

	

• Racket	
o >	(lambda(x)	(+	1	x))	
o #<procedure>	
o Meaning?	

§ Expression	it	can’t	reduce	
>	(	(lambda(x)	(+	1	x))	(read))	
>	(	(lambda(x)	(+	1	x))	5)	
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6	
	
	
	

• Variables	and	Types	
o Racket	uses	Type	Inference		

§ Guesses	at	what	the	type	should	be	e.g.	expects	an	integer		
§ Why?	“+	1”		

• However,	(λ	x.	x)	can	take	anything		
• “Operator	overloading”		

o Operator	behaves	the	same	regardles	of	type		
§ e.g.	(+	x	y)	adds	two	things		

o Doesn’t	matter	what	type	they	are.		
o Another	view	of	+:		

§ (	(λxy.	+	x	y)A	B)	
	

• Too	long	winded	to	write	λ	expression	each	time		
o Not	every	operator	is	built	in...		
o sqr:	(λx.	*	x	x)	
o but,	(sqr	x)	is	more	useful		

• This	is	called	a	“function”	
o Difference	between	this	and	supplied	operators?		
o None.		
o (define	sqr	(lambda	(x)	(*	x	x)	)	)	
o >	(sqr	3)	
o (define	add	(lambda	(x	y)	(+	x	y)	)	)	
o >	(add	2	1)	
o 3	

• >	(define	x	3)	
• >	x	
• 	3	
• >	(+	x	3)		
• 6	
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• >	x	
• 3	
• >	(define	x	(+	x	3))		
• >	x	
• 6	
• >	(define	cube	(lambda	(x)	(*	x	(sqr	x))))	
• Strictly	speaking,	λ	calculus	doesn’t	name	functions	
• How	does	Racket	know	it’s	not	a	fn?	

• Type	inference	
o No	lambda	part	

• Functions	are	λ	expressions	with	names	
• λ	expressions	are	expressions	with	params	

 
Functional Imperative 

# funs Large Small 
Size funs Small Large 
Params? Yes Yes 
Return Always Usually 

	
• Which	is	better?	

o Easier	to	debug	if	functions	are	“tightly	coupled”	
§ i.e.	all	instructions	in	a	function	are	related.	

o Much	easier	to	manipulate	functions	in	functional	language.…	
o Possible	to	program	imperative	programs	in	a	functional	style	

• Aim	of	this	course?	
o Figure	out	what	problem	is	
o Break	up	problem	(into	functions)	
o Code	up	problem	(in	either	Racket	or	Java)	

• Scope	
o where	something	takes	effect	
o scope	depends	on	length	of	line	
o variables	have	scope	
o (λ	x.	x)		
o (λ	x.	y)		
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o >	(define	x	2)	
o >	(define	add1	(lambda	(y)	(+	1	y)))		
o >	x	
o 2	
o >	y	
o reference	to	undefined	identifier:	y	

	
	
	
	

3.3. Scope	

• Scope	
o where	something	takes	effect	
o scope	depends	on	length	of	line	
o variables	have	scope	
o (λ	x.	x)		
o (λ	x.	y)		
o >	(define	x	2)	
o >	(define	add1	(lambda	(y)	(+	1	y)))		
o >	x	
o 2	
o >	y	
o reference	to	undefined	identifier:	y	
>	(add1	x)		
3		
>	x		
2	
add1	returns	value	of	1	+	arg		
Doesn’t	modify	argument.	
>y		
Error:	undefined	variable	
y	only	exists	while	fun	is	running,	disappears	after	that	
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• Details	
o (define	add1	(lambda	(y)	(+	1	y)))	
o (add1	x)	
o add1	is	called	
o variable	y	is	created	
o argument	(contents	of	x)	copied	in		
o body	executed	
o y	is	thrown	away	
o Limited	“lifetime”	
o Why	does	x	still	exist?	
o Defined	in	its	own	right	

	

Take	your	own	notes.	

	

• Reentrant	Code	
o Code	that	has	no	side	effects	
o Virtually	every	example	we	will	see	in	this	module	
o Can	be	stopped,	restarted,	executed	multiple	times	
	>	(define	sqr		(lambda	(x)	(*	x	x)))	
o Copies	parameter	into	local	storage,	so	no	side	effects	
o Efficient	parallel	code	is	almost	always	reentrant	
o Reentrant	code	is	more	likely	to	fit	in	CPU	cache	
o No	side	effects	means	other	code	isn’t	impacted	by	it	

• Map	
>	(define	sqr		(lambda	(x)	(*	x	x)))	
>	(define	nums	‘(1	2	3))	
>	(map	sqr	nums)	
>	(1	4	9)	
Execute	function	as	many	times	as	needed	
>	(pmapf	sqr	nums)	

• Graphical	Processing	Units	(GPUs)	
o Thousands	of	cores	
o Little	or	no	communication	between	them	
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o Image	data	spread	across	cores	
o Each	core	updates	its	part	of	the	image	

	

4. Local	and	Global	Variables	
	

• Examples	have	been	relatively	straightforward	
o e.g.	Only	dealing	with	single	function,	no	global	variables	
o assuming	single	processing	core	

• From	lecture	1:	
o How	do	I	design	a	program	that	can’t	be	tested?	

• Necessary	Tools	
• Hundreds	of	functions	
• Millions	of	copies	of	the	same	function	running	at	the	same	time	
• Functions	taking	other	functions	as	parameters	
• We	need	the	ability	to	keep	all	these	moving	parts	straight	
• Local	and	Global	Variables	
>	(define	x	2)	
>	(define	addx	(lambda	(y)	(+	y	x)))	

• y	is	local,	x	is	global	
>	(addx	4)	
6	
>	x	
2	
>	(define	x	(addx	4))	
>	x	
6	

	
	

• Local	and	global	variables	in	λ	calculus	
• Some	shorthand...	

o λx.	E	



	 26	

o Function	that	takes	one	argument	
o Don't	care	what	function	does	
o λx.	(E	F)	
o Same	as	above,	but	two	distinct	parts	to	function	

• Examples:	
o λx.	+	x	y		≡		λx.	E	
o E	=	+	x	y	

• λx.	+	x	y	≡		λx.	E	F	
o E	=	+	x,	F	=	y	
o OR,	E	=	+,	F	=	x	y	

• λx.	x	≡		λx.	E	
• E	=	x	
• But,	λx.	x	<>	λx.	E	F	
• Terminology:	

o Global	variable	≈	free	variable	
§ y	is	free	in	(λx.	+	x	y)	

o Local	variable	≡	bound	variable	
§ x	is	bound	in	(λx.	+	x	y)	

	
• Free	variables	

• X	is	free	in	(E	F)	if	X	is	free	in	E	or	in	F.	
• e.g	from	above,	is	y	free	in	(+	x	y)?	

o E	=	+	x,	F	=	y.	
o Not	in	E,	but	is	in	F.	
o It	DOES	occur	free	in	(E	F).	

• Notice:	
o E	=	+,	F	=	x	y.	
o Not	in	E,	but	is	in	F.	
o It	DOES	occur	free	in	(E	F).	

• Bound	variables	

• X	is	bound	in	(E	F)	if	X	is	bound	in	E	or	in	F.	
• x	occurs	bound	in	(λy.	E)	if	

o x=y	AND	x	occurs	free	in	E	
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o OR,	x	is	bound	in	E.	
• Examples:	

o Is	x	bound	in	(λx.	+	x	y)?	
o x	is	in	the	parameter	list	(λx)	and	it	does	appear	free	in	(+x	y)	
o Thus,	x	is	bound	in	(λx.	+	x	y).	
o x	is	a	local	variable	in	(λx.	+	x	y).	

• Is	y	bound	in	(λx.	+	x	y)?	
o It	doesn't	occur	in	parameter	list	
o Other	possibility?	Bound	in	E?		

§ E	=	+	x	y	
o Occurs	free	in	E,	so	is	NOT	bound.	

• More	Examples:	
o e1:	+	x	3														x	is	free	in		e1	
o e2:	(+	x)	3											(consider	e2	=	E	F)	

§ Free	in	E	=	(+	x),	NOT	free	in	F	=	3	
§ Therefore,	free	in	e2	

• Is	y	bound	in	(λx.	+	(λy.	+	3	y)	x	2)?	
o It	doesn't	occur	in	parameter	list	
o Other	possibility?	Bound	in	E?		

§ E	=	(+	(λy.	+	3	y)	x	2)	
§ It	does	appear	in	the	parameter	list	
§ It	is	free	in	the	body	(+	3	y)	

• Therefore,	it	is	bound	in	E.	
o So,	yes,	y	is	bound	in	(λx.	+	(λy.	+	3	y)	x	2)	

• Nested	function	
• (	(λx.	+	(λy.	+	3	y)	x	2)	7)	
• (+	(λy.	+	3	y)	7	2)	
• (+	(+	3	7)	2)	
• Different	order	of	evaluation	
• (	(λx.	+	(λy.	+	3	y)	x	2)	7)	
• (	(λx.	+	(	+	3	x)	2)	7)	
• (+	(+	3	7)	2)	
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• (λx.	+	x	3)	x	
• x	free	or	bound?	
• Bound	in	E,	free	in	F	
• They	are	two	different	x’s.	The	same	name	does	not	always	mean	same	

variable.	
	
	
	
	

• (define	x	2)	
• ((λf.	f	(*	1	3)	(+		4	5)	x)				((λxyz.	(*	2	x)))	
• Which	x	is	free	and	which	is	bound?	
• ((λf.	f	(*	1	3)	(+		4	5)	x)				((λxyz.	(*	2	x)))	

o x	is	free	and	x	is	bound.	
	
	

4.1. β	reduction	

	
• Naming	variables	
• Variables	with	the	same	name	are	not	necessarily	the	same	variable	
• Does	not	imply	that	two	variables	are	the	same	
• To	avoid	confusion	better	to	keep	different	names	

o 			>	(define	x	3)	
o 			>	(define	add1	(lambda	(x)	(+	x	1)))	
o 			>	(add1	x)	
o 			4	
o 			>	x	
o 			3	

• Formally	in	λ	calculus	

• β	reduction	means	passing	arguments	to	a	lambda.	
• Remove	the	λ	and	parameters	list	(e.g.	λxy.)	and	in	the	resulting	body,	

replace	the	free	variables	with	the	arguments.	
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o (λx.	+	x	1)	4	
o The	body	without	λx.	is	(+	x	1)	
o In	the	absence	of	λx.	part,	x	is	free	in	(+	x	1)	
o Replace	x	with	4		
o =>	(+	4	1)		(redex)		
o =5	
o (λx.	+	x	1)	4					β							(+	4	1)	=	5				

• Nested	functions	
• ASTs/Prefix	expressions	can	have	multiple	levels	of	nesting		

o E.g.	(λx.	*	(+	2	3)	(-	2	(*	3	4)))	5	
• But	also:	

o (λx.	+	(λy.	+	2	y)	x	4)	3	
o Beta	reduction	replaces	free	occurrences	in	the	body.		
o [x	is	free,	after	removing	the	(λx)	part].		
o x=3				β						(+	(λy.	+	2	y)	3	4)	
o y=3				β								(+	(+	2	3)	4)	
o =	9			

• A	more	confusing	but	identical	example:	
o (λx.	+	(λx.	+	2	x)	x	4)	3	

• Replace	only	FREE	occurrences,	after	removing	λx.	
o x=3				β										(+	(λx.	+	2	x)	3	4)	

• Note	x	is	not	replaced,	because	it	is	still		bound	(to	lambda	starting	with	
λx).	

o x=3			β								(+	(+	2	3)	4)	
• =9			

	
• Passing	lambdas	as	arguments	
• (λf.	f	3)	(λx.	+	x	1)	
• Argument	is	a	function	(lambda)	

o β	reduction	replaces	free	occurrences	of	f	
o So	we	get:	

§ (λx.	+	x	1)	3	
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o Another	β	reduction	follows:	
§ +	3	1	=	4				

• Passing	lambdas	as	arguments	
• Is	this	a	strange	thing	to	do?	

o No,	it	is	an	ENORMOUSLY	powerful	thing	in	programming	
o Usually	modify	functionality	by	passing	data	
o Can	modify	functionality	by	passing	code	
o Parallel	processors	are	often	programmed	in	this	way	
o Programmer	can	efficiently	move	code	between	processors	

• Extremely	difficult	to	do	in	imperative	programming	
• Simple	to	do	in	functional	programming	

	
Take	your	own	notes.	

	

4.2. α-conversion	and	δ-conversion	

	
• Remember:	Functions	in	λ	calculus	and	ASTs	(usually)	don't	have	names	
• Racket	can	use	them	

o Useful	for	reusing	functions	
o Useful	for	debugging	
o Slightly	more	longwinded	

• >	(define	t	(lambda	(f)	(f	3)))	
o >	(t			(lambda	(x)	(+	x	1))			)	
o 4	

• >	(define	t2	(lambda	(f)	(f	2	3)))	
o >	(t2	+)	
o 5	
o >	(t2	7)	
o Error:	attempt	to	call	a	non-procedure	

• Lesson?	
o Anything	can	be	passed	as	a	parameter:	numbers,	variables,	

functions,	operators	
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o Syntax	the	same	in	lambda	calculus,	AST	and	Racket	
o Not	consistent	in	imperative	programming	

§ Very	different	when	passing	a	function	to	a	function	
• Formal	Notation	for	β	reduction:	

o (λx.	E)	a				β						E[a/x]	
o Meaning:	in	E,	replace	free	occurrences	of	x	with	a	

• Consider:	(λx.	+	x	1)	and	(λy.	+	y	1)	
o Are	they	the	same?	
o Yes	-	names	don't	matter.	
o Converting	one	into	another:	α-conversion	

E.g.	(λx.	+	x	1)		α		(λy.	+	y	1)	
o Note:	bi-directional	arrow:	two	way	process	

• However,	if	we	replace	x	with	y	in:	
o (λx.	+	x	y)	
o We	get:	(λy.	+	y	y)	
o Not	correct.	Why?	

§ Because	y	is	free	in	(λx.	+	x	y)	
o What	about:	

§ (λx.	+	x		(λy.	+	y	1	)	2)				α					(λy.	+	y		(λy.	+	y	1	)	2)				
§ This	is	fine	
§ y	is	NOT	free	in	the	body	of	the	lambda	on	left	side.										

o Formal	Definition:	
§ λx.	E				α				λy.	E[y/x],	IF	y	does	not	already	exist	free	in	E.	

• Utility	of	α-conversion	
• 																(λf.			(λx.		f		(f	x))		)		x	
• β-reduction=>(λx.		x		(x	x))	
• Erroneous.	

	
• Use	α-conversion	to	avoid	confusion:		

o convert	x	into	y	inside	the	nested	lambda.	
o 																		(λf.			(λy.		f		(f	y))		)		x	
o β-reduction=>	(λy.		x		(x	y))	
o Correct	
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• δ-conversion	and	Normal	Form	
o (λx.	(+	x	1))	2	

						β					(+	2	1)	
o 						δ											3	

• (F	a1	a2)			δ								result,	where	F	is	a	built	in	operator		
• β-reduction	puts	values	in,	δ-conversion	evaluates	them		
• The	result	after	full	evaluation	is	said	to	be	in	Normal	form		

o E.g.	(+2	1)	=	3	is	in	Normal	form	
o No	more	redexes	left.	

	
Example	of	δ-conversion	
	
	
	

• β-reduction	–	an	interesting	example	
• (λf.	(λx.	f		4	x))			(λyx.	+	x	y)			3	
• (λf.	(λx.									f										4	x))			(λyx.	+	x	y)			3	
• β			(λx.	(λyx.	+	x	y)	4	x)		3	
• β				(λyx.	+	x	y)	4	3	
• β				(+	3	4)	
• δ											7	
• Racket	Code	
• (define	Lf					(lambda	(f)	(lambda	(x)	(f	4	x)	)		))	
• (define	Lyx			(lambda	(y	x)	(+	x	y)	)		)	
• (	(Lf			Lyx)	3)	

`	
When	to	evaluate	arguments	–	the	effect.	

	
• Consider	function	
• 			D:	(λx.	x	x)	
• In	Racket:				(define	D		(lambda(x)	(x	x))			)	
• Evaluate				D	D	
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• (λx.				x												x)						(λx.	x	x)		
• β					(λx.	x	x)	(λx.	x	x)		
• β						(λx.	x	x)	(λx.	x	x)	
• Infinite	calls	
• Try	it	in	Racket	using	(D	D)					

	
• 		Consider			(λx.	3)	7	
• β						3	
• Result	is	3;	no	matter	what	the	argument	is.		
• Evaluating	the	argument	is	needless.	
• Consider			(λx.	3)	(D	D)	
• Evaluate	the	argument	first?	Infinite	calls.		
• Otherwise,	the	answer	is	just	3.	

4.3. Order	of	evaluation	

• How	do	we	evaluate	simple	expressions?	
o So	far	“innermost”	
o e.g.	(+	(*	2	3)	4)	

• Applicative	Order	(Eager	Evaluation):	
o “leftmost	innermost”.	
o i.e.	try	to	evaluate	the	leftmost	redex;		
o Immediately	go	to	the	innermost	level	of	nesting	
o (λxy.	+	x	y)	(+	1	2)	(+	3	4)	
o =(λxy.	+	x	y)	3	(+	3	4)	
o =(λxy.	+	x	y)	3	7	

• Normal	Order	(Lazy	Evaluation):	
• Back	to	(λx.	3)	(D	D):	

o Applicative	Order	forces	evaluation	of	(D	D)	even	though	it	is	not	
needed	

o Arguments	are	evaluated	EXACTLY	ONCE	
• Another	Strategy:	Normal	Order	

o Reduce	“leftmost	outermost”.	i.e.	work	with	the	outermost	bracket	
level	whenever	possible.		
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o (λx.	+	x	1)	(+	2	3)	
o  β				(+	(+	2	3)	1)	
o Cannot	work	at	the	outermost	level	now.	So	reduce	the	inner	

(nested)	redex.	
o =(+	5	1)	=	6	

• +	is	a	“strict”	function:	
o Requires	all	its	arguments	before	proceeding	further	
o Forces	evaluation	of	arguments	even	in	lazy	evaluation	 	

• (λx.	3)	(D	D)	with	Normal	Order	
o 3	
o (D	D)	not	evaluated	

	
• Implications	
• Applicative	Order	can	cause	infinite	calls,	and	evaluate	arguments	

needlessly	
• It	evaluates	arguments	exactly	once	

o regardless	of	whether	or	not	they	are	needed	
• Normal	Order	only	evaluates	arguments	when	necessary	
• It	evaluates	arguments	zero	or	more	times	

o this	might	be	more	inefficient	
• Fully	Lazy	Evaluation	

o Evaluate	arguments	zero	or	one	times	
• Final	Example	
• (λx.	+	x	x)	(*	6	2)	
• Normal	Order	β	reduction:	

o +	(*	6	2)	(*	6	2)	
o +	12	(*	6	2)	
o +	12	12	=	24	

• Applicative	Order	β	reduction:	
• Evaluate	argument	before	β	reduction;	we	get	12	

o +	12	12	
o =24			
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5. Boolean	Algebra	and	Recursion	
	

• True	or	False	
o (IF-THEN-ELSE)	

• Charles	Babbage	(1791	-	1871)	
o Differential	Engine	(1822)	

§ Solve	Polynomial	Functions		
o Faraday’s	electric	engine	(1821)		
o Analytical	Engine	(1830)	

§ Programmable,	memory,	printer,	CPU	
§ First	built	153	years	later!	

• George	Boole	(1815-1864)	
• First	Professor	of	Mathematics	in	UCC	
• Formalised	logic		
• Lets	us	reason	about	unseen	cases	

o Enables	scaling	in	modern	computers	—	hyperscale	
• “The	Joy	Of	Logic”	

o https://vimeo.com/199831792	
• Boolean	Operators	

o (AND,	OR…)	
• Relational	Operators	

o (<,	>,	=…)	
• Prefix	notation?	

o (>	2	1)		
o (<	4	2)		

• Racket?	
>		(>	2	1)	
>	(=	2	1)	
>	(<	(+	3	1)	(*	4	5))	
>	(+	2	(>	3	1))	
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• Conditionals	
• General	view	of	conditional:	

o if	E	then	C1	else	C2	
• Meaning:		

o if	condition	E	is	true	
§ THEN	execute	command(s)	C1	
§ ELSE	execute	command(s)	C2	

• λ	calculus	/	Racket	view:	
o if	condition	E	is	true	

§ THEN	return	C1	
§ ELSE	return	C2	

• Examples	
• >	(if	(>	2	0)	“first”				“second”)	
• “first”	
• Return	the	larger	of	two	numbers:	
• (λxy.	if	(>	x	y)		x				y)	

	
	

	

	

	

• IF	can	have	only	one	part	as	well:	
• (λxy.	if	(>	x	y)		x)	

• Notice:	λ	calculus	can	use	all	the	classical	boolean	constructs:	
• and,	or,	not	
• (or	#t	#f)	
• #t	

	
	
	

• (not	#t)	
• (or	#f	#t)	
• 	(and	#f	#t)	 	
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• 	(or	(and	#t	#f)	(or	#f	#t)	)	
	
	
	
	

• All	numbers	are	considered	#t	
• (if	1	“first”	“second”)	
• ‘or’	returns	the	first	TRUE	value	it	can	find;	otherwise	it	returns	FALSE.	
• 	(or	1	0)	
• 	(or	0	1)	
• 	(or	31	#t)	
• 	(or	#t	31)	
	
• Sometimes	the	first	TRUE	value	is	not	a	boolean!	

	
• Why	return	the	first	item?	

• Efficiency:	This	can	save	unnecessary	evaluations…	
• (or	(f1	a)	(f2	a)	(f3	a)…(f1000	a))	
• Stop	evaluating	as	soon	as	possible	

	
	
	
	

• AND	is	the	opposite	to	OR	
• (and	3	-1)	
• 	(and	-1	3)	
• 	(and	1	#f)	
• 	(and	#f	2)	
• 	(or	1	#f)	
• 	(not	-1)	
• As	with	OR,	the	TRUE	item	could	be	non-boolean	
• Efficiency	of	AND	vs	OR	
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• AND	requires	everything	to	be	evaluated	for	true		
• (and	(f1	a)	(f2	a)	(f3	a)…(f1000	a))	
• Extra	arguments?	
• (not	1	2)	
• not:	arity	mismatch…	

			expected:	1	

			given:	2	

• (and	1	2	3	4)	
• (or	1	2	3	4)	
• Strings	are	always	true	

o (and	“hello”	“goodbye”)	
o “goodbye”	
o (or	“hello”	“goodbye”)	
o “hello”	

• Using	conditionals	
o Decision	making	
o Give	appearance	of	intelligence	
o (define	pass?	
o 	 (lambda	(x)	
o 	 							(if	(>=	x	40)	“pass”	“fail”)))	
o (define	pass2?	
o 	 	(lambda	(x)	
o 	 	 	(if	(>=	x	40)					#t										#f		)))	

• (pass?	25)	
• 	(pass2?	25)	
• Which	is	better?	

o pass2?	because	it	returns	a	boolean	
o It	is	more	tightly	coupled	

• pass2?	returns	either	#t	or	#f			
• pass?	returns	a	string	each	time		
• A	string	has	a	boolean	value:	#t.	

(if		
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						(and	(pass?	35)	(pass?	45))		
“Passed	both”		
“Didn’t	pass	both”)	

	
	

• (define	passBoth	(lambda(x	y)	
(if		
						(and	(pass2?	x)	(pass2?	y))	
								“Passed	Both”	
							“Didn’t	pass	both”)	
								))	

	
Another	example	

(define	scrape	
			(lambda	(x)	
	 	(if				(and	(<	x	45)	(pass2?	x)	 	 	 		 	 	
	 #t			#f	)))	
	
• (scrape	42):	

o (<	42	45)	
o (pass2?	42)	

• ➔	(and	(<	x	45)	(pass2?	42)	)	
• (define	pass3?	(lambda	(x)	(>=	x	40)))	

o Evaluates	(>=	x	40)		
o Returns	the	boolean	value.	

• More	examples:	
• Write	two	functions	

o (1)	Check	if	a	number	is	even.	
o (2)	Checks	if	a	number	is	high-even,	that	is,	if	the	number	is	

greater	than	20	and	even.	
• Built	in	Racket	function:	
• >	(integer?	x)			
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>	(define	even	
	 (lambda	(x)	
	 	 	(integer?	(/	x	2))	
	 )	
)	

	
>	(define	high-even	
	 (lambda	(x)	
	 	(and	(>	x	20)	(even	x))	
	 )	
			)	
	
>	(define	high-even2	
	 	(lambda	(x)	
	 		(if	(>	x	20)	(even	x)	#f)	
	 )	
)	

	
	
	

• Function	call	overhead	
• Which	is	better?	high-even	or	high-even2?	
• 	 high-even2	executes	a	function	call	first,	incurs	“overhead”	
• 	 high-even	relies	on	short-circuiting	behaviour	of	AND.		
• When	(>	x	20)	returns	#f,	execution	stops	
• 				Remember:	AND	returns	the	first	FALSE	item	it	finds	
• Therefore,	high-even	is	better.	
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5.1. Recursion	

	
• Solve	a	problem	with	a	function	that	calls	itself	
• For	example,	how	do	you	calculate	Factorial	n?	
• 3!	=	3	*	2	*	1	
• 4!	=	4	*	3	*	2	*	1	
• Answer:	n	*	Factorial	(n-1)	
• ….	kind	of	
• Prove	for	simple	case	
• Prove	for	case	i+1	
• Assume	true	for	all	
• Inductive	proof	for	dominoes:	

• Informal	

o The	first	domino	knocks	over	the	second	
o which	knocks	the	third	
o and	so	on	....	

• Classic	

o The	first	domino	falls	
o Whenever	the	ith	domino	falls,	it	knocks	the	i+1th	domino	
o Therefore,	all	the	dominoes	fall.	

• Idea	
o Can	prove	something	for	a	simple	case	
o Prove	it	for	a	general	case	
o Assume	proven	for	all	cases	

• Important	because?	
o Numbers	go	to	infinity	
o Impossible	to	prove	for	every	case	

• Recursion	is	similar	to	induction	
• Solve	simple	case	of	a	problem	
• Figure	out	how	complex	(general)	case	can	be	solved	
• 	….using	the	simple	case	
• Magically	solves	all	cases	
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• Example:	Compute	Factorial	
• Factorial			1			=								1	
• Factorial			n			=		n	*	(n-1)	*	(n-2)	*…	*	1	
• Factorial	n-1		=								(n-1)	*	(n-2)	*…	*	1	
• Factorial			n			=	n	*	Factorial	(n-1)		

	
Execution	of	factorial	

	
• Factorial			1			=								1		[SIMPLE	CASE]	
• Factorial			n			=	n	*	Factorial	(n-1)		[GENERAL	CASE]	
• Fact	3:						(shorthand	for	Factorial	3)	

• Fact	3	=	3	*	Fact	2	
• Fact	2	=	2	*	Fact	1	
• Fact	1	=	1	

• Go	back	up:	
• Fact	2	=	2	*	1	
• Fact	3	=	3	*	2	*	1	

• Answer	=	6.	
• Each	line:		

• Does	ONE	thing	
• Passes	on	the	rest	of	the	problem	(to	itself)	
• Using	Lambda	Calculus	

• fact	:			(λn.	if	(=	n	1)		 	
1	 	 	 	 	 	 																											
(*	n			(fact	(-	n	1))		)	)	

• Execute	(fact	3):	
• if	(=	3	1)		1		(*	3	(fact	(-	3	1)))	
• (*	3	(fact	(-	3	1)))		=		(*	3	(fact	2))	

• Execute	(fact	2):	
• if	(=	2	1)		 1		(*	2	(fact	(-	2	1)))	
• (*	2	(fact	(-	2	1)))	=	(*	2	(fact	1))	

• Execute	(fact	1):	
• if	(=	1	1)		 1	(*	1	(fact	(-	1	1)))	
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• 1	
• Go	back:	

• (*	2	(fact	1))		=	(*	2	1)	
• 2	

• Go	back:	
• (*	3	(fact	2))		=	(*	3		2)	

	
Take	your	own	notes	for	AST.	

	
In	Racket	

(define	fact	
			(lambda	(x)	
	 	(if	(=	x	1)					

1						
(*	x	(fact	(-	x	1))))	

	 )	
				)	
• (fact	3)	

o 6	
• (fact	5)	

o 120	
• (fact	-1)	

	
• Infinite	Recursion	

o Each	function	call	incurs	overhead,	
o including	local	variables…	
o eventually	computer	runs	out	of	memory	

• Racket-specific	

o If	a	call	exceeds	maximum	allowed	memory	(default	240MB)	
o …it	is	terminated.	

• Error	checking	

o Change	condition	to	
o (if	(<=	x	1)…	



	 44	

	
	

• Fibonacci’s	assumptions	about	rabbits	
o Start	with	one	pair	
o Rabbits	can	mate	at	the	age	of	one	month	
o Gestation	period	is	one	month	
o Two	rabbits	produced	each	time	
o Equal	number	of	male	and	female	rabbits	
o Rabbits	never	die	

	
	
Golden	Ratio	

• Ratio	of	sum	of	(a	+	b)	to	a	is	the	same	as	the	ratio	of	a	to	b	
• Appears	all	over	nature,	art,	music	

Sacred	Geometry	

• Plato	said	god	geomtrises	continually	
- Plutarch	(45AD	–	127	AD)	

	
Back	to	Fibonacci	

(define	fib		
				(lambda	(x)	

(if	(<=	x	2)	
1	
(	+	(fib	(-	x	1))	

							 (fib	(-	x	2))	
)))	

	
• Additional	reading	on	recursion	
• Given	in	Reference	Material	section	

o Structure	and	Interpretation	of	Computer	Programs	
• On	the	class	website		
• Section	1.2		Procedures	and	the	Processes	They	Generate		
• Implement	and	understand	two	different	implementations	of	factorial.	
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• Iteration	may	sometimes	replace	recursive	function	

int	fact=1;	
for	(int	j=arg;	j>1;	j--)	

fact	=	fact	*	j;	
• But	not	always!		
• Sometimes	not	trivial	to	replace	a	recursive	function.	
• For	example	browsing	a	tree	of	item	categories	on	argos.ie	or	

amazon.com	
• Useful	exercise:	implement	Fibonacci	in	Java	

	
public static int fibonacciLoop(int number) { 

  if (number == 1 || number == 2) { 

   return 1; 

  } 

  int fibo1 = 1, fibo2 = 1, fibonacci = 1; 

  for (int i = 3; i <= number; i++) { 

   fibonacci = fibo1 + fibo2; 

   fibo1 = fibo2; 

   fibo2 = fibonacci; 

  

  } 

  return fibonacci;  

} 

 

number fibonacci fibo1 fibo2 

(initial) 1 1 1 
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5.2. Solving	problems	recursively	

• Identify	the	base	case;	then	identify	the	general	case	
• Not	always	easy	

o General	case	may	be	difficult	to	formulate	
• Example:	Add	numbers	from	0	…	n.	

o Base	Case/Terminating	Case/Simple	case	
o 0	…	nothing	to	add	
o i.e.	sum(0)	=	0	

• General	case:	
• 												sum(n)					=	n	+	(n	–	1)	+	(n	–	2)	+	….	+	0	
• 												sum(n-1)	=									(n	–	1)	+	(n	–	2)	+	….	+	0	

	
Solving	Problems	Recursively	

• Putting	it	together:	
sum:		λn.	if	(=	0	n)				0	
																																			(+	n	(sum	(-	n	1)))	

• Another	view:	recognise	a	sequence	
• n		 	 	0			1			2			3			4			...	
• sum(n)	 	0			1			3			6			10	...	

	
• n		 	 0			1			2			3			4			...	
• fact(n)		 0			1			2			6			24	...	
• Write	a	recursive	function	that	generates	the	sequence	
• 	i.e.	for	a	given	value	of	n,	it	produces	sum(n)	or	fact(n).	

	
Generating	Functions	from	Sequences	

• Using	λ	calculus	&	recursion	for	design	
o Try	to	describe	what	is	happening	with	sequence	

• Example:	explain	the	following	sequence	



	 47	

o n						1	2	3	4			...	
o f	(n)	1	5	9	13	...	

• Base?	
o f(1)	=	1	

• General?	
o No	easy	way	to	spot;	however,	usually	f(n)	is	somehow	related	to	

f(n-1)	
o Here,	each	number	is	4	bigger	than	the	previous	one.		
o Therefore,	f(n)	=	f(n-1)	+	4	

	
Mathematically	

• Mathematically:	
• f(1)	=	1	
• f(n)	=	f(n-1)	+	4	
• Recursive	λ	calculus	function:	

f	:	λn.	if	(=	n	1)		1	
		(+	(	4	(f	(-	n	1))))	

• Another	example:	
• n						1			2			3				4			...	
• f	(n)	1			5			13		29	...	
• f(1)	=	1.	(won't	always	be	....)	
• f(n)	=	?	
• Usually	f(n)	=	calc(n)	+	f(n-1)	
• 	 (but	not	always...)	
• Write	out:		
• n						1			2			3				4			...	
• f	(n)	1			5			13		29	...	

o f(1)	=	1	
o f(2)	=	5			=	f(1)	+	4	
o f(3)	=	13	=	f(2)	+	8	
o f(4)	=	29	=	f(3)	+	16	
o f(5)	=	61	=	f(4)	+	32	
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o 4,	8,	16...	powers	of	2.	
• Aside:	
• Power	of	two	in	λ	calculus?	

o λx.	(*	x	x)							
o Only	squares;	need	to	generate	higher	powers	of	two	

• A	more	useful	function:	
• (pow	x	y)								(i.e.	xy)	
• Base	case:		x0	=	1,	thus	(pow	x	0)	=	1	
• General	case:	(*		x					(pow	x		(-	y	1))	
• Because	xy	=	x	*	xy-1	
• Notice:	

o Two	variables	
o Only	one	controls	recursive	call	

• Recursive	λ	calculus	function:	
pow	:	λxy.	if	(=	0	y)	1	
	 (*		x			(pow	x	(-	y	1)))	

• Evaluate	32	
• (pow	3	2)	
• if	(=	0	2)	1	(*	3	(pow	3		1))	
• 										if	(=	0	1)	1	(*	3	(pow	1		0))	
• 																if	(=	0	0)	1	(*	3	(pow	3		-1))	
• (*	3	(*	3	1))	=	9	

	
Back	to	original	question	

• f(1)	=	1	
• f(n)	=	f(n-1)	+	2n	

• Recursive	λ	calculus	function:	
f	:	λn.	if	(=	n	1)	 1	
																		 	 	(+	(f	(-	n	1))		(pow	2	n)	)	
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• Procedures	and	Processes	
• Procedures:	another	term	for	functions.	
• Function	call	generates	a	computational	process	

o i.e.	a	set	of	steps	required	to	execute	the	code	
• Important	to	understand	this	process	to	become	an	expert	programmer	

o i.e.	not	all	code	is	executed	
o sometimes	code	is	executed	multiples	times	

• Possible	to	examine	the	shape	it	generates.	
	

Reminder:	factorial	
• (fact		n	)		=	(*	n		(fact	(-	n	1))		(General	Case)						
• Example	execution:	(fact	4)	

	
(fact	4)	
(*	4	(fact	3))	
(*	4	(*	3	(fact	2)))						
(*	4	(*	3	(*	2	(fact	1))))	
(*	4	(*	3	(*	2		1)))	
(*	4	(*	3		2))	
(*	4		6)	
24	

	
	

• Factorial	with	a	non-recursive	process	
• Avoid	deferred	operations:	
• Keep	a	running	product	with	every	recursive	call	
• Much	like	with	loops/iterations.	Recall:	

	
int product=1; 

int counter=1; 

while (counter<=n) { 
 product=product*counter; 

 counter++; 
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} 

	
Factorial:	non-recursive	process	with	a	recursive	function	
	

• (facto	counter	product	n):	
	
(facto		1													1													4)	
(facto		2													2													4)	
(facto		3													6													4)	
(facto		4													24											4)	
	

• Constant	Memory/space	required	
• Because	no	deferred	operations.	
• Much	like	with	loops.	
• Hence,	an	iterative	process.					

	
(define	facto	(lambda	(counter	product	n)	
		 (if	(>	counter	n)	

product	
(facto		(+	counter	1)	

	(*	counter	product)	
		 	 n	

))))	


